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Single-cell transcriptome sequencing (scRNA-seq) is a high-throughput technique used to study gene expression at the single-cell
level. Clustering analysis is a commonly used method in scRNA-seq data analysis, helping researchers identify cell types and
uncover interactions between cells. However, the choice of a robust similarity metric in the clustering procedure is still an open
challenge due to the complex underlying structures of the data and the inherent noise in data acquisition. Here, we propose a deep
clustering method for scRNA-seq data called scRISE (scRNA-seq Iterative Smoothing and self-supervised discriminative Embedding
model) to resolve this challenge. The model consists of two main modules: an iterative smoothing module based on graph
autoencoders designed to denoise the data and refine the pairwise similarity in turn to gradually incorporate cell structural features
and enrich the data information; and a self-supervised discriminative embedding module with adaptive similarity threshold for
partitioning samples into correct clusters. Our approach has shown improved quality of data representation and clustering on
seventeen scRNA-seq datasets against a number of state-of-the-art deep learning clustering methods. Furthermore, utilizing the
scRISE method in biological analysis against the HNSCC dataset has unveiled 62 informative genes, highlighting their potential roles
as therapeutic targets and biomarkers.
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INTRODUCTION
The advent of single-cell RNA sequencing (scRNA-seq) has
revolutionized our understanding of cellular diversity and gene
regulation [1]. This innovative technique enables the measure-
ment of gene expression in individual cells, providing unprece-
dented insights into the complexity of biological systems [2]. By
analyzing the expression of thousands of genes in tens of
thousands of cells in a single experiment, scRNA-seq has emerged
as a powerful tool for detecting cell-to-cell variability, identifying
rare cell populations, and inferring cell lineage relationships [3, 4].
In multicellular organisms, a critical challenge in scRNA-seq data
analysis is to accurately characterize different cell types and their
lineage relationships [5, 6]. To this end, cell clustering has become
an indispensable step in scRNA-seq data analysis. By grouping
cells with similar gene expression patterns, cell clustering can help
identify cell types and subpopulations, thus revealing the cellular
heterogeneity and diversity present within a biological system
[7, 8].
Despite the enormous potential of scRNA-seq, it poses multiple

challenges in data processing, including high dimensionality,
technical noise, missing events, and batch effects. The continuous
increase in detection range and cell number leads to a significant
rise in data dimensionality, thereby presenting considerable
computational analysis challenges [9]. Additionally, sample pre-
paration and sequencing processes can introduce biases and
noise. Most gene expression values in the gene expression matrix

are zero, which may result from biological or technical factors [10].
Due to relatively low mRNA expression, insufficient capture
efficiency, or low sequencing depth, many genes exhibit low
expression levels in scRNA-seq data. These low expression values
do not necessarily reflect actual gene expression loss but may
result from technical limitations, known as the “dropout”
phenomenon [11]. Furthermore, it is necessary to consider the
impact of cellular stress responses and batch effects on the cell
state [12].
Traditionally, clustering methods such as K-means, and

hierarchical clustering, have been used for scRNA-seq data
analysis. However, these methods have limitations in handling
high-dimensional and noisy scRNA-seq data. Several algorithms
have been developed to address these challenges and are
specifically designed for scRNA-seq data analysis. For example,
pcaReduce [13] uses principal component analysis (PCA) for
dimension reduction and k-means clustering for cell clustering.
CIDR [14] is a fast and efficient method that considers zero-inflated
expression data and uses implicit interpolation for single-cell
clustering. SIMLR [15] combines multiple kernels to learn sample
similarities and performs spectral clustering. SC3 [16] uses
consensus clustering and PCA for dimension reduction to cluster
single cells.
The powerful representation-learning ability of deep learning

has provided more accurate and comprehensive results for the
clustering analysis of single-cell transcriptomic data. In recent
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years, several methods utilizing deep embedding techniques for
single-cell clustering have emerged. DCA [17] combines auto-
encoders and a negative binomial distribution model to model the
count data and learn effective low-dimensional representations.
This embedding representation can be used for subsequent
clustering analysis. scDeepCluster [18] adds a clustering layer to
the DCA model and performs cell cluster assignment after the
initial denoising stage. scziDesk [19] employs a denoising
autoencoder to characterize scRNA-seq data and then constructs
a self-training K-means algorithm to cluster cell populations. This
method aims to overcome the limitations of traditional K-means
clustering, such as sensitivity to noise and initialization. scVI [20] is
a deep embedding method that uses a VAE. scVI probabilistically
models single-cell data and learns the distribution of its
latent space.
Although these deep embedding clustering methods have

made significant progress, they still have limitations in over-
looking the structural relationships between data samples. To
solve the challenge, scGNN [21] uses a GNN that iteratively
constructs a cell graph using a multimodal autoencoder,
dynamically prunes the cell graph during the iterative process,
and finally clusters the feature data containing graph structure
information using the K-means algorithm. Luo et al. [22] proposed
a model based on graph autoencoders (scGAE), which constructs a
cellular graph and uses graph autoencoders to preserve the
features and topological structure information of scRNA-seq data.
scTAG [23] optimizes a topologically adaptive graph convolutional
autoencoder, which processes node features using polynomial
convolution to generate latent embeddings for soft assignment

clustering. scDSC [24] consists of a GNN module and a ZINB-based
autoencoder and achieves end-to-end training using a multi-
module mutual supervision strategy.
Currently, many graph neural network-based clustering techni-

ques rely on constructing a cell graph from the input data, and the
clustering performance heavily depends on the quality of the
graph. Our work introduces a novel clustering strategy for scRNA-
seq data called scRISE, which uses an autoencoder to iteratively
denoise the data (with Laplacian smoothing) and construct the
cell-graph reliably, while in the meantime seamlessly incorporat-
ing cell graph information with a self-supervised discriminative
embedding technique that allows identifying correct clusters
through adaptively determined similarity threshold.
A distinctive feature of scRISE is its use of an iterative cycle-

smoothing approach to achieve optimal clustering results during
the data reconstruction phase. Through the application of a self-
supervised discriminative embedding learning technique, scRISE
guides the clustering of the reconstructed data, ensuring a more
precise and insightful representation of the underlying cellular
structures. Importantly, scRISE is versatile in correcting various
types of noise and non-signal fluctuations, as it does not assume
any specific form of data distribution. We conducted a compre-
hensive performance study, comparing scRISE with five state-of-
the-art deep clustering techniques to assess its effectiveness in
identifying meaningful clusters in the data. Our findings unequi-
vocally demonstrate the superior benefits of scRISE for scRNA-seq
data processing. Additionally, we showcase the powerful denois-
ing capability of scRISE through visually compelling visualizations
and dimensionality reduction studies, emphasizing its

