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DNA repair gene mutations are frequent in castration-resistant prostate cancer (CRPC), suggesting eligibility for poly(ADP-ribose)
polymerase inhibitor (PARPi) treatment. However, therapy resistance is a major clinical challenge and genes contributing to PARPi
resistance are poorly understood. Using a genome-wide CRISPR-Cas9 knockout screen, this study aimed at identifying genes
involved in PARPi resistance in CRPC. Based on the screen, we identified PARP1, and six novel candidates associated with olaparib
resistance upon knockout. For validation, we generated multiple knockout populations/clones per gene in C4 and/or LNCaP CRPC
cells, which confirmed that loss of PARP1, ARH3, YWHAE, or UBR5 caused olaparib resistance. PARP1 or ARH3 knockout caused cross-
resistance to other PARPis (veliparib and niraparib). Furthermore, PARP1 or ARH3 knockout led to reduced autophagy, while
pharmacological induction of autophagy partially reverted their PARPi resistant phenotype. Tumor RNA sequencing of 126 prostate
cancer patients identified low ARH3 expression as an independent predictor of recurrence. Our results advance the understanding
of PARPi response by identifying four novel genes that contribute to PARPi sensitivity in CRPC and suggest a new model of PARPi
resistance through decreased autophagy.

Oncogene (2022) 41:4271–4281; https://doi.org/10.1038/s41388-022-02427-2

INTRODUCTION
Prostate cancer (PC) is the most common non-skin cancer and the
second leading cause of cancer-related death among men in
western countries [1]. While early-stage localized PC may be cured,
metastatic PC (mPC) is associated with high mortality rates.
Conventional mPC treatment consists of androgen deprivation
therapy [2] but resistance invariably develops, leading to
castration-resistant prostate cancer (CRPC). Patients with CRPC
have a median survival rate of only 9 to 30 months [3]. Recent
studies of CRPC have revealed frequent (20–30%) deleterious
mutations in DNA repair genes such as BRCA1, BRCA2 (BRCA1/2),
and ATM [4–6], suggesting sensitivity to poly(ADP)polymerase
(PARP) inhibitors (PARPi). The PARPi olaparib targets and inhibits
PARP1 activity, causing double-stranded DNA break accumulation
[7, 8], which in combination with certain DNA repair gene defects
leads to cell death. In 2020, olaparib was granted FDA approval for
CRPC patients carrying a deleterious mutation in any of 13
different homologous recombination repair genes, and who had
progressed on secondary hormonal therapy [9]. However, despite
initial benefits of olaparib treatment in some CRPC patients [10],
therapy resistance is a major challenge [11].
Some PARPi resistance mechanisms have been described in CRPC

including reversion mutations in BRCA1/2 and PALB2 in olaparib- or
talazoparib-treated CRPC patients [12, 13], and an association

between increased NPRL2 expression and olaparib resistance in
CRPC cell line models [14]. In other cell types (breast and embryonic
stem cells) PARPi resistance has been associated with loss of PARP1
[15], and loss of the deparylation enzyme poly(ADP-ribose)
glycohydrolase (PARG) [16]. However, to guide treatment selection
and to improve CRPC patient survival, a better understanding of the
genes that control PARPi response in CRPC is needed.
The present study aimed to identify genetic modulators of

PARPi response in CRPC. We performed a genome-wide knockout
(KO) screen using the clustered regularly interspaced short
palindromic repeats-associated protein 9 (CRISPR-Cas9) technol-
ogy. From this, we identified PARP1 as well as six novel candidate
genes as potential modulators of olaparib resistance. By individual
gene KO, we were the first to validate that loss of PARP1, ARH3,
YWHAE, and UBR5 was associated with olaparib resistance in CRPC
cells. Furthermore, we show a novel model of PARPi resistance
through decreased autophagy caused by PARP1 or ARH3 KO.

