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Neurotransmitter signaling: a new frontier in colorectal cancer
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The brain–gut axis, a bidirectional network between the central and enteric nervous system, plays a critical role in modulating the
gastrointestinal tract function and homeostasis. Recently, increasing evidence suggests that neuronal signaling molecules can
promote gastrointestinal cancers, however, the mechanisms remain unclear. Aberrant expression of neurotransmitter signaling
genes in colorectal cancer supports the role of neurotransmitters to stimulate tumor growth and metastatic spread by promoting
cell proliferation, migration, invasion, and angiogenesis. In addition, neurotransmitters can interact with immune and endothelial
cells in the tumor microenvironment to promote inflammation and tumor progression. As such, pharmacological targeting of
neurotransmitter signaling represent a promising novel anticancer approach. Here, we present an overview of the current evidence
supporting the role of neurotransmitters in colorectal cancer biology and treatment.
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INTRODUCTION
Strong evidence supports the critical role of the brain–gut axis
(BGA) in modulating the gastrointestinal (GI) tract function and
homeostasis. Several neurotransmitters have been proven to play
a significant role in the regulation of physiological responses such
as nutrient absorption, gut motility, the intestinal innate immune
response, and microbiota profile, as well as having a role in GI
pathophysiology [1]. In pathological conditions, including inflam-
matory states such as inflammatory bowel disease (IBD),
neurotransmitter levels are often dysregulated, contributing to
maintaining the inflammation-associated signaling feedback and
determining a wide range of GI symptoms [1, 2].
Notably, neurodegenerative disorders, such as Parkinson’s

disease (PD) and Alzheimer’s disease, have been linked to cancer
risk, depending on different tumor types [3]. Furthermore,
mutations and altered expression of core genes associated with
the development of these neurological disorders have been found
to be prevalent across human malignancies, highlighting their
potential role in tumorigenesis and cancer biology through their
effects on cell cycle control, protein turnover, mitochondrial
functions, oxidative stress, inflammation, and key oncogenic
pathways such as Wnt/β-catenin, JAK/STAT3, and EGFR-AKT [4, 5].
Neurotransmitters and neurotrophic factors are released by

nerve and glial cells of the central and peripheral nervous systems.
Additionally, non-neural cells including cancer and immune cells
also have the ability to secrete these molecules. Current evidence
supports the role of neurotransmitter signaling to activate cancer

cell growth and metastatic spread by pleiotropic modulation of
cell proliferation, apoptosis, autophagy, migration, invasion,
epithelial to mesenchymal transition (EMT), and stemness [6].
Notably, neurotransmitter receptors are overexpressed in tumor
cells, but can also be found on the membrane of endothelial and
immune cells. Hence, neurotransmitters can exert both autocrine
and paracrine cancer-promoting effects interacting with tumor
cells and different cell components in the tumor microenviron-
ment (TME). Interaction with endothelial cells and immune cells, in
fact, promotes inflammation and tumor progression through a
dynamic interplay involving stimulation of angiogenesis, recruit-
ment of immune-suppressive cells, macrophage M2 polarization,
extracellular matrix remodeling, and pro-inflammatory cytokine
signaling [6].
These findings have led to a new domain in cancer research

focusing on dissecting the role of neurotransmitters and their
receptors in cancer initiation, progression, drug resistance and the
development of novel therapeutic and preventive strategies that
target these networks. Herein, we review the current evidence
supporting the role of neurotransmitter signaling in colorectal
cancer (CRC) biology (Fig. 1) and its potential implications in
cancer therapy.

THE BRAIN–GUT AXIS
The GI tract presents a unique intrinsic nervous system, known as
the enteric nervous system (ENS), which comprises several
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subtypes of neurons and glial cells organized in integrated circuits
embedded in the walls of the digestive tract [7]. The ENS can
independently modulate GI tissue dynamics and gut homeostasis
while functioning in close communication with the brain. The
central cognitive centers are connected with peripheral intestinal
functions through the BGA, a bidirectional communication
network composed of the central nervous system (CNS), the
parasympathetic and sympathetic branches of the autonomic
nervous system (ANS), the hypothalamic-pituitary-adrenal (HPA)
system, and the gut microbiota [8]. Multiple neuroactive
substances can be synthetized in the gut and affect the CNS by
crossing the blood–brain barrier, whereas in exchange neuroac-
tive molecules can affect the gut via the ANS [9]. This multi-
directional crosstalk enhances the complexity of the interaction
between enteric neurons and glial cells with GI mucosal cells,
stromal, and immune cells in health and disease. GI cancers
develop in the context of this intricate interface between ENS,
CNS, gut microbiota, stromal and immune TME components. The
interplay between the unique features of the BGA and tumorigen-
esis, progression, and metastases of GI cancers, however, remain
to be fully elucidated as well as how to possibly leverage the
underlying mechanisms for therapeutic purposes [10].
Electric stimulations and lesions in certain areas of the CNS have

been shown to modulate peripheral natural killer (NK) cells
cytotoxicity, which might in turn affect proliferation and
metastasis of cancer cells. Additionally, signaling via the HPA axis
in patients experiencing stress conditions or depression can
impair DNA repair and increase angiogenesis through the release
of catecholamine, most notably norepinephrine which increases
VEGF expression via β-adrenergic receptor activation, and
prostaglandins, which may result in enhanced cell survival and
promote tumorigenesis [11].