Fig. 1 The overview of the proposed method scRISE. The framework of scRISE includes the iterative smoothing module based on graph
autoencoder and the self-supervised discriminative embedding learning module. The iterative smoothing module consists of an autoencoder
and a Laplacian filter connected. In each iteration, a cell graph is constructed from the input data, and the reconstructed data from the
autoencoder is smoothed using the Laplacian filter. The smoothed data are fed back to the autoencoder for further processing. The output of
the autoencoder is then processed through the self-supervised discriminative embedding module, which adopts an adaptive threshold to
identify positive and negative sample pairs to compute the final clustering.
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effectiveness in extracting biologically significant insights from
noisy and complex single-cell transcriptome datasets.

RESULTS
The framework of scRISE
The scRISE method consists of two main modules, as shown in Fig. 1.
Firstly, we use an iterative smoothing module based on graph
autoencoder, which combines the autoencoder with Laplacian
smoothing filters to smooth and reconstruct potentially noisy,
incomplete, or rough data, while also incorporating intercellular
structural information. The autoencoder accurately reconstructs the
main signals in the data, and the Laplacian smoothing filters further
improve the data quality by smoothing, reducing the impact of
noise. This iterative process continuously updates the reconstructed
data, gradually improving the accuracy and stability of single-cell
data. Then we use a self-supervised discriminative embedding
module, which utilizes the similarity between cells to select positive
and negative sample pairs to determine the inherent clusters in the
data. In this module, the threshold for positive and negative sample
pairs are chosen adaptively, so that samples belonging to the same
cluster are naturally pushed together, while those from different
clusters will be expelled from each other in the embedding space.
This module aims to enhance clustering performance by learning
the intrinsic similarity structures embedded in the data distribution.
By combining these two modules, scRISE effectively removes
incompatible and noisy signals in the data and achieves self-
supervised clustering without having to resort to extensive human
interventions.

Evaluation of the iterative smoothing module
Autoencoders reassemble data in an unrefined manner that could
include noise and missing information. As a result, Laplacian
smoothing filters are required for scRNA-seq data processing to

update and smooth the data. To progressively increase the
precision and stability of single-cell data, this procedure must be
repeated several times. The smoothed data are passed back to the
autoencoder for reconstruction in each iteration, and more precise
and trustworthy data are produced by doing this repeatedly. We
used scRISE on five simulated scRNA-seq datasets to assess its
performance in order to look into how the number of smoothing
iterations affected the clustering performance. We determined the
ideal number of smoothing iterations through rigorous testing
that produced integrated information that improved clustering
performance.
Figure 2a–d shows the clustering performance (ACC, ARI, NMI

and Silhouette Coefficient) across five simulated single-cell
datasets for different numbers of smoothing iterations. We
noticed that setting the smoothing iteration to 1 resulted in less
favorable clustering performance for scRISE across most datasets.
As the number of iterations increases to 2, there is an obvious
improvement in clustering performance. Different datasets show
varying sensitivity to the smoothing iterations. For the sim_1000
dataset, the ACC metric gradually decreases, but remains relatively
stable within 3 iterations. The NMI and ARI metrics reach their
maximum values at 3 iterations, while the Silhouette Coefficient
reaches its peak. For the simulated single-cell datasets with cell
numbers ranging from 2500 to 7500, the ACC, NMI, and ARI
metrics reach their maximum values at two iterations, with ACC
values above 0.95 and NMI and ARI values above 0.89. These
metrics show little change with increasing iteration numbers,
while the Silhouette Coefficient gradually increases. Overall, scRISE
performs well on datasets with a larger number of cells.
Additionally, we analyzed the impact of different iteration
numbers on runtime, as shown in Supplementary Fig. S1. The
iteration number and runtime show a linear growth trend.
Considering both clustering metrics and runtime, selecting a
smoothing iteration of three for clustering simulated single-cell

Fig. 2 Simulated experimental analysis of clustering metrics for different number of smoothing iterations. Line graph of clustering metrics
Accuracy (a), Adjusted Rand Index (b), Normalized Mutual Information (c), and silhouette coefficient (d).
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data achieves good results while shortening the runtime and
improving analysis efficiency without compromising the results.

Comparison of scRISE with prior methods on scRNA-seq
datasets
We conducted clustering comparisons between scRISE predictions
and five recently proposed deep learning clustering methods on
the seventeen scRNA-Seq datasets. The results show that scRISE
improves the clustering performance on the aforementioned
seventeen scRNA-Seq datasets. In the comparative analysis, we
utilized three metrics (NMI, ARI, silhouette coefficient) to evaluate
the clustering performance of each method.
In these seventeen real datasets, the ARI and NMI values for

various methods are presented in Tables 1 and 2, respectively.
Consistent with the NMI results, scRISE demonstrates top-notch
clustering performance across all datasets, ranking first in eight
datasets and second in five datasets, with all ARI and NMI values
surpassing 0.5. While scTAG and scziDesk exhibit relatively good
performance, their applicability is limited due to their excessive
reliance on assumptions about data distribution. scDeepcluster
shows good performance in only a few datasets, with subpar
clustering performance in most. scGMAI and scGAE show relatively
poor performance in most datasets, with both algorithms having
low ARI and NMI values. scGMAI is a combination of multiple
algorithms [25], which may affect the clustering effect. scGAE is
constrained by the construction of cell graphs and does not
correctly analyze the structural similarities between cells [22],
resulting in poor clustering accuracy.
Figure 3a, b illustrates the overall performance of the six