RESULTS
Genome-wide CRISPR-Cas9 knockout screen and candidate
gene selection
To identify novel genes contributing to resistance against the
PARPi olaparib, a genome-wide CRISPR-Cas9 KO screen was
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performed in the human CRPC cell line C4 using the Brunello v2
library, consisting of 77 441 guide RNAs (gRNAs) targeting 19 114
genes and 1000 non-targeting controls [17]. First, stable Cas9-
expressing C4 cells (C4-Cas9) were generated by lentiviral
transduction with a Cas9-containing vector. Cas9 expression was
validated by Western blotting (Fig. S1). Then, two pools (replicate
1 and replicate 2) of C4-Cas9 cells were transduced with the
Brunello v2 library at a multiplicity of infection (MOI) of 0.5 (Fig.
1A). For each replicate, an aliquot of cells was harvested after
transduction and puromycin selection (baseline). The remaining
cells were treated with either: 1) DMSO (vehicle), 2) 18.5 µM
olaparib (IC50), or 3) 29 µM olaparib (IC90).
After three weeks of treatment, cells were harvested for DNA

extraction and gRNA regions were sequenced. Sequence data was
mapped to the Brunello v2 library to count individual gRNA reads.

On average, 48.6% (range 43–54%) of the reads mapped to the
library (Fig. S2), while most unmapped reads aligned with vector
backbone sequences (data not shown). Median gRNA read counts
were comparable between all sample groups but with a slightly
larger variance observed for IC90 samples likely reflecting the
stronger selection pressure (Fig. 1B). Each gene was represented
by at least one gRNA, and an average of 97.7% (range 95.5–98.9%)
of the original library was represented in individual samples
(Additional information, Table 1).
Model-based Analysis of Genome-wide CRISPR-Cas9 Knockout

(MAGeCK) [18] was used to identify enriched gRNAs in olaparib
(IC50 or IC90) versus vehicle-treated cells. In each comparison
genes were filtered by: 1) gene ranked in top 500 by MAGeCK
analysis, and 2) an average fold change ≥1.25 for gRNAs targeting
that gene compared to vehicle, and 3) at least two out of four
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Fig. 1 Genome-wide CRISPR-Cas9 knockout (KO) functional screen of olaparib resistance in CRPC cells. A Schematic representation of
experimental workflow. First, CRPC cells (C4) were transduced with the Cas9 lentiviral vector. Next, the Brunello v2 human CRISPR-Cas9 library
(76 441 gRNAs) was packaged into lentiviral particles, and Cas9-expressing C4 cells were transduced at a MOI of 0.5. Library-transduced cells
(in duplicate) were selected for nine days using puromycin. An aliqout of cells was harvested after puromycin selection (baseline control). The
remaining cells were analyzed in three experimental groups, treated with either olaparib at IC50, olaparib at IC90, or DMSO (vehicle) for three
weeks. After three weeks, the surviving cells were harvested, genomic DNA extracted, and gRNA regions were PCR amplified and sequenced.
B Log2-transformed gRNA read count distributions. B/L: baseline, VEH: vehicle. C Venn diagram of top significantly enriched genes based on
the criteria: called as top 500 by the MAGeCK analysis, fold change ≥1.25, and a minimum of two enriched gRNAs. IC50 (orange) and IC90
(blue). R1: replicate 1, R2: replicate 2. D Representative p-value distribution (output from MAGeCK) for genes in IC50-treated (left) and IC90-
treated samples (right). E Log10-transformed read counts of individual gRNAs for PARP1, ARH3, YWHAE, and USP48 at baseline (pre-treatment)
and after treatment with DMSO (vehicle) or olaparib at IC50/IC90. Black: gRNA1, green: gRNA2, orange: gRNA3, blue: gRNA4. Filled circles:
replicate 1, open circles: replicate 2, line represents average of replicates.
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gRNAs for that gene were deemed significantly enriched by the
MAGeCK analysis (based on Robust Rank Aggregation score, false
discovery rate ≤ 0.05 as significance cut-off [19]). Filtered gene lists
were compared between replicates. There was an overlap of 46
genes between IC50 replicates (46/787= 5.8%), 52 genes between
IC90 replicates (52/780= 6.7%), and 13 genes were shared by all
four olaparib-treated samples (Fig. 1C; Additional information
Table 2). In all samples, PARP1 was the top ranked gene (Fig. 1D,
Table S1) with gRNA read counts consistently enriched compared
to vehicle-treated and baseline samples (Fig. 1E). This result
supports the validity of our screen, as PARP1 is the main target of
olaparib.
Based on a total of 469 shortlisted genes (Fig. 1C), we selected