The activation of the sympatho-adrenal axis of the ANS
promotes GI tumorigenesis and chemical sympathectomy by
means of 6-hydroxydopamin can reduce the incidence of CRC in
rats [12]. Parasympathetic denervation by vagotomy and atropine
administration results in significant reduction in tumor incidence,
cell proliferation, tumor volume and weight, and angiogenesis
mediated by downregulation of NGF, β2 adrenergic, and
muscarinic M3 receptors [13].
Growing evidence supports the role of neural signaling

molecules, including neurotransmitters (such as dopamine,
gamma-aminobutyric acid, acetylcholine, serotonin, epinephrine/
norepinephrine, glutamate) and neurotrophic factors, in CRC
development. Hereafter we review the main neural mediators in
CRC (Table 1).

DOPAMINE SIGNALING
Dopamine (DA) works as a neurotransmitter in the brain playing a
critical role in several distinct pathways involved in behavioral
control, motor control and in modulating the release of various
hormones [14]. Outside the CNS, DA is synthesized peripherally
and functions as a local chemical messenger modulating blood
pressure, kidney function, and pancreatic insulin production [14].
In the gut, it reduces GI motility, modulates electrolyte exchange,
and protects intestinal mucosa. Additionally, DA can inhibit the
activity of lymphocytes by modulating cytokine secretion,
chemotaxis and cytotoxicity [15]. DA exerts its cellular effects by
binding to and activating cell surface G protein-coupled dopamine
receptors (DR), classified into two families with distinct intracel-
lular signaling pathways, known as D1-like (including receptors D1
and D5) and D2-like (including subtypes D2, D3, and D4) [16, 17].
D1-like receptor activation induces adenylyl cyclase activity

Fig. 1 Interaction between neurotransmitters, colorectal cancer, and tumor microenvironment. Regulatory signals related to tumor
growth, apoptosis, autophagy, invasion, and metastasis may be transmitted through the BGA via the parasympathetic, sympathetic and
enteric nervous systems. In addition, neurotransmitters and neurotrophic factors may be secreted from non-neural cells and exert both
paracrine and autocrine effects on CRC cells, as well as immune cells, endothelial, and stromal cells in the TME. The balance between
stimulatory and inhibitory signals through the activation of specific receptors can affect CRC progression and metastatic spread by promoting
cancer cell proliferation, migration, and invasion, tumor angiogenesis and inflammation in the TME. ACh Acetylcholine, BGA brain–gut axis,
BDNF brain-derived nerve growth factor, CRC colorectal cancer, DA dopamine, E epinephrine, EMT epithelial to mesenchymal transition, GABA
gamma-aminobutyric acid, 5-HT serotonin, MDSC myeloid-derived suppressor cells, NE norepinephrine, TME tumor microenvironment.
[Adapted from “Gut–Brain Axis” and “Tumor Microenvironment”, by BioRender.com (2022). Retrieved from https://app.biorender.com/
biorender-templates.].
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translating into increased intracellular levels of cyclic AMP (cAMP)
and downstream PKA signaling [16]. Conversely, D2-like receptors
have inhibitory effects on adenylyl cyclase [16].
Previous studies reported that peripheral DA can control tumor

progression and promotes anticancer immunity in the TME by
modulating the NLRP3 inflammasome, regulatory and effector
T cells, myeloid-derived suppressor cells (MDSC), and tumor-
associated macrophages (TAMs) [18]. Activation of DRD1 and
DRD5 inhibited cancer growth across several tumor types,
including CRC, by suppressing Akt/mTOR signaling [19]. A small
retrospective study reported a positive prognostic value for tumor
gene expression of L-DOPA decarboxylase (DDC), an enzyme that
catalyzes the decarboxylation of L-DOPA to DA, on disease-free
survival and overall survival in 95 patients with CRC [20].
Furthermore, functional polymorphisms of DRD2 related to
reduced receptor levels were associated with increased CRC risk
in a case–control study involving 370 patients [21]. More recently,
germline variants in the DA pathway genes have been associated
with outcome in patients with metastatic CRC (mCRC) receiving
first-line targeted treatment across three randomized trials [22].
Pre-clinical experiments using a CRC cell line HT29-derived