methods across the seventeen datasets. The proposed scRISE
exhibits the highest average values in terms of ARI and NMI
compared to other methods. The scTAG and scziDesk methods
demonstrate competitive performance too, but they may perform
poorly on some datasets. The comparison results for NMI align
closely with those of ARI. Additionally, the bar chart in
Supplementary Fig. S2a illustrates the Silhouette Coefficient
values for the six methods. In measuring the compactness and
separation of cell clusters, scDeepCluster demonstrates strong
competitiveness, slightly surpassing the scRISE method on most
datasets. In Supplementary Fig. S2b, we compared the runtime of

existing deep learning clustering methods. ScRISE outperforms
existing graph embedding clustering models (scTAG and scGAE).
Overall, scRISE’s efficiency is at an upper-middle level, with
relatively stable performance across different datasets.
The Baron_Human dataset consists of fourteen different cell

types. Among them, there are seven cell types with larger
quantities: ‘acinar’, ‘alpha’, ‘beta’, ‘ductal’, ‘delta’, ‘gamma’, and
‘endothelial’, and seven cell types with smaller quantities,
including ‘quiescent stellate’, ‘mast’, ‘T cell’, ‘activate stellate’,
‘schwann’, ‘epsilon’, and ‘macrophage’. On this dataset, the scRISE
method demonstrates high accuracy (ARI 0.8155, NMI 0.8327) and
effectively separates each cell type. To visually compare the
accuracy of different clustering methods, we use a Sankey
diagram to illustrate the differences between the clustering
results and the ground truth labels (Fig. 3c–h). In the Sankey
diagram, each box represents a cluster, and the width and height
of the boxes indicate the variation in cell quantities within the
clusters, while the colors represent the similarity and dissimilarity
between different clusters. The observations reveal that the
scGMAI (Fig. 3c) and scGAE (Fig. 3f) methods tend to divide cell
types with larger quantities into multiple clusters, especially the
‘alpha’ and ‘beta’ types being divided into multiple clusters. The
scDeepCluster (Fig. 3d) method divides ‘beta’ and ‘ductal’ into
multiple clusters, while clustering ‘quiescent stellate’, ‘activate
stellate’, and ‘schwann’ into the same category. The scziDesk
(Fig. 3e) method clusters the four cell types with larger quantities,
‘beta’, ‘alpha’, ‘delta’, and ‘gamma’, into a single category, resulting
in significant errors. Although the scTAG (Fig. 3g) method achieves
relatively high accuracy (ARI 0.6054, NMI 0.6907), it suffers from
the same problem as other methods, i.e., dividing cell types with
large number of samples into multiple categories, and some cell
types with small number of samples are easily mixed with others.
In contrast, scRISE (Fig. 3h) clearly reveals distinct clusters for the
aforementioned cell types. We also generated a Sankey plot for
the prediction results of the Baron_Mouse dataset (Supplementary
Fig. S3). We note that for some clustering methods, a significant
number of cells are incorrectly clustered, and some certain cell
population could be divided into multiple categories. When
clustering the Baron_Mouse dataset with scRISE, the resulting
number of clusters is lower than the expected number, indicating

Table 1. ARI values of six competitive methods in 17 scRNA-seq datasets.

Model scGMAI scDeepCluster scziDesk scGAE scTAG scRISE

Deng 0.3215 0.3637 0.4209 0.4087 0.4343 0.5276

mESC 0.8298 0.8519 0.4387 0.5697 0.5668 0.6593

Li 0.7232 0.7748 0.8204 0.8766 0.9317 0.9017

Tabula_Heart_and_Aorta 0.7745 0.9334 0.7207 0.9039 0.9142 0.9008

Tabula_Liver 0.3981 0.3688 0.6070 0.5876 0.4789 0.9553

Chu 0.4487 0.6151 0.6784 0.7107 0.7129 0.7261

Petropoulos 0.3228 0.2853 0.4427 0.3944 0.5059 0.4480

Baron_Mouse 0.1574 0.4317 0.4801 0.2451 0.5402 0.8779

Klein 0.9241 0.5011 0.7974 0.7878 0.7653 0.8718

Romanov 0.4180 0.5250 0.7630 0.4528 0.4423 0.7292

Zeisel 0.3071 0.6541 0.6093 0.3018 0.4926 0.5787

HNSCC 0.6458 0.4206 0.4554 0.3929 0.7663 0.8317

Tirosh 0.5363 0.4015 0.3307 0.2654 0.4001 0.6070

Baron_Human 0.1705 0.5174 0.3778 0.3031 0.6054 0.8155

Tabula_Spleen 0.4355 0.3992 0.9200 0.2378 0.6572 0.8496

Tosches 0.2861 0.5095 0.6172 0.2707 0.7227 0.7580

Bach 0.4033 0.6545 0.8868 0.5176 0.8964 0.8535

The highest ARI value for each dataset is indicated in bold, and the second highest ARI value is indicated with an underline.
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the merging of several cell clusters. This merging enhances the
identification of rare cell populations. Essentially, it merges some
cells that are likely to be small populations of rare cells rather than
larger, common cell types, suggesting that scRISE could help
identify and study these rare cell types.
To demonstrate the clustering performance and validate the