six top candidates for experimental validation: ARH3, CCND1,
TEAD4, UBR5, USP48, and YWHAE (Table S1). These genes have not
previously been described in relation to PARPi resistance, but have
been linked to various DNA repair pathways (ARH3: base excision
repair [20]; CCND1, TEAD4, UBR5, and YWHAE: homologous
recombination [21–24]; USP48: Fanconi’s Anemia pathway [25]).
Of these, ARH3, USP48, and YWHAE were among the 13 top
enriched genes shared by all four olaparib-treated samples (Fig.
1C, D). For ARH3 and USP48, gRNA read counts were consistently
enriched as compared to baseline and vehicle-treated cells, which
was also true for YWHAE except gRNA4 (Fig. 1E). We further
included PARP1 as this was the top hit.

Generation of KO cell populations and clones for individual
candidate genes
To validate the relationship between olaparib resistance and KO of
ARH3, CCND1, PARP1, TEAD4, UBR5, USP48, and YWHAE observed in
the screen, we generated single-gene KO cell populations and
clones by CRISPR-Cas9 editing in C4 CRPC cells. We selected the
two best performing gRNAs for each gene and a non-targeting
gRNA (Control_237) from the Brunello v2 library as a control
(Table S2).
We successfully cloned one gRNA for YWHAE and two gRNAs for

each of the remaining six genes into the GFP-encoding plasmid
PX458 (Ref. [26]; Table S2). C4-Cas9 cells were transfected with the
plasmids and FACS sorted based on GFP expression, generating a
total of 13 KO populations for the seven candidate genes (Table
S3). Indel frequencies were determined by Tracking of Indels by
DEcomposition (TIDE) [27] analysis in 11/13 KO populations and
ranged from 16.5% (ΔCCND1_4) to 82.9% (ΔARH3_2) (Fig. 2A,
Table S2).
For four genes (UBR5, CCND1, TEAD4, and USP48), we also

generated clonal KO cell lines by single cell sorting (FACS) of
transfected C4-Cas9 cells followed by expansion of individual
clones. In total, eight KO clones were established: one for CCND1,
two for TEAD4, two for USP48, and three for UBR5 (Table S2). Indel
frequencies ranged from 77.5% (ΔTEAD4_4_2D) to 98.1%
(ΔUSP48_1_7A) and were in all cases higher and more
homogenous than for the corresponding KO population (Fig. 2B,
Table S2).

Phenotypic validation - Knockout of PARP1, ARH3, YWHAE or
UBR5 causes olaparib resistance
To validate the phenotypic effect of KO cell lines, we measured the
viability of each KO cell population/clone after six days exposure
to a serial dilution of olaparib, as compared to wildtype C4-Cas9
cells (WT).
Although Control_237 cells seemed to have slightly higher

viability at 10 µM and slightly lower viability above 35 µM of
olaparib, no significant differences (Student’s t-test) were observed
at remaining concentration points (Fig. 2C), indicating similar
olaparib sensitivity as compared to WT.
In contrast, PARP1 KO populations (ΔPARP1_2 and ΔPARP1_4)

had significantly higher viability compared to WT (Multiple
student’s t-test, p-value < 0.05; Fig. 2C). This confirms the results

of our genome-wide KO screen, where PARP1 was the top hit
(Fig. 1C, D).
Of the remaining six candidates, olaparib resistance upon gene

KO was successfully validated for the three genes: ARH3, YWHAE,
and UBR5. Compared to WT cells, the two ARH3 KO populations
(ΔARH3_2 and ΔARH3_3), the YWHAE KO population (ΔYWHAE_2),
one UBR5 KO population (ΔUBR5_3) and three UBR5 KO clones
showed significantly increased survival upon olaparib treatment
(Fig. 2C). The remaining UBR5 KO population (ΔUBR5_2) did not
show olaparib resistance (Fig. 2D), likely explained by low indel
frequency in these cells (25.5%; Table S2).
KO of ARH3, YWHAE, and UBR5 had little to no effect on

proliferation rates of untreated cells (Fig. S3A), indicating that
the observed olaparib resistance was not simply an indirect
effect of reduced cell division rates upon gene KO. ARH3,
YWHAE, and UBR5 gene KO was further validated at protein level
by Western blotting (Fig. S3D, E) and at RNA level by RT-qPCR
(Fig. S3F).
For the remaining three candidates (CCND1, TEAD4, and