xenograft mouse model suggest that DA can inhibit VEGF-
mediated vasculogenesis, and can enhance 5-fluorouracil (5-FU)
efficacy via DRD2-mediated signaling, resulting in strong inhibi-
tion of tumor cell proliferation and increased apoptosis in vivo
[23]. On the other hand, pimozide, a FDA-approved drug used to
treat psychotic disorders which selectively blocks DRD2, has been
reported to suppress CRC cell lines HCT116 and SW480 prolifera-
tion and migration via inhibition of Wnt/β-catenin signaling [24]
and to exert anticancer activity in vitro and in vivo in multiple
tumor types by suppressing cell proliferation, EMT, and angiogen-
esis. Recently, an independent study reported that DRD2 knock-
down inhibited β-catenin/ZEB1 mediated CRC cell proliferation
and invasion in vitro and in vivo [25]. Consistently, pimozide
enhanced the cytotoxic effects of 5-FU and oxaliplatin in vitro and
suppressed tumor growth and metastasis in vivo [25]. DRD2
overexpression, on the other hand, increased CRC cell growth and
EMT progression [25]. The same authors showed that DRD1-4
mRNA expression was higher in CRC tissue than adjacent normal
tissue with DRD2 showing the highest expression and a strong
association with tumor stage. High DRD2 expression was also
associated with worse patient outcome in The Cancer Genome
Atlas (TCGA) database [25]. DRD2 antagonism via the antipsycho-
tic drug trifluoperazine (TFP) also inhibits CRC cell proliferation by
inducing G0/G1 cell cycle arrest as well as promoting
mitochondria-mediated intrinsic apoptosis [26]. In vivo CRC cell-
derived xenograft models confirmed TFP anticancer activity.
Notably, both programmed death ligand 1 (PD-L1) expression in
CRC cells and PD-1 expression in tumor-infiltrating T cells were
increased by TFP administration in vivo, suggesting a rationale for
its combination with immune checkpoint inhibitors [26].
Clarifying the precise signaling mechanisms by which DR

modulators exert their anticancer effect is paramount to support
the implementation of dopaminergic drugs in CRC treatment.
Nevertheless, these data provide proof that targeting the DA
signaling may represent a novel therapeutic strategy in CRC which
warrants further exploration.

Parkinson’s disease
Parkinson’s disease (PD) affects 1–2 per 1000 individuals in the
general population and up to 2% of those aged over 65 years,
ranking second among the most common age-related neurode-
generative disorders [27]. Notably, the hallmark of PD is the loss of
dopaminergic neurons in the substantia nigra of the brain. The
genetics of sporadic and hereditary PD have been extensively
studied, identifying several specific disease loci and causal genes
[28]. Over the past 10 years, several epidemiological studies have
consistently reported an inverse association between PD and

cancer risk, although a positive association with certain cancers
including melanoma, breast, and brain tumors, has also been
reported [3, 29]. The biology behind this epidemiological evidence
is mostly unknown, although several PD-related genes and PD-
driver gene alterations (including SNCA, PARK2, LRRK2, PINK1, and
DJ-1) have been linked to carcinogenesis in different tumor types
[4, 5].
CRC is among the most widely reported cancer types showing a

reduced incidence in PD patients, with a relative risk of 0.78
(0.66–0.91) compared to controls [30]. However, no data are
available addressing the underlying mechanisms and possible
biologic rationale of the inverse association between PD and CRC
risk. Interestingly, stool-based methylation testing of alpha
synuclein (SNCA), one of the causal genes most frequently mutated
in PD, has been proposed as an effective diagnostic tool for CRC
screening and early detection, and higher methylation levels have
been observed in CRC patient tissue samples compared with
paired controls [31]. Furthermore, recent data suggests that the
SNCA protein, whose aberrant aggregation in CNS neurons leads
to PD development, accumulates in the appendix of healthy
subjects and a prior appendectomy has been reported to be
associated with a decreased risk of PD development [32]. PD-
related genes and genes variants have been linked to IBD risk and
IBD phenotypes, although epidemiological evidence on this topic
appears to be conflicting. More recently, SNCA genetic poly-
morphisms and gene expression alongside other core PD-related
genes (PINK1 and LRRK2) have been associated with clinical
outcome in patients with mCRC receiving first-line treatment [33].
Particularly, high SNCA expression was significantly associated
with shorter progression free survival and overall survival in
patients treated with anti-epidermal growth factor receptor
(EGFR)-based therapy [33].
Further exploration of the interplay between PD pathophysiol-

ogy and CRC may contribute to understand the role of the
autonomic nervous system dysfunction in CRC development.

Monoamine oxidases
Monoamine oxidase (MAO) isoenzymes MAO-A and MAO-B are
mitochondrial enzymes responsible for catalyzing the oxidative
deamination of monoamines such as DA, norepinephrine, and
serotonin. These isoenzymes play important functions in the
metabolism of neuroactive and vasoactive monoamines in the
CNS and peripheral tissues [34]. Altered expression of MAOs were
found in several cancer types and have been connected to tumor
development and progression. MAO-B was highly expressed in
CRC compared to normal tissue in a study including 203 CRC cases
[35]. High MAO-B was associated with worse disease stage, higher
recurrence rates and poorer survival in CRC. Additionally, positive
and negative correlations of MAO-B expression with
mesenchymal-type and epithelial-type gene expression, respec-
tively, have been reported, highlighting a potential role in EMT
and invasion [35].
Notably, both MAO-A and MAO-B inhibitors (MAOI), including