effectiveness of the proposed model, as well as to extract low-
dimensional representations of high-dimensional data, we used
the t-SNE algorithm to project the features from the adaptive
encoder onto a two-dimensional space and visualize the final
data embedding results. This allows for a more intuitive
observation of the clustering patterns and the performance of
the model. Figure 4 presents the t-SNE visualizations of three
datasets: Klein, HNSCC, and Baron_Human. In Fig. 4a, we observe
that scRISE clearly separates different cell types, while the
clusters identified by other methods are scattered, and the
boundaries between clusters are mixed. The boundaries
between the ‘2d’ and ‘4d’ cell clusters are not distinct. As
shown in Fig. 4b, we can see that scRISE achieves better inter-
cluster compactness. Compared to scRISE, although scDeepClus-
ter also shows clear cluster boundaries, there are multiple cell
types mixed together, such as the ‘Fibroblast’, ‘Endothelial’, and
‘tumor’ clusters represented by pink, orange-red, and cyan dots
in HNSCC. In Fig. 4c, for the Baron_Human dataset, methods
other than scRISE fail to accurately identify the cell types. For
example, in scGAE, the alpha and delta intermediate neuronal
cells represented by brown and light blue are mixed together
and cannot be well distinguished. In scGMAI, scziDesk, and
scTAG, the clustering results are unclear. The beta cells
represented by yellow are distributed throughout the entire
plot and mixed with other cell types. Compared to other
clustering methods, the proposed method scRISE identifies clear
clusters with distinct boundaries between them.
In scRISE, we enhance the clustering process by incorporating

supervised training. This involves dynamically selecting positive
and negative samples based on K-means soft clustering. By doing
so, we aim to refine the node embeddings, making them more
representative and ultimately enhancing the performance of
clustering. After a comprehensive comparison and analysis of
seventeen datasets, it’s evident that scRISE stands out prominently

in single-cell RNA sequencing data clustering. Across various
metrics, including ARI and NMI, scRISE consistently outperforms
other commonly used methods, showcasing its exceptional
effectiveness. Notably, on the Baron_Human dataset, scRISE
achieves remarkable ARI and NMI scores of 0.8155 and 0.8327
respectively, demonstrating its ability to accurately segregate
distinct cell types with high precision. In Fig. 3, the Sankey plots
demonstrate scRISE’s capacity to establish well-defined cluster
boundaries, leading to enhanced clarity in distinguishing between
different cell types. The distinct paths in the Sankey plots illustrate
the robustness of scRISE in segregating cells into discrete groups
with minimal overlap, a feat that is crucial for accurate down-
stream analysis. Furthermore, in Fig. 4, the t-SNE visualization
provides a comprehensive view of how scRISE excels in achieving
compact clusters with minimal dispersion between clusters. The
tight clustering of data points in the t-SNE plot reflects scRISE’s
effectiveness in capturing the underlying structure of the single-
cell RNA sequencing data, thereby facilitating precise cell type
identification. Comparatively, when juxtaposed with other existing
clustering methods, scRISE’s performance shines through as it
consistently achieves superior accuracy in delineating cell
subtypes. While alternative methods may exhibit confusion or
errors in this task, scRISE stands out for its ability to provide
researchers with reliable and interpretable clustering results.
Overall, the combination of Sankey plots and t-SNE visualizations
serves to underscore scRISE’s proficiency in single-cell RNA
sequencing data clustering, emphasizing its role as a powerful
tool for unraveling the complexities of cellular heterogeneity and
advancing our understanding of biological systems at the single-
cell level.

Ablation study and scalability
We conducted ablation studies using seventeen real datasets to
further understand the impact of the data smoothing task and
clustering module in scRISE on clustering performance and the
resulting improvements. Figure 5a, b shows the scatter plot of
corresponding NMI and ARI values for scRISE with and without the
data smoothing task. The results demonstrate that the data
smoothing task significantly improves clustering accuracy and
brings significant improvements in clustering precision across all

Table 2. NMI values of six competitive methods in 17 scRNA-seq datasets.

Model scGMAI scDeepCluster scziDesk scGAE scTAG scRISE

Deng 0.5515 0.6300 0.6462 0.6335 0.6646 0.6970

mESC 0.8512 0.8459 0.5942 0.6635 0.6304 0.7699

Li 0.7695 0.8177 0.8539 0.9060 0.9401 0.9306

Tabula_Heart_and_Aorta 0.7339 0.9138 0.7944 0.9045 0.8913 0.9089

Tabula_Liver 0.5651 0.5385 0.7836 0.7516 0.6998 0.9357

Chu 0.6089 0.7276 0.7776 0.8449 0.8527 0.8732

Petropoulos 0.3981 0.4338 0.5730 0.5175 0.6317 0.5417

Baron_Mouse 0.3964 0.7093 0.6839 0.5680 0.6724 0.8283

Klein 0.8872 0.6913 0.7834 0.7500 0.7476 0.8438

Romanov 0.3938 0.5334 0.7358 0.5703 0.6066 0.6880

Zeisel 0.4341 0.7296 0.6107 0.4869 0.5353 0.6035

HNSCC 0.4171 0.6298 0.6062 0.6723 0.7449 0.8004

Tirosh 0.5303 0.4932 0.4398 0.4369 0.4555 0.5394

Baron_Human 0.3809 0.7371 0.6396 0.5547 0.6907 0.8327

Tabula_Spleen 0.5497 0.5420 0.8487 0.4579 0.7188 0.7382

Tosches 0.3987 0.7097 0.7321 0.5425 0.7545 0.7661

Bach 0.4850 0.7815 0.8597 0.6468 0.8571 0.8120

The highest NMI value for each dataset is indicated in bold, and the second highest NMI value is indicated with an underline.
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tested datasets (Fig. 5c, d). The results of clustering studies with
and without the clustering module indicate that the clustering
module improves clustering accuracy in most datasets but does
not enhance clustering performance in some datasets. This is

because, in some datasets, the model has already achieved
significant improvements in clustering accuracy through the data
smoothing task, and the clustering module does not provide
significant performance gains for these datasets. These results are

Fig. 3 Comparison of clustering performance. Box plots of ARI (a) and NMI (b) on seventeen datasets for the six methods. c–h Sankey plots
of clustering results by the proposed scRISE and other five comparison methods for the Baron_Human dataset.
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Fig. 4 The t-SNE visualization results of embedded representations for scRISE and five other deep learning clustering methods. Each
point represents a sample cell, and different colors indicate different labels of the data. The Klein dataset (a), The HNSCC dataset (b), and The
Baron_Human dataset (c).
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Fig. 5 Ablation study for scRISE in 17 real datasets. The comparison of ARI (a) and NMI (b) values with and without the iterative smoothing
module. The comparison of ARI (c) and NMI (d) values with and without the self-supervised discriminative embedding module for clustering.
Red points indicate that the addition of the module leads to better clustering results, while blue points indicate the opposite. e The runtime of
scRISE on different-scale real datasets, including the time for the iterative smoothing module, the self-supervised discriminative embedding
learning module, and the total runtime.
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consistent with our expectations. The data smoothing task
effectively filters out high-frequency noise present in the data,
while the clustering module considers the similarity between cells
and captures discriminative expression patterns. Based on the

ablation studies conducted on these real datasets, we can
conclude that both the data smoothing task and the clustering
module make significant contributions to the enhanced clustering
performance of scRISE.