USP48), we were unable to validate a significant association
between gene KO and olaparib resistance in C4 cells based on
analyses of six KO populations (Fig. 2D) and five KO clones (Fig.
S4). Hence, CCND1, TEAD4, and USP48 were excluded from
further analysis.
To further confirm that PARP1, ARH3, YWHAE, or UBR5 KO caused

olaparib resistance in PC cells, we aimed to generate gene KO
models in the androgen sensitive PC cell line LNCaP, using the
same two gRNAs per gene as used for C4 cell lines (Table S3).
Successful PARP1, ARH3, and UBR5 KO was confirmed by Sanger
sequencing or RT-qPCR in the LNCaP KO populations: ΔPARP1_2(LN-
CaP), ΔPARP1_4(LNCaP), ΔARH3_2(LNCaP), ΔARH3_3(LNCaP), and
ΔUBR5_3(LNCaP) (Table S3), while low editing efficacy was observed
for ΔUBR5_2(LNCaP) (Table S3). Despite numerous attempts, we
were not able to produce an LNCaP YWHAE KO model. Dose
response experiments showed increased olaparib resistance in
LNCaP cell lines with KO of either PARP1, ARH3, or UBR5 (Fig. 2E).
This confirmed our results from C4 cells (Fig. 2C) and demonstrated
that these phenotypes were not restricted to androgen insensitive
CRPC cells.

Cross-resistance to other PARPis and carboplatin
As KO of PARP1, ARH3, YWHAE, or UBR5 caused olaparib resistance,
we wanted to evaluate possible cross-resistance to additional
PARPis (niraparib and veliparib) and to the DNA cross-linking
agent carboplatin in C4 cells.
Dose-response curves for the Control_237 cell line were slightly

right-skewed for niraparib and veliparib compared to WT (Fig. 3A,
B). Hence, KO cell lines were only deemed resistant if their dose-
response curves were clearly different from both WT and
Control_237 cell lines.
The two PARP1 KO populations (ΔPARP1_2 and ΔPARP1_4) and

the two ARH3 KO populations (ΔARH3_2 and ΔARH3_3) showed
clear cross-resistance to both niraparib and veliparib (Fig. 3A, B),
but not to carboplatin (Fig. S5).
For UBR5 KOs, we did not find robust evidence for cross-

resistance to niraparib. Although two UBR5 KO clones
(ΔUBR5_3_9C and ΔUBR5_3_10C) displayed increased viability
upon niraparib (Fig. 3A) and veliparib treatment (Fig. 3B), no clear
effect was seen for the third KO clone (ΔUBR5_2_7B) nor the KO
population (ΔUBR5_3) (Fig. 3A, B). Likewise, we did not find clear
evidence for cross-resistance to carboplatin upon UBR5 KO
(Fig. S5).
The YWHAE KO population did not exhibit cross-resistance to

niraparib nor veliparib (Fig. S6) but showed significant resistance
to carboplatin in C4 cells (Fig. S5).
KO of PARP1 and ARH3 also caused cross-resistance to niraparib

and veliparib in LNCaP cells (Fig. 3C), while UBR5 KO in LNCaP cells
seemed to be associated with moderate cross-resistance to
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veliparib, but not to niraparib (Fig. 3C). This supports our findings
from C4 cells (Fig. 3A, B).

Knockout of ARH3 decreases autophagy
As both C4 ARH3 KO populations (ΔARH3_2 and ΔARH3_3)
showed clear olaparib resistance, we wanted to further
characterize these cells. First, we investigated transcriptomic
changes by RNA sequencing. ARH3 KO populations and WT C4-
Cas9 cells were treated with either olaparib or vehicle (DMSO) for

six days, followed by RNA sequencing (all experiments in
duplicate). Differentially expressed genes were identified using
EdgeR [28]. The analysis revealed similar patterns in differentially
expressed genes between olaparib- vs. vehicle-treated cells for
both ARH3 KOs and for WT (Additional information, Table 3),
indicating similar transcriptional changes in olaparib treated
cells, irrespective of ARH3 gene KO status. However, comparing
vehicle-treated ARH3 KO cells to vehicle-treated WTs, we
identified 61 differentially expressed genes shared by ΔARH3_2
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and ΔARH3_3 (Additional information, Table 4). Gene-set
enrichment analysis (EnrichR [29, 30]) of these genes revealed
pathways involved in oxidative phosphorylation (OXPHOS) (Fig.
S7) with enrichment and increased expression of three genes
encoding key subunits of mitochondrial complex I: NDUFV1,