drugs developed for the treatment of neuropsychiatric and
neurodegenerative disorders such as PD, have been reported to
exert anticancer activity in in vitro and in vivo models, and phase II
clinical trials are ongoing in prostate cancer (NCT02217709,
NCT04586543) [36]. MAO-A has also been shown to affect TAMs
immunosuppressive polarization by increasing intracellular reac-
tive oxygen species (ROS) leading to oxidative stress, and Maoa
knockout in mouse models consequently enhanced anti-tumor
immunity [37]. Furthermore, MAO-A could directly regulate CD8+
T cells and suppress the tumor-infiltrating T-cell immune response
by negative modulation of T-cell autocrine serotonin signaling
[38]. Treatment with MAOI in combination with immune
checkpoint inhibitors has been explored showing promising
efficacy in pre-clinical models and suggesting that this combina-
tion may result in synergistic anticancer activity [37].
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GABA SIGNALING
Gamma-aminobutyric acid (GABA) is one of the major inhibitory
neurotransmitters in the CNS, but it also has many functions
within the homeostasis of the GI tract [39]. GABA is present
throughout the GI tract in enteric nerves and enteroendocrine
cells (EC) and is involved in both motor and secretory activity,
which is mediated via GABA receptor activation. In the context of
GI diseases, and more specifically CRC, the role of GABA is less well
understood. Several studies have identified GABA levels to be
higher in CRC than in normal colon tissue [40]. In addition,
increased GAD1 levels, the enzyme that produces GABA from
glutamate, have been correlated with worse survival in patients
with stage T3/T4 CRC [41]. A separate study also found ABAT, the
enzyme that catabolizes GABA, to be increased in CRC as
compared to normal tissue [42]. These studies provide evidence
of a GABAergic environment in CRC with tumors expressing genes
to both synthesize and catabolize GABA in the TME.
Despite this clinical evidence, mechanistic pre-clinical studies

exploring the role of GABA in CRC have been conflicting.
Exogenously adding GABA to CRC cells lines in vitro has produced
varying effects on proliferation, migration, and invasion. One
group reported that 5-FU resistant HT29 tumor cells showed
reduced proliferation in the presence of GABA; interestingly, GABA
had no effect on parental HT29 tumor cells [43]. An independent
study showed no effects on proliferation or migration in SW480
tumor cells treated with GABA, however when the same tumor
cells were stimulated with norepinephrine, GABA reduced the
norepinephrine-mediated increased migration [44]. The previous
two studies suggest that GABA alone is not enough to influence
tumor behavior; yet, perturbations to the system, such as drug
treatments or other signaling molecules, may influence how
tumor cells respond to a GABAergic environment. However, others
have shown that GABA alone was able to reduce proliferation of
HCT116, SW620, and SW480 tumor cells, reduce migration and
invasion of SW480 and SW620 tumor cells, and reduce SW480
tumor growth in a xenograft nude mouse model, suggesting
GABA may have an inhibitory role on cancer progression [45].
While slight differences in the invasion and migration assays
performed in the Joseph et al. and Song et al. studies may be
contributing to the reported responses to GABA, more work needs
to be done to understand the role of GABA in CRC progression.
Signaling of GABA can occur through two main GABA receptors:

the ionotropic GABA RA and the metabotropic GABA RB [46]. One
CRC study focused on GABA RA, showing that propofol, a GABA RA
agonist, decreased invasion in LOVO cells [47]. However, much of
the in vitro GABA receptor literature in CRC has focused on GABA
RB. Activation of GABA RB via agonists, such as baclofen or
nembutal, reduces CRC proliferation, invasion, and metastasis [48].
Another group showed knockdown of GABABR1 (a subunit of
GABA RB) in LOVO and RKO CRC tumor cells increased
proliferation, migration, invasion, and markers of EMT, suggesting
subunits of GABA RB could have anti-tumor effects [49].
Alternatively, a recent study found that exogenous GABA activates
GABA RB, leading to GSK-3β inhibition and increased CRC cell
proliferation [40]. Additionally, they showed elevated GAD1
expression in colon adenocarcinoma cells, which led to increased
GABA secretion. This research links the prior reports of elevated
GAD1 and GABA levels seen in CRC patient tissues with GABA
receptor activity.
While in vitro studies have focused mainly on GABA RB, analyses

utilizing patient tissue found that expression of several subunits of
GABA RA, including GABRD, was increased in CRC tissue and
predicted worse patient outcome [50]. When Liu and Fang
performed a meta-analysis of several patient cohorts, they found
that GABRD is highly expressed in colon cancer patients, but those
with lower GABRD expression had better overall survival and
prognosis. In addition, when the authors focused on genes that
were co-expressed in patients with high GABRD, they found

pathways related to endothelial cell development and vasculo-
genesis, extracellular matrix (ECM) interactions, human papilloma-
virus infection, growth factor and kinase binding, and Notch
signaling [51], suggesting interactions with the TME are related to
the GABAergic changes within CRC.
While most GABA-related CRC research has focused on the

tumor cells, a recent study demonstrated that B cells within lymph
nodes secrete GABA when activated to promote a pro-tumor
immune environment. Importantly, the authors showed that
picrotoxin, a GABA RA antagonist, reduced tumor growth in the
MC38 CRC syngeneic mouse model. In addition, knocking out
GAD67 (GAD1) within the B cells lowered GABA levels and
controlled tumor growth [52]. In the recent Huang et al. study
described above, researchers also found that a GABAergic tumor
resulted in less T-cell infiltration and that targeting GAD1 or GABA
RB overcame resistance to anti-PD-1 immunotherapies in a mouse
model [40]. This study begins to elucidate the role of GABA-
producing immune cells within the tumor (versus in the lymph
nodes as studied by Zhang et al.); however, more research is
needed to understand the GABAergic crosstalk within the TME
and how this connects to metastatic spread. Additionally, the
presence of the microbiome in the gut adds an additional layer of
complexity to the immune-tumor signaling, as the microbiome
has been shown to secrete GABA and can alter tumor growth [43].