Fig. 6 Biological analysis for HNSCC dataset. a Informative genes on Lasso regression filtering. b GO analysis of informative gene. c KEGG
analysis of informative genes.
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To evaluate the scalability of scRISE, we tested the running time
on seventeen real scRNA-seq datasets with cell numbers ranging
from 268 to 23184. We compared the total running time of the
scRISE model, the running time of the autoencoder-based cycle-
smoothing module, and the running time of the adaptive encoder
clustering module (Fig. 5e). The results showed that scRISE has
good scalability, and its running time is similar to a binomial
relationship with the size of the dataset. In datasets with a large
number of cells, the clustering module becomes the main step
controlling the speed, as this module requires time-consuming
calculations of the similarity between nodes. Therefore, scRISE can
efficiently handle large-scale scRNA-seq datasets. Overall, these
results indicate that scRISE is a scalable and efficient clustering
method suitable for processing large-scale single-cell datasets.

Biological analysis
Information genes are a set of genes that show significant
expression differences among different cell types and can be used
to distinguish between them. In scRNA-seq analysis, information
genes can be identified by analyzing gene expression data and
used to determine different cell types. Non-negative matrix
factorization (NMF) is a data analysis method used for dimension-
ality reduction and feature extraction, which can factorize a non-
negative matrix into two non-negative matrices [26]. In scRNA-seq
data analysis, NMF can be used to factorize the original cell-gene
expression matrix into two matrices, one representing cell features
and the other representing gene expression features. Here, we
replace the cell feature matrix obtained from NMF factorization
with the cell cluster feature matrix obtained from the scRISE
model, and reconstruct the original scRNA-seq data to obtain a
new cell-gene expression matrix that includes the cluster features
extracted by the scRISE model. We then use Lasso [27] to further
analyze this new cell-gene expression matrix to identify informa-
tion genes that can best distinguish between different cell
subtypes.
Using Lasso and the scRISE method for gene selection can help

us identify potential therapeutic targets and biomarkers. In the
HNSCC dataset, information genes were extracted using Lasso
regression with a regularization strength (λ) set to 0.001, resulting
in 62 genes (Supplementary Table S2). The top 10 positively and
negatively correlated genes were selected for plotting (Fig. 6a).
Subsequently, we performed COX regression analysis on these 62
informative genes (Supplementary Fig. S4). COX regression
analysis is a commonly used survival analysis method used to
evaluate the impact of gene expression or other factors on patient
survival time or survival status. Through this analysis, we identified
these informative genes to be associated with survival in patients
with head and neck squamous cell carcinoma (HNSCC), and these
differences were statistically significant, which provides the basis
for further investigation of the potential role of these genes in
HNSCC treatment and prognosis. Among these 20 genes, ZNF331
is a potential anti-tumor therapeutic target as it is involved in the
development and progression of various cancers [28]. CD52 is a
glycoprotein widely expressed in lymphocytes and monocytes
and has been used as a therapeutic target and marker in
lymphoma treatment [29]. PTPRC, also known as CD45, is
considered an important T-cell antigen in the immune system
and plays a crucial role in immune regulation [30]. PRKCQ plays a
role in immune modulation and can regulate inflammatory
responses, making it a potential target for the treatment of
inflammatory diseases [31]. TACSTD2 (also known as TROP2) is an
epithelial cell adhesion molecule that is highly expressed in
various tumors, making it a research target for cancer treatment
[32]. In the HNSCC dataset, these genes may play important roles
in tumor cell proliferation, metastasis, and immune evasion. These
findings suggest that the scRISE method can provide us with
effective biomarkers for guiding tumor treatment and autoim-
mune disease therapy.

Next, further gene ontology (GO) and KEGG enrichment analysis
can be performed on the obtained 62 information genes to
explore their functional profiles, search for enriched biological
processes, and uncover potential biological pathways. Figure 6b
displays the gene distribution under GO enrichment, with the top
10 terms sorted by p-values in the categories of biological
processes, cellular components, and molecular functions. For the
biological processes category, the most common and enriched GO
term is ‘myeloid leukocyte activation’ (GO:0002274). Myeloid
leukocyte activation is an immune response process that involves
the activation and differentiation of myeloid lineage white blood
cells, including monocytes, macrophages, dendritic cells, etc., and
their enhanced recognition and attack capabilities against
pathogens and tumor cells [33]. In the cellular components
category, the most enriched and concentrated GO terms are
‘membrane raft’ (GO:0045121) and ‘membrane microdomain’
(GO:0098857), which are both special regions of the plasma
membrane enriched with cholesterol and sphingolipids. They are
involved in various cellular processes, including signal transduc-
tion, transport, and membrane organization. They are also related
to the pathogenesis of various cancers, including breast cancer,
lung cancer, colorectal cancer, and melanoma [34]. For the
molecular functions category, the most enriched and concen-
trated GO term is ‘scaffold protein binding’ (GO:0097110). Scaffold
proteins are proteins that provide structural stability and serve as
a support and framework in the cell. Scaffold proteins play
important roles within the cell by forming complex networks
through interactions with other proteins [35]. ‘Modified amino
acid binding’ (GO:0072341) indicates the binding of modified
amino acids with other molecules. These results provide an
overview of the functional characteristics of the 62 information
genes and shed light on their interrelationships, revealing
potential biological processes.
KEGG enrichment analysis can help identify biological processes