NDUFA3, and NDUFB7 in both olaparib- and vehicle-treated ARH3
KO populations (Fig. 4A).
Based on this, we investigated the oxygen consumption rates as

a measure of OXPHOS in ARH3 KO and WT C4-Cas9 cell lines using
the Seahorse assay. As ARH3 works downstream of PARP1, we
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included PARP1 KOs in the following analysis to investigate
whether ARH3 and PARP1 KOs showed similar biological changes.
Oxygen consumption rates increased significantly upon ola-

parib treatment in KO and WT cells (Figs. 4B, S8), but no consistent
differences between KO and WT cells were observed either with or
without olaparib treatment (Figs. 4B, S8). Similarly, there were no
significant differences in glycolysis, determined by extracellular
acidification rate, between KOs and WT cells (Fig. S8). We further
assessed NAD+ and NADH levels by liquid chromatography-mass
spectrometry. In accordance with oxygen consumption rate data,
we did not discover consistent differences in NAD+ or NADH
levels between KOs and WT (Table S4). Thus, we did not find clear
evidence for altered OXPHOS in ARH3 KO cell lines, despite
increased expression of NDUFV1, NDUFA3, and NDUFB7 (Fig. 4A).
Consistent with this, none of the other ~37 known genes

encoding key complex I subunits [31] were deregulated in the
RNA-seq data for ARH3 KO vs. WT cells (data not shown).
OXPHOS has been linked to drug resistance through autophagy

activation [32] and we noted that ARH3 KOs displayed upregula-
tion of EIF5A (Fig. 4A), which encodes a translation initiation factor
for the key autophagy protein ATG3. Thus, to investigate possible
changes in autophagy in ARH3 cells compared to WT, we
measured the basal conversion of LC3-I to LC3-II after addition
of the autophagic flux inhibitor chloroquine. Strikingly, we
observed a marked decrease in basal autophagic flux, demon-
strated by approximately 50% lowered LC3II/I ratios in KO cells
compared to WT (Figs. 4C, S9). While this may seem to contradict
the observed increase in EIF5A expression (Fig. 4A), we speculate
that the latter could serve as a compensatory mechanism aiming
to increase basal autophagy, which was inhibited upon ARH3 KO.
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We performed the same analysis on PARP1 KOs and also found
decreased autophagy as compared to WT (Fig. 4C).
A fundamental pathway responsible for regulating autophagy

involves the AMP activated protein kinase (AMPK), which is
activated by elevated levels of AMP. Following its activation, AMPK
activates autophagy through inhibition of mTOR [33]. To further
elucidate the mechanism for reduced autophagy upon ARH3 and
PARP1 KO, we measured AMP levels by liquid chromatography-
mass spectrometry and found a 60% decrease in AMP levels in
both ARH3 and PARP1 KO cells compared to WT (Table S4).
Together, this suggests that KO of ARH3 or PARP1 reduces cellular
AMP levels, which in turn would decrease AMPK activation (and
reduce mTOR inhibition) and hence decrease autophagy.
To further elucidate this, we investigated whether pharmaco-

logical inhibition (chloroquine) or activation (mTOR inhibitor
rapamycin) of autophagy would alter olaparib sensitivity of
ARH3 KO, PARP1 KO, or WT cells. Notably, activation of autophagy
lead to increased olaparib sensitivity in ARH3 and PARP1 KO cells
but not in WT (Fig. 4D). Conversely, inhibition of autophagy lead to
decreased olaparib sensitivity in ARH3 and PARP1 KO cells but not
in WT (Fig. 4D).

Together, this indicates that ARH3 and PARP1 KO leads to
decreased autophagy, which in turn might explain the PARPi
resistant phenotype observed for PC cells with ARH3 or PARP1 KO.