ACETYLCHOLINE SIGNALING
Acetylcholine (ACh) functions in the ANS as a neurotransmitter at
the autonomic ganglia, the parasympathetic innervated organs,
and the neuromuscular junction between motor nerves and
skeletal muscle. Acetylcholine receptors (AChRs) fall into one of
two categories; the relatively slow activating G protein-coupled
metabotropic muscarinic receptors or the faster activating
ionotropic nicotinic receptors (nAChRs) [53].

Nicotinic signaling
nAChRs are composed of pentamer transmembrane protein
complexes with five receptor subunits that mediate fast synaptic
transmission through their ionotropic cationic nicotinic receptors.
Calcium influx through these receptors facilitates signal transduc-
tion resulting in the release of neurotransmitters including
catecholamine neurotransmitters norepinephrine and epinephr-
ine, which bind to and activate β-adrenergic receptors.
β-adrenergic receptors can then activate downstream signaling
pathways leading to increased intracellular cAMP formation,
which can have tumor-promoting effects [54]. In addition to their
role in synaptic transmission in the neuronal tissues and
neuromuscular junctions, nAChRs are found in cells with epithelial
and endothelial origin and play a role in biological processes such
as cell proliferation, with overexpression promoting tumor cell
proliferation and invasion in various cancers [55]. ACh, nicotine,
and nicotine-derived carcinogenic nitrosamine nicotine ketone
(NNK) can activate the nAChRs. Of note, cancer cells, including
CRC cells, are able to independently synthesize ACh which then
acts as an autocrine/paracrine growth factor to promote tumor
growth [56].
Growing evidence and interest has developed with regards to

understanding the precise mechanisms of nAChRs in cancer
initiation, progression, and metastasis. The alpha7-subtype of
nAChR (α7nAChR) has been identified as a prominent player in
cancer development by directly synthesizing autocrine growth
factors and indirectly stimulating the release of norepinephrine
and epinephrine, which in turn can promote cell survival,
proliferation, migration and angiogenesis [55]. On the other hand,
the heteromeric α4β2nAChR has been established to have
anticancer effects by stimulating the release of GABA, which
inhibits cAMP, thereby blocking the cancer-promoting signaling
initiated by β-adrenergic receptors [55]. Notably, cancer-
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stimulatory nAChRs are upregulated by the chronic exposure to
nicotine and nitrosamine carcinogens, whereas inhibitory recep-
tors undergo desensitization [57].
Overexpression of α7nAChR has been found in CRC cells as well

as in tumor-infiltrating immune cells [58]. Receptor activation has
been shown to promote CRC cell proliferation, inhibit apoptosis
and may increase CRC cell migration and metastasis through the
upregulation of fibronectin [59]. Reports also highlight that NNK
promotes CRC growth in vitro by increasing α7nAChR mRNA
expression and enhancing NF-KB DNA binding activity, along with
cyclooxygenase-2 (COX-2) and 5-lipoxygenase protein expressions
[60]. Further experiments demonstrated that the use of α7nAChR
antagonists and α7nAChR siRNA methods successfully inhibit
nicotine-stimulated CRC cell proliferation and migration confirm-
ing α7nAChR’s critical role in nicotine and NNK pro-oncogenic
signaling in CRC [61]. Emerging evidence shows that nicotine
stimulates human CRC cell line HT29 proliferation and epinephrine
production, mediated by β-adrenoceptors [61]. Additionally,
nicotine promoted tumor growth in CRC patient-derived xeno-
graft (PDX) models via stimulation of β-adrenoceptors and the
subsequent activation of COX-2, PGE2, and VEGF expression [62].
Notably, in vitro nicotine-dependent stimulation of CRC cell
invasion and migration has been reported to be mediated by the
activation of p38 MAPK signaling downstream of nAChRs with
subsequent increase of matrix metalloproteinases expression [63].
The α7nAChR receptor also plays a critical role in the regulation

of the inflammatory response in the TME by the cholinergic anti-
inflammatory pathway [64]. Evidence shows that ACh binding to
α7nAChR stimulates the cholinergic anti-inflammatory pathway
output, which is thought to downregulate GI inflammation
through vagal signaling [65]. α7nAChR is required for Ach-
mediated inhibition of TNF release from macrophages and
cytokine modulation in inflammatory states [66]. As such,
therapeutic approaches have tried to exploit α7nAChR’s anti-
inflammatory function for the treatment of inflammation-based
disorders [67]. Interestingly, a study reported that nicotine could
suppress colitis-associated tumorigenesis in mice and inhibited
CD4+ T cells secretion of pro-inflammatory cytokines [68]. This
evidence supports a dual role for α7nAChR in CRC, possibly
dependent on underlying inflammatory bowel conditions and
immune TME dynamics, which may complicate its use as a
therapeutic target.
Therefore, despite significant evidence that α7nAChR blockage

may be an effective anticancer strategy in CRC, targeting its
downstream oncogenic effects may reveal to be challenging while
maintaining a necessary balance between stimulatory and
inhibitory signals involved in tumor progression and inflammatory
reaction control.