and pathways influenced by the input gene set, providing insights
into potential biological mechanisms related to specific diseases
or biological processes. Figure 6c displays the relevant pathways
enriched by KEGG, sorted by adjusted p-values, showing the top
15 pathways. ‘T-cell receptor signaling pathway’ (hsa04660) is a
pathway that involves a series of proteins and molecules related
to T-cell receptor (TCR) activation and downstream signaling.
Genes involved in the TCR signaling pathway can provide insights
into potential molecular mechanisms of T-cell activation and
differentiation, making them potential therapeutic targets for
T-cell dysfunction-related diseases such as autoimmune diseases
and cancer [36]. ‘Th17 cell differentiation’ (hsa04659) includes a
series of cellular factors, transcription factors, and signaling
pathways involved in the differentiation and activation of Th17
cells. It plays an important role in the immune system, particularly
in combating bacterial and fungal infections and tumor immune
responses [37]. ‘PD-L1 expression and PD-1 checkpoint pathway in
cancer’ (hsa05235) is an important pathway related to tumor
immune evasion. High expression of PD-L1 inhibits the activity of
immune cells, thereby promoting immune evasion by tumor cells.
PD-1 is one of the checkpoint molecules highly expressed in the
tumor microenvironment. When PD-1 binds to its ligand PD-L1, it
inhibits the activity of T cells, suppressing their attack on tumor
cells [38]. In cancer treatment, enhancing T-cell immune activity
by inhibiting the PD-L1 and PD-1 pathway has become an
important therapeutic strategy. In Supplementary Fig. S5, PRKCQ,
LAT, and MAPK13 are genes associated with the PD-L1 and PD-1
pathway in the informative gene set. These findings highlight
relevant pathways identified through KEGG enrichment analysis,
providing insights into potential therapeutic targets and biological
mechanisms associated with specific diseases and biological
processes. These results demonstrate that scRISE can capture
key representations and patterns of scRNA-seq data. The results of
GSEA and GSVA enrichment analysis of 62 informative genes are
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shown in Supplementary Fig. S6. In the GSEA analysis, KEGG
background gene set and immune-related set were used as preset
gene sets to explore the impact of these genes on metabolic
pathways and immune-related pathways. The results show that
these information genes are closely related to multiple cancer
pathways and associated regulation. Among them, the enrich-
ment scores of cancer pathways such as breast cancer and
pancreatic cancer are significant, suggesting that these genes may
play an important role in the occurrence and development of
cancers. Further analysis showed that the T-cell receptor (TCR)
signaling pathway plays a key role in the biological processes
regulated by these information genes. The activation of the TCR
signaling pathway regulates the differentiation and activation of
T cells through a variety of protein kinases and signaling
molecules (such as LCK, ZAP70, PI3K-AKT, MAPK, etc.) and
transcription factors (such as NF-κB, AP-1, etc.). The findings
further support the importance of these informative genes in
immune regulation and tumor immunology. Analysis of immune-
related sets also showed similar results, indicating that these
information genes are important for the regulation of immune
cells. In immune cells, these genes participate in multiple
regulatory effects, affecting the development, function, and
immune response of immune cells [36, 37]. These findings were
further supported by GSVA analysis, which showed that these
informative genes are closely associated with small-cell lung
cancer and other cancer-related pathways. This indicates that
these genes may play an important role in the occurrence and
development of cancer, providing important clues for further
revealing their role in tumorigenesis mechanisms and immune
regulation. In summary, scRISE is highly practical in interpreting
biological processes and can serve as an effective analytical tool in
biological research.

DISCUSSION
In this study, we propose a deep learning clustering method called
scRISE for scRNA-seq data. It utilizes Laplacian data smoothing and
adaptive learning. scRISE exhibits novelty in several aspects. Firstly, we
use autoencoders to learn the relationships between the data,
allowing the reconstruction of single-cell data without assuming data
distribution. Secondly, we apply Laplacian smoothing filters in scRNA-
seq clustering analysis. This step reduces high-frequency noise in the

data, improving data quality, while maintaining data dimensionality.
Thirdly, scRISE gradually improves the accuracy and stability of single-
cell data through iterative cycles of autoencoder and Laplacian
smoothing filters. This iterative approach helps enhance the accuracy
of clustering results. Additionally, the adaptive encoder constructs a
similarity matrix and adaptively selects positive and negative samples
to extract low-dimensional embeddings that represent the intrinsic
features of the data. This enhances clustering effectiveness and
accuracy. The clustering results demonstrate that scRISE outperforms
other deep learning algorithms in various biological scenarios. To
provide better biological interpretations of the results, we conducted
biological analyses, including inference of informative genes, gene
ontology, and KEGG pathway enrichment analysis.
Our current scRISE method has some limitations. The selection

of positive and negative samples in the adaptive clustering
module relies entirely on the similarity calculation method, which
can be computationally time-consuming. Therefore, we will
explore more accurate and comprehensive similarity calculation
methods to improve clustering performance. In the future, we
plan to apply our proposed clustering framework to the field of
multi-omics research, integrating different omics data sources
such as Bulk RNA-seq, spatial transcriptomics, etc. This integration
will help us gain a deeper understanding of biological systems
from multiple perspectives. It can uncover correlations and
interactions between different omics layers, providing a more
comprehensive view.

METHODS
Datasets and preprocessing
To determine the optimal number of iterations in the graph autoencoder
cycle-smoothing module, we conducted experiments using the R package
Splatter [39] to generate five simulated datasets. Each dataset was
configured with 8 clusters, with varying numbers of cells ranging from
1000 to 7500, as outlined in Supplementary Table S1. Each cell in the
datasets contained 2500 genes. The proportions of cells in each category
were set as follows: 0.1, 0.15, 0.1, 0.1, 0.1, 0.1, 0.2, 0.1. The dropout rate
used in the experiments was approximately 65%, with the specific splatter
parameter set as dropout.mid = 2.5.
As shown in Table 3, We compared the performance of our model

with other benchmark methods on seventeen real scRNA-seq datasets
from several representative sequencing platforms. This includes fifteen
medium-scale datasets and two large-scale datasets. The medium-scale

Table 3. Summary of the real scRNA-seq datasets.