Genetic and transcriptional alterations of ARH3, YWHAE, and
UBR5 in prostate cancer
The clinical relevance of ARH3, UBR5, and YWHAE was evaluated
using tumor genome sequencing data from cBioPortal [34]
including 2 625 patients with localized PC (LPC) and 638 patients
with mPC. In addition, we used in-house RNA sequencing data
from two cohorts. Cohort 1 included 126 LPC, 17 mPC, and 38
non-malignant (NM) prostate tissue samples and clinical follow-up
data. Cohort 2 included 41 LPC, 72 mPC, and 45 NM samples.
For ARH3, genomic alterations (amplifications, deletions, or

mutations) were detected in 0.46% (12/2 625) of LPC and 1.9%
(12/638) of mPC tumors in the cBioPortal data (Fig. 5A), indicating
enrichment for ARH3 alterations in metastatic vs. localized PC
(Fisher’s exact test, p= 0.0008). In cohort 1, ARH3 expression was
downregulated in mPC vs. NM and LPC samples, respectively
(Mann Whitney U Test, p= 0.04 and 0.02), but no significant
differences were seen in cohort 2 (Fig. 5B). Furthermore, in cohort
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1, BCR-free survival analysis showed that high expression of ARH3
was associated with significantly better outcome in multivariate
cox regression (HR= 0.42; p= 0.041; Fig. 5C), although only
borderline significant in univariate analysis (Table S5). These
results indicate that loss/downregulation of ARH3 is associated
with more aggressive PC. Based on our in vitro data these tumors
might also be resistant to PARPi treatment.
For YWHAE, genomic alterations were found in 0.69% (18/2 625) of

LPCs and in 2.19% (14/638) of mPCs in the cBioPortal data (Fisher’s
exact test, p= 0.0024) (Fig. 5A). The majority of YWHAE alterations in
LPC were deep deletions (89%; 16/18), whereas a larger proportion of
amplifications were found in mPC (43%; 6/14; Fig. 5A). In both cohort
1 and 2, YWHAE expression was significantly upregulated in LPC and
mPC, compared to NM prostate tissue samples (p < 0.05) (Fig. 5B).
There were no significant associations between YWHAE expression
and BCR-free survival in either univariate (Table S5) or multivariate
analysis (Fig. 5C) of cohort 1.
For UBR5, genomic alterations (mainly amplifications) were

present in 4.65% (122/2 625) of LPC and 24.0% (158/638) of mPC
tumors (Fisher’s exact test, p < 0.0001) (Fig. 5A). In cohort 1, UBR5
expression was significantly upregulated in LPC vs. NM samples
(p= 0.01), and further upregulated in mPC vs. LPC (p= 0.002) (Fig.
5B), supported by cohort 2 (NM vs. mPC, p= 0.003; Fig. 5B).
Together, results indicate that UBR5 and YWHAE are over-
expressed in some PCs, which might be favorable for olaparib
response as our in vitro data showed that KO of UBR5 or YWHAE
caused olaparib resistance in CRPC cells.
For the remaining candidates, CCND1, TEAD, USP48, or PARP1,

we observed no clear association between gene expression levels
in PC tissue and metastasis status in cohorts 1 and 2 (Fig. S10), nor
with recurrence-free survival (Table S5). Still, genomic alterations
affecting CCND1, TEAD, USP48, or PARP1 were significantly more
common in metastatic (SU2C) than in localized PC (TCGA) patients,
as also seen for ARH3, UBR5, and YWHAE (Fig. S11, Table S6).
Genomic alterations in neither of the seven genes were mutually
exclusive (Fig. S12), which at least in part may reflect their
association with distinct DNA repair pathways and/or molecular
redundancy in DNA repair pathways.

DISCUSSION
This study is the first to perform an unbiased genome-wide
CRISPR-Cas9 KO screen in the C4 CRPC cell line to identify genes
involved in olaparib resistance. We identified and validated PARP1,
ARH3, UBR5, and YWHAE as novel genes associated with olaparib
resistance in CRPC.
PARP1 was the top hit in both treatment conditions in the