Muscarinic signaling
The mAChRs are G-protein-coupled receptors classified into five
subtypes: M1-M5, with distinct intracellular downstream signaling
[69]. Receptors M1, M3, and M5 activation triggers the PLC
pathway, eventually resulting in opening of calcium channels,
leading to increased cell viability. Conversely, M2 and M4 receptors
have inhibitory activity on adenylyl cyclase leading to reduced
intracellular cAMP [69].
The M3 receptor subtype has been found to be overexpressed

at both RNA and protein levels in CRC samples [70], and its cancer-
promoting effect on tumor growth and metastasis has been
established [71]. Investigations highlight that M3 receptor activa-
tion stimulates CRC cell proliferation, tumorigenesis, cell migration
and invasion [72, 73]. Notably, Von Rosenvinge et. al described the
role of mAChRs in EGFR transactivation in CRC cells, where M3

activation triggers matrix metalloproteinase 7 (MMP-7)-mediated
cleavage of the heparin binding-EGF which in turn initiates the
EGFR signaling cascade through the MEK/ERK and PI3K/Akt
pathways [74]. Furthermore, vagal innervation has been shown

to contribute to gastric tumorigenesis through M3 receptor-
mediated activation of Wnt signaling [75].
While significant evidence highlights the ability of mAChR

agonists to promote cancer growth, studies also report that
selectively blocking M3-mediated signaling shows promising
anticancer effects. In vitro experiments utilizing darifenacin, an
M3 receptor antagonists, in CRC cell lines HT29 and SW480
resulted in a dose-dependent decrease of tumor cell proliferation
and survival [76]. Darifenacin suppressed ACh-induced p38, ERK1/
2, and Akt signaling, inhibiting cell invasion and MMP1 mRNA
expression [76]. Additionally, it inhibited tumor growth and
metastases in a xenograft mouse model [76]. M3 receptor
knockout has also been shown to suppress CRC tumorigenesis
in vivo, strengthening the rationale for exploring the use of M3

antagonists in CRC treatment [77].
Conversely, M1 receptors have been found to be downregulated

in CRC and negatively associated with β-catenin expression [78]. In
fact, despite similar receptor structures and signaling, M1 and M3

receptor activation has been reported to have opposite effects
with M1 being protective against CRC tumorigenesis [79]. The
mechanisms behind this divergent behavior are not clear,
nevertheless, this may provide a rationale for potentially combine
subtype-selective targeting of M1 and M3 receptors warranting
further exploration.
In addition to ACh and muscarine, select bile acids can also

interact with mAChRs, possibly due to ligand molecular mimicry,
and thus initiate post-receptor signaling [80]. Evidence suggests
that bile acids may promote normal colonic epithelial cells
transformation into CRC stem cells through the M3 receptor and
Wnt/β-catenin signaling [81]. As such, activation of M3 cancer-
promoting downstream signaling may partially be responsible for
the increased incidence of CRC associated to diets high in
saturated fats, which are known to increase bile acids secretion
[82].

SEROTONIN SIGNALING
Serotonin (or 5-hydroxytryptamine, 5-HT) is one of the most
potent neural, peripheral, and GI signaling molecules. Intestinal EC
produce the greatest amount of 5-HT in the human body,
however, serotonergic neurons in the CNS and enteric neurons
also synthesize 5-HT. 5-HT receptors, comprising seven distinct
classes (5-HT1–7), are G-protein-coupled receptors, excluding the
ligand-gated ion channel 5-HT3, and are widely expressed within
the GI tract, where 5-HT3 and 5-HT4 subtypes have been the most
extensively studied and targeted for the treatment of GI motility
disorders [83]. Notably, gut microbiota can promote 5-HT
synthesis and gut dysbiosis affects 5-HT signaling in the GI tract
through a bidirectional crosstalk with EC and the ENS [84]. 5-HT
binding to its receptors promotes a range of pleiotropic functions
at central and peripheral level including modulation of circadian
rhythms, gastrointestinal motility, cardiovascular homeostasis,
angiogenesis, neuroendocrine regulation, immunomodulation,
intestinal microbiome homeostasis, epigenetics, and cancer [85].
Increased 5-HT plasma levels as well as upregulation of the