Dataset Species Cells Genes Types Source Platform

Deng Mouse 268 22431 10 GSE45719 SMART-seq

mESC Mouse 414 23658 5 GSE98664 RamDA-seq

Li Human 561 57241 9 GSE81861 SMART-seq

Tabula_Heart_and_Aorta Mouse 624 23341 5 GSE109774 10X

Tabula_Liver Mouse 714 23433 5 GSE109774 Smart-seq2

Chu Human 758 19189 6 GSE75748 SMART-seq

Petropoulos Human 1529 26178 5 E-MTAB-3929 SMART-seq

Baron_Mouse Mouse 1886 14878 13 GSE84133 inDrop-seq

Klein Mouse 2717 24175 4 GSE65525 inDrop-seq

Romanov Mouse 2881 24341 7 GSE74672 Smart-seq2

Zeisel Mouse 3005 19972 9 GSE60361 SMART-seq

HNSCC Human 4645 28685 7 GSE103322 Smart-seq2

Tirosh Human 5902 23686 10 GSE72056 Smart-seq2

Baron_Human Human 8569 20125 14 GSE84133 inDrop-seq

Tabula_Spleen Mouse 9552 23341 5 GSE109774 10X

Tosches Turtle 18664 23500 15 PRJNA408230 Drop-seq

Bach Mouse 23184 27998 8 GSE106273 10X
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datasets consist of nine mouse scRNA-seq datasets: Deng [40], mESC
[41], Tabula_Heart_and_Aorta [42], Tabula_Liver, Baron_Mouse [43],
Klein [44], Romanov [45], Zeisel [46], and Tabula_Spleen; and six human
datasets: Li [47], Chu [48], Petropoulos [49], HNSCC [50], Tirosh [51], and
Baron_Human. The two large-scale datasets are the turtle dataset
Tosches [52] and the mouse dataset Bach [53]. The annotation of cell
types from the original publications is utilized as the ground truth for
cell type identification.
Before performing clustering, the data underwent quality control and

normalization procedures. Firstly, gene filtering was applied to retain genes
that were expressed in at least one or more cells. After quality control, the
read counts were divided by the library size, multiplied by 100,000, and
transformed into a logarithmic value with a base of 10, with the addition of
pseudo-count 1. The data from HNSCC and Triosh have already undergone
expression normalization and logarithmic transformation and do not require
further processing at this step. From this, an expression matrix consisting of
the top 2,000 highly variable genes was selected as the input for the network.
Subsequently, the filtered scRNA-seq data underwent normalization, scaling
the values to be within the range of [0, 1]. All of these data preprocessing
steps were performed using the Python package Scanpy [54].

Autoencoder module
Autoencoder is an unsupervised deep learning algorithm for learning a
compact representation of the data while attempting to maximize the
preservation of the input data information. In cases where the original
scRNA-seq data contains a significant amount of redundant information
and dropout events, the autoencoder is trained to reconstruct the
expression matrix of each cell population while learning representative
embeddings of the expressions.
The autoencoder (AE) consists of an encoder and a decoder. The

encoder compresses the input data into a low-dimensional encoding,
while the decoder maps this encoding back to the original data space.
Take X ¼ Em ´ n as a raw gene expression matrix where m is the number
of cells, n is the number of genes. The encoder contains a hidden layer
and an output layer that constructs low-dimensional embeddings H
from the input gene expression X. The decoder accepts these
embeddings H as input and passes them to a hidden layer and an
output layer that produces a reconstruction eX of the original sample.
Assuming the encoder has L layers, each layer l learns a data
representation denoted as H lð Þ, the weights are denoted as W lð Þ , and
the bias vector is denoted as b lð Þ. The learning process of each layer in
the autoencoder can be described as follows:

HðlÞ ¼ s W lð Þ ´H l�1ð Þ þ b lð Þ
� �

(1)

Where sð�Þ is the activation function applied element-wise to the weighted
sum of the inputs and biases in the l-th layer. The encoder stage of the
autoencoder transforms the input data X into a latent representation H,
which can be expressed as:

H ¼ f encðWenc � X þ bencÞ (2)

Where Wenc represents the encoder weights, benc represents the encoder
biases.
The decoder stage maps H to the reconstructed input eX as:

eX ¼ f decðWdec � H þ bdecÞ (3)

Where Wdec represents the decoder weights, bdec represents the decoder
biases. The autoencoder is trained by minimizing the reconstruction error
between X andeX , typically measured by mean squared error (MSE) loss:

Lossrec ¼ kX � ~Xk (4)

Construction of the KNN graph
K-nearest neighbor graph (KNN) is an undirected graph based on the
nearest neighbor distances, used to transform scRNA-seq datasets into a
graphical structure that describes the relationships between cells in the
dataset. We first reduce the dimensionality of the scRNA-seq data using
PCA. Each node in the graph represents a cell, and if cell xi is one of the
k-nearest neighbors of cell xj, we assign an edge between them. Here, we
set the value of k to 15. In previous studies, the Pearson correlation
coefficient has been found to better calculate the similarity between cells
for constructing the KNN graph [24]. Therefore, we use the Pearson
correlation coefficient to compute the similarity between cells and

construct the KNN graph. Pearson correlation coefficient is defined as:

dij ¼
Pn

k¼1 xik � xið Þðxjk � xjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
k¼1 xik � xið Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
k¼1 xjk � xj

� �2
q (5)

Laplacian smoothing filter
Laplacian smoothing is a graph-based signal processing method used to
smooth the feature information of nodes in graph data [55]. It iteratively
computes a weighted average of a node’s feature with its neighboring
nodes’ features, leveraging the adjacency relationship of the graph and the
connectivity between nodes to enhance feature consistency and stability.
Given an attributed graph G with an adjacency matrix A and an identity

matrix I, by employing the renormalization trick, we define the modified
adjacency matrix as A0 ¼ Aþ I. D0 is the degree matrix corresponding toA0 .
Consequently, the formula for computing the normalized graph Laplacian
matrix, Lnorm is as follows:

Lnorm ¼ I � D0�1
2A0D0�1

2 (6)

The definition of the Laplacian smoothing filter is as follows:

H ¼ I � αL ¼ I � αLnorm (7)

Following the adaptive graph encoder (AGE) algorithm [56], with a
setting of α= 2/3 and applying the Laplacian smoothing filter iteratively
for t times, the filtered representation of the reconstruction matrix X̂ can
be denoted as:

X̂ ¼ Ht
eX (8)

The Self-supervised discriminative embedding
To enhance the effectiveness of node embedding learning and improve
clustering performance, we employ a self-supervised discriminative
embedding learning method. In the encoder, we adaptively select highly
similar node pairs as positive training samples and choose low-similarity
node pairs as negative samples, enabling supervised training. Through this
approach, the adaptive encoder can better learn representations of nodes,
thereby improving the quality of node embeddings and enhancing
clustering performance. Given filtered reconstruction matrix X̂ , the node
embeddings are encoded by a non-linear encoder gð�Þ and a linear
encoding layer hð�Þ, resulting in the feature matrix Z.

Z ¼ gðhðX̂ÞÞ (9)

To measure the pairwise similarity matrix sij between nodes, the Pearson
correlation coefficient is used as the similarity metric. After computing the
similarity matrix, we sort the pairwise similarity sequences in descending
order. Here, rij represents the ranking position of cell pair (vi, vj). We set the
maximum ranking position of positive samples as rpos and the minimum
ranking position for negative samples as rneg. Therefore, the label
generated for (vi, vj) is:

lij ¼
1 rij � rpos
0 rij > rneg
None otherwise

8

>

<

>

:

(10)

The training set consists of rpos positive samples and n2 � rneg negative
samples. At the beginning of the training, selecting a larger number of
samples provides more information and diversity. As the training process
progresses, the value of rpos decreases, while rneg increases.
During the training process of the encoder, we compare the sample

labels with the similarity of the nodes generated by the encoder to measure
the difference between the learned node representations by the encoder
and the true similarity. Accordingly, our cross-entropy loss is given by

Losssi ¼
X

�lij logðsijÞ � ð1� lijÞ logð1� sijÞ (11)

Self-optimizing clustering
After training the adaptive encoder, the latent representation Z can
capture the relationship between cells and gene expressions. By
performing k-means clustering on Z, a simple clustering result can be
obtained. However, this result may not be optimal due to the lack of
interaction between the clustering module and the feature learning
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module. To address this issue, we applied a self-optimizing embedding
algorithm where the latent embedding is fed into a self-optimizing
clustering module. The objective function of this module is represented
using Kullback-Leibler (KL) divergence. Since the target distribution P is
defined based on Q, the embedding learning of Q is supervised in a self-
optimizing manner, aiming to make it approach the target distribution P,
as shown in the following expression:

Lossclu ¼ KLðPjjQÞ ¼
X

i

X

j

pij log
pij
qij

(12)

where qij is the soft label of the embedding node zi. This label measures
the similarity between zi and the cluster central embedding uj by a
Student’s t-distribution, which can be described as follows:

qij ¼
ð1þ jjzi � uj jj2Þ�1

P

kð1þ jjzi � uk jj2Þ�1 (13)

Additionally, pij is an auxiliary target distribution that emphasizes
assigning high-confidence similar data points based on qij, as shown below:

pij ¼
q2ij=

P

iqij
P

kðq2ik=
P

iqikÞ
(14)

Throughout the entire training process, similarity and clustering learning
are jointly optimized. We minimize the following overall objective function:

Loss ¼ α � Losssi þ β � Lossclu (15)

Where Losssi is the similarity loss, Lossclu is the clustering loss, α and β are
hyperparameters that balance the two losses. The loss function integrates
latent representation learning and clustering into a unified framework,
thereby promoting the final clustering result.

Baseline
To validate the clustering performance of the scRISE algorithm, we
compared it with five deep learning clustering methods. These methods
can be categorized into deep embedding clustering methods and deep
graph-based clustering methods.scGMAI [25] utilizes an autoencoder
network to reconstruct gene expression values from scRNA-Seq data. It
employs FastICA to reduce the dimensionality of the reconstructed data
and subsequently applies a Gaussian Mixture Clustering (GMC) method for
clustering. scDeepCluster incorporates the ZINB model to simulate the
distribution of scRNA-seq data within the denoising autoencoder. By
explicitly modeling scRNA-seq data, it learns feature representations and
performs clustering tasks. scziDesk utilizes a denoising autoencoder to
represent scRNA-seq data, and then constructs a self-training k-means
algorithm to perform cell clustering. scGAE employs a multi-task graph
autoencoder to simultaneously capture the topological structure informa-
tion and feature information in scRNA-Seq data. scTAG is a method that
integrates the ZINB model into a topologically adaptive graph convolu-
tional autoencoder to learn low-dimensional latent representations, and
employs the KL divergence for clustering tasks.

Statistics and reproducibility
scRISE was implemented in Python 3 (version 3.8) using PyTorch (version 2.0).
The size of the encoding layers in the autoencoder was set as (256, 64, 32),
and the decoding layers had the opposite structure. We initially set the
learning rate as lr=0.001, epoch=100, and batch size= 256, and then used
Adam optimizer to adjust the learning rate. The size of the adaptive encoder
was set as 32. The learning rate for the adaptive encoder was lr=0.0005, and
an initial threshold was set rstpos ¼ 0:0015 and rstneg ¼ 0:3, while the final
threshold is set to redpos ¼ 0:001 and redneg ¼ 0:7, the number of update
iterations (T) to 40, and the batch size for sample pairs to 10,000. We trained
the model for 400 epochs using the Adam optimizer. The hyperparameters α
and β were both set to 10. We ran the experiments 10 times on all datasets
and reported the median results to ensure the accuracy of the data. All
experiments were conducted on an NVIDIA Tesla-V100-PCLe-32GB.
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