CRISPR screen, in line with previous (non-PC related) genome-
wide CRISPR studies [16, 35]. As PARP1 is the main target of
olaparib, this emphasizes the capacity of our screen to identify
biologically relevant olaparib resistance genes. This is the first
study to demonstrate an association between PARP1 loss and
PARPi resistance in CRPC.
ARH3 KO induced PARPi (olaparib, niraparib, and veliparib)

resistance in androgen sensitive (C4) and insensitive (LNCaP) CRPC
cells. This is consistent with a previous report [16] identifying PARG
depletion as a PARPi resistance mechanism. ARH3 and PARG
belong to the family of (ADP-ribosyl) hydrolases, which degrade
large poly(ADP-ribose) (PAR) structures and ADPr mono- and
oligomers at DNA-damaged sites regulating PARylation levels [36].
While PARG has been studied in PC [37], no PC related studies on
ARH3 were identified.
Our RNA sequencing analyses of ARH3 KO CRPC cells revealed

upregulation of EIF5A compared to WT cells, indicating induction
of autophagy. However, further analyses showed decreased
autophagy in ARH3 KO cells compared to WT cells. Although
increased autophagy has been associated with drug resistance
[38] it can also increase apoptotic cell death of prostate cancer

cells [39]. Olaparib has previously been shown to increase
autophagy in breast cancer cell lines, where inhibition of
autophagy caused a significant decrease in olaparib sensitivity
[40]. In line with this, our study showed that inhibition of
autophagy decreased olaparib sensitivity of ARH3 KO cell lines
while activation of autophagy increased their sensitivity. Further-
more we showed that ARH3 KO cells had decreased AMP levels
compared to WT in agreement with a previous study showing that
PARG silencing reduced AMP levels as PAR catabolism contributes
to the AMP pool [41]. Based on the observed reduction of AMP
levels in ARH3 KO cells, our results indicate that autophagy might
be lowered due to a hampered AMPK-mTOR pathway, ultimately
protecting ARH3 KO cells from olaparib induced cell death.
Similar results were observed in our analyses of PARP1 KO cells,

suggesting that olaparib resistance in ARH3 and PARP1 KO are
mediated – at least partly - by a similar mechanism that involves
reduced autophagy. In line with this, ARH3 is known to be
involved in dePARrylation, which is required for PARP1 activity
[42], further supporting our findings.
Furthermore, our clinical data showed decreased ARH3 expres-

sion in mPC compared to normal and localized PC tissue samples.
Thus, loss of ARH3 might also be associated with PC
aggressiveness.
We also validated a correlation between KO of YWHAE or UBR5

and olaparib resistance. However, KO of YWHAE or UBR5 did not
show significant cross resistance to other PARPis (veliparib/
niraparib). As PARPis differ regarding PARP trapping ability and
metabolization [43, 44], KO of some genes might cause olaparib
resistance while not affecting sensitivity to other PARPis.
For YWHAE and UBR5, data from the cBioportal revealed

amplifications as being the most common alteration in mPC
(Fig. 5A). Similarly, our RNA sequencing data revealed a significant
increase in YWHAE and UBR5 expression from NM to mPC (Fig. 5B,
C). Thus, increased expression of these genes might be beneficial
for olaparib treatment. However, further investigations are needed
to fully understand the role of YWHAE and UBR5 in PC and PARPi
response.
We did not validate the phenotypic effects of CCND1, TEAD1,

and USP48 KO indicated by the screen data, emphasizing the
importance of functional validation of CRISPR screen results
through individual KO of genes.
This study sheds light on novel genes contributing to PARPi

resistance in CRPC and propose a novel mode of olaparib
resistance through increased autophagy (Fig. 6). Further investiga-
tions are needed to clarify whether in vitro findings can be
translated to clinical practice. Thus, future research should include
comprehensive clinical studies to elucidate the potential of ARH3,
UBR5, and YWHAE as biomarkers for PARPi treatment response in
CRPC.

MATERIALS AND METHODS
Cell cultivation
All CRPC cell lines (C4 and LNCaP) were grown in Roswell Park Memorial
Institute (RPMI)-medium (Lonza, Walkersville, MD, USA) and HEK293T cells
were grown in Dulbecco’s Modified Eagle’s (DMEM)-medium (Lonza).
Medium was supplemented with 10% Fetal Bovine Serum (FBS, Gibco), and
1% penicillin-streptomycin (10000 U/mL) (Gibco). Cells were cultured in
incubators at 37 °C and 5% CO2 and, authenticated by short tandem repeat
profiling, and tested regularly for mycoplasma infection.