expression of tryptophan hydroxylase 1 (TPH1), the rate-limiting
enzyme for 5-HT biosynthesis, have been found in CRC tumor
tissues from patients, CRC mouse models and CRC cell lines as
compared to controls [86]. In another study, high 5-HT levels were
significantly associated with advanced tumor node metastasis and
had a high predictive value for poor patient recurrence-free
survival and overall survival [87]. Upregulation of 5-HT1D, 5-HT3C,
and 5-HT4 protein level has been reported in CRC samples, with
5-HT1D being the highest. In vitro experiments showed that
5-HT1D can promote tumor invasion by activating the Axin1/
β-catenin/MMP-7 pathway. Consistently, 5-HT1D inhibition sup-
pressed tumor metastasis in vivo through targeting of Axin1 [87].
5-HT1B has also been found to be upregulated in CRC cell line
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HT29 and CRC tissue and its selective inhibition had anti-
proliferative and apoptotic effects on CRC cells [88]. In addition,
serotonin has been reported to modulate angiogenesis by
reducing TAMs expression of matrix metalloproteinase 12 (MMP-
12) and to be required for tumor growth in a CRC allografts model
[89]. More recently, 5-HT receptors 5-HT1B, 1D, and 1F have been
shown to be highly expressed in CRC stem cells (CSC) and to
activate Wnt/β-catenin signaling in response to 5-HT stimulation
resulting in CSC self-renewal and tumorigenesis [90]. Notably, in
this study, 5-HT production by enteric serotoninergic neurons was
promoted by isovalerate, a tumor-associated microbiota metabo-
lite. Furthermore, inhibition of 5-HT signaling in mice models
suppressed the self-renewal of CSC and exhibited anti-tumor
activity against CRC by suppressing tumor progression and
metastasis [90].
On the other hand, 5-HT has also been suggested to play a key

role in intestinal protection from early colorectal tumorigenesis by
promoting DNA repair [91]. Additionally, the use of selective 5-HT
reuptake inhibitors (SSRIs) has been associated with a dose-
dependent reduction of CRC risk in large patient studies [92].
Evidence on a dual role of serotonin in CRC development is further
supported by the effects of SSRI fluoxetine in CRC models. This
drug increases 5-HT levels and exerts anticancer activity in vivo by
impairing mitochondrial reactive oxygen species production, cell
cycle progression and proliferation of CRC cells, especially in
hypoxic conditions, leading to reduced microvessel formation and
tumor shrinkage [93].
It has recently been suggested that 5-HT-induced cancer-

promoting effects are closely related to 5-HT1 and 5-HT2 signaling
rather than 5-HT3, 5-HT4, 5-HT6, and 5-HT7 [94]. This is consistent
with the previously discussed evidence in CRC. Notably, treatment
with mirtazapine, an inhibitor of 5-HT2, resulted in reduced
growth by direct modulation of immunological mechanisms in the
TME of subcutaneous CRC tumor allograft models [95]. Immuno-
logical cancer-promoting effects mediated by 5-HT on the TME
have been also reported in a recent independent study showing
that elevated 5-HT levels activated lymphocytes cytokine release
leading to a pro-inflammatory immune microenvironment per-
missive to CRC tumorigenesis [96].
Current evidence illustrates the complexity of serotonergic

activity in CRC biology. 5-HT-mediated signaling could act
protectively against early carcinogenesis in the colonic mucosa,
whereas it might support CRC metastatic progression in advanced
disease. The activation of differential intracellular signaling
cascades triggered by different receptor subtypes could con-
tribute to explain these findings. As such, selective targeting of
serotonin receptors and other mediators of serotoninergic
signaling might translate into an effective treatment approach
for CRC once their specific role is fully understood.

NEUROTROPHIC FACTORS
Neurotrophic factors are a family of neurotrophic molecules which
can be secreted by cancer cells to promote the growth of nerves
within the tumor and at the same time have autocrine and/or
paracrine effects on tumor growth and metastatic spread [97]. The
family includes transforming growth factors, glial cell-derived
neurotrophic factors, neurotrophins, and neuropoietins [98].
Neurotrophins are classified into four types: brain‑derived

neurotrophic factor (BDNF), nerve growth factor (NGF), neuro-
trophin‑3 (NT‑3) and NT‑4. Their downstream signaling is
mediated by tyrosine kinase receptors, including TrkA, TrkB and
TrkC, which can activate the PI3K/Akt, MAPK, and PLC-γ
intracellular pathways [99]. BDNF and TrkB have been extensively
investigated, with multiple studies consistently reporting their
upregulation in several tumors, including CRC, associated with
aggressive phenotypes and chemoresistance [100]. In a study,
BDNF and TrkB knockdown in CRC cell lines Caco-2 and HRT18

increased apoptosis and significantly decreased cell growth and
proliferation [101]. High tumor TrkB mRNA expression has been
associated with poor prognosis in CRC patients and TrkB has been
linked to EMT in CRC cells [102]. An independent study reported
that BDNF promoted CRC cells HCT116 and SW480 migration
through ERK-, p38-, and PI3K/Akt-mediated activation of heme
oxygenase-1 and VEGF expression [103]. Additionally, BDNF/TrkB
signaling has also been demonstrated to transactivate EGFR and
to directly activate RAS [100]. Interestingly, evidence shows that
BDNF can promote the release of ACh and ACh can upregulate
both BDNF and NGF activating NGF/TrkA signaling, which has
been reported to promote tumorigenesis, cell proliferation and
survival in cancer [104, 105]. Notably, NTRK fusions, which involve
rearrangements of the genes encoding for Trk receptors (i.e.,
NTRK1, NTRK2 and NTRK3), have emerged as rare but actionable
targets in cancer, including CRC. Two small molecule inhibitors
(entrectinib and larotrectinib) have already been approved by the
Food and Drug Administration (FDA) for the treatment of
advanced solid tumors harboring NTRK1/2/3 fusions [106]. As
such, next-generation Trk inhibitors are being explored to
overcome acquired resistance to first-generation agents [107].
The reelin signaling pathway is critical for neural progenitors