CRISPR KO screen
CRISPR-Cas9 KO screen. The Human Brunello v2 CRISPR KO pooled library
(76 441 gRNAs, targeting 19 114 genes, including 1 000 controls) was a
generous gift from David Root and John Doench (Addgene, Watertown,
MA, USA, Addgene ID: 73178) [17].
Viral particles were produced as described by Ryø et al. [45] (plasmids

listed in Supplementary Methods). SpCas9 was introduced into C4 cells
using the lentiCas9-Blast vector. In duplicates, Cas9-expressing C4 cells
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were screened using Brunello v2 in lentiGuide-Puro vectors at an MOI of
0.5 (based on a viral titer experiment; Table S7). Transduced cells were
selected by nine days of puromycin (3 µg/mL). Following, a minimum of 40
million cells from each replicate were harvested to establish a baseline
group. Of the remaining cells, cells were treated with either 18.5 µM
olaparib (IC50), 29 µM olaparib (IC90), or DMSO (vehicle). During the
screen, cells were passaged at 80–90% confluency, while maintaining a
minimum coverage of 500 cells per gRNA. Medium was replaced every
third day. After 21 days, cells were collected and extracted for genomic
DNA by salting out. By PCR, gRNA regions were amplified using staggered
primers (Table S8). Adaptors for Illumina Sequencing and indices were
applied using the KAPA Hyper Prep Kit (KAPABiosystems, Wilmington, MA,
USA). Products were purified on SPRI beads (Agencourt AMPure XP,
Beckman Coulter, Brea, Ca, USA) and sequenced on Illumina NexSeq500
with a coverage of 500 cells per gRNA and aiming at a read depth of 40
million reads per sample.
Enriched genes were identified using MAGeCK [18]. Restrictive criteria

were imposed on the MAGeCK output for candidate gene selection. From
the top 500 enriched genes in each replicate, genes with a fold change of
above 1.25 (compared to vehicle), and at least two significantly enriched
gRNAs per gene were identified.

Generation of KO cell lines
Cloning and transformation. Vectors were generated to contain gRNAs
targeting ARH3, CCND1, PARP1, TEAD4, UBR5, USP48, or YWHAE, or a non-
targeting gRNA (Table S2). Complementary gRNA sequences were phos-
phorylated, annealed, and cloned into the PX458 backbone vector [26].
Constructs were amplified using XL2-Blue Ultracompetent E.coli cells
(Stratagene; 100 µg/mL ampicillin) and purified via the NucleoBond Xtra
Midi purification kit (Macherey-Nagel, Düren, Germany). Correct gRNA
sequence inserts were confirmed by Sanger Sequencing (Table S9).
C4-Cas9 and LNCaP-Cas9 cells were transfected with gRNA plasmids

individually, using FuGENE HD Transfection Reagent (Promega, Madison, WI,
USA). GFP positive cells were FACS sorted on the BD FACSAriaTM III Cell Sorter
(FACS Core Facility, Aarhus University) either into populations or single cell
suspension to establish KO clones. Genomic KO of individual genes was
validated by Sanger Sequencing (primers in Table S10) and TIDE analysis [27].

Cell viability assays. Olaparib (AZD2281; KU0059436), veliparib (ABT-888),
niraparib (MK-4827), and carboplatin (NSC 241240) were purchased from
MedChemExpress (Shanghai, China) and reconstituted in DMSO (Sigma-
Aldrich, St. Louis, MO, USA).
Cells were plated in 96-well plates at a density of 6 000 cells per well.
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identify genes causing olaparib resistance. First, the Brunello v2 library was packed into lentiviral particles and transduced into the C4 prostate
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After 24 h, cells received drug-supplemented medium at 10-point drug
concentrations for each drug (Table S11) or DMSO and were cultured for
six days. Cell viability was evaluated by 4 h incubation with 10%
AlamarBlueTM Cell Viability Reagent (Invitrogen) followed by 530 nm/
620 nm absorbance measurement (Synergy HT plate reader; BioTek).

Statistical analysis. Statistical analyses were performed using GraphPad
Prism, v8.4.2. Experiments were repeated three times with technical
triplicates. Viability of drug-treated cells was normalized to DMSO-treated
cells. Dose-response curves were fitted using non-linear regression.
Differences in viability between KO and WT cells were analyzed by
pairwise t-test. A p-value < 0.05 was considered statistically significant.
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