migration during neurogenesis and impaired signaling has been
implicated in the pathogenesis of numerous neuropsychiatric and
neurodegenerative disorders, including autism, schizophrenia and
Alzheimer’s disease [108]. Reelin belongs to the family of
extracellular matrix glycoproteins and acts by initiating the
activation of ApoE receptor 2 (ApoER2), very low density
lipoprotein receptor (VLDLR), and the cytoplasmatic docking
protein Disabled‐1 (Dab1), which control multiple intracellular
pathways [109]. Increasing evidence suggests that reelin signaling
may play a role in cancer development. Epigenetic silencing of
reelin by promoter hypermethylation at CpG islands sites has been
reported to frequently occur and to increase migration, invasive-
ness and reduce survival in breast, gastric and pancreatic cancers
[110–112]. Reelin has also been shown to be able to abrogate RAS/
PI3K mediated cell motility, thus potentially playing a critical role
in tumor metastatic spread [113]. Notably, the Reeler mutation,
which determines the loss of reelin function, compromises the
intestinal barrier and promotes colitis-associated tumorigenesis in
mice models [114]. On the other hand, in a small CRC study
comparing genomic and transcriptional profiles of primary tumor
and matched metastases, the reelin pathway was found to be
differentially upregulated in metastases [115]. Based on current
evidence, it appears that the reelin pathway may play a dual role
in CRC where downregulation and upregulation of gene expres-
sion may alternatively promote tumor progression at different
disease stages, which will need to be further addressed to define
the therapeutic potential of targeting this pathway in CRC.

EXPERT OPINION AND FUTURE PERSPECTIVES
Cancer neuroscience is emerging as an innovative field of research
in oncology with a potential to identify novel therapeutic targets
in the TME. This is particularly relevant for CRC given the unique
role of the BGA in GI physiology and pathology. The increasing
attention on the essential role of the TME in cancer has shed light
on the complex contribution provided by neural mediators to CRC
growth and progression. Further studies are needed to fully
understand the underlying biology, nevertheless, this expanding
knowledge is opening the door to the development of novel
therapeutic strategies potentially exploiting repurposed neuroac-
tive drugs as an anticancer approach.
A challenge that neurobiology research in CRC faces is the

discrepancy between in vitro and in vivo data which may, in part,
be due to the lack of physiological relevance within traditional
in vitro experiments and the inability to consider the TME context
in many in vitro experiments. Microenvironmental factors such as
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endothelial cells, biophysical forces (ECM, stiffness, and mechan-
ical forces), immune cells, and the microbiome all need to be
considered when addressing the role of neurotransmitters and
neural factors within CRC progression. Physiologically relevant
model systems that incorporate aspects of the TME in a tunable
fashion might help elucidate the role of neurotransmitters in CRC.
For instance, an organ-on-chip model that recapitulates the
structure and function of the colon, such as tissue-tissue
interfaces, 3D structures, and mechanical forces including fluid
flow and peristalsis may address existing knowledge gaps. The
potential dual role of neurotransmitters signaling in primary and
metastatic disease, the differential effect based on the interaction
with different receptor types and the complex interplay between
stimulatory and inhibitory signals, as well as a potential organ-
specific impact of these pathways should also be taken into
account and carefully explored in pre-clinical studies. Finally, the
safety profile and potential central and peripheral neurological
adverse effects in vivo will have to be carefully assessed when
using neuroactive drugs for cancer treatment.
Notably, targeting tumor neurotransmitter signaling and

neurotrophic factors in the TME holds promise to be effective
alone or in combination with targeted therapies. In fact, a close
connection between neural signaling molecules and known
druggable cancer-related pathways has been established, parti-
cularly angiogenesis, RAS/MAPK signaling and immunomodula-
tion. Therefore, pharmacological manipulation of neurotransmitter
pathways may improve the efficacy of existing targeted treat-
ments. Dedicated studies may provide further insights on these
possible synergistic effects and establish the rationale for the
design of successful combination strategies advancing the
therapeutic horizon in CRC treatment.

CONCLUSIONS
The BGA is a complex bidirectional signal transmission between
the CNS, the ENS, and the endocrine-immune system, which has
been demonstrated to play an important role in CRC tumorigen-
esis and development. Growing evidence supports the critical role
of several neurotransmitters and neural factors in CRC biology,
opening novel perspectives which warrant dedicated studies to
elucidate the underlying mechanisms. The integration of a
neurobiological view into CRC research may further innovative
therapeutic advances by leveraging the unique interplay between
neural signaling and key oncogenic pathways and the cellular
crosstalk in the TME.
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