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Epithelial Ovarian Cancer (EOC) is a deadly gynecologic malignancy in which patients frequently develop recurrent disease
following initial platinum-taxane chemotherapy. Analogous to many other cancer subtypes, EOC clinical trials have centered upon
immunotherapeutic approaches, most notably programmed cell death 1 (PD-1) inhibitors. While response rates to these
immunotherapies in EOC patients have been low, evidence suggests that ovarian tumors are immunogenic and that immune-
related genomic profiles can serve as prognostic markers. This review will discuss recent advances in the development of immune-
based prognostic signatures in EOC that predict patient clinical outcomes, as well as emphasize specific research areas that need to
be addressed to drive this field forward.
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INTRODUCTION
Epithelial Ovarian Cancer (EOC) is the most lethal of all
gynecologic cancers, due to the fact that patients are frequently
diagnosed at a late stage and disease recurrence eventually
develops following frontline platinum-taxane based chemother-
apy [1]. Advances in the development of targeted approaches
have paved the way for therapies such as the anti-angiogenic
drug bevacizumab and the poly (ADP ribose) polymerase (PARP)
inhibitor olaparib to be used in routine clinical care. However,
these targeted therapies have only modestly extended patient
progression-free survival (PFS), and have not significantly
improved EOC patient overall survival (OS) [2, 3]. In recent years,
immunotherapy has represented one of the most promising
targeted approaches across all cancer subtypes, and currently
many EOC clinical trials are focused on immunotherapeutic
regimens that inhibit the programmed cell death 1 (PD-1) axis.
However, early trial results have demonstrated low response rates
to PD-1-based monotherapies, ranging from 10 to 15% [4].
Therefore, in an effort to improve response rates there has been a
plethora of EOC clinical trials initiated that involve inhibiting PD-1
in combination with other standard of care and experimental
targeted approaches [5].
Despite the fact that EOC patient response rates to currently

investigated immunotherapies remain underwhelming, studies
have demonstrated that ovarian tumors are immunogenic and
can induce anti-tumor immune responses. In addition, it has been
widely reported that intratumoral CD3+ and CD8+ T cells are
favorable to patient prognosis [6, 7]. Therefore, while patients’
response rates to clinically investigated immunotherapies remain
modest, evidence is emerging that immune-based factors have
the ability to serve as prognostic markers for patient clinical
outcomes [8]. Recently, the use of genomic information available
from public datasets coupled with immunogenomic bioinformatic
tools and machine learning has allowed for an explosion of
research aimed at the development of novel prognostic

immunogenomic EOC signatures. Furthermore, other translational
approaches have been employed to determine if tissue-based or
circulating immunologic signatures can predict specific outcomes
such as chemotherapy or immunotherapy response.
This review will center upon immunogenomic signatures of

patient prognosis that have been identified through computa-
tional analysis of publically available datasets, while also touching
upon original profiling studies that have identified intratumoral
immunologic signatures indicative of survival, chemoresistant
disease, and immunotherapy response, as well as circulating
signatures. Finally, research areas that are still needed in order to
develop a prognostic EOC immune based biomarker with clinical
utility will be highlighted.

Immunogenomic prognostic signatures developed from
bioinformatic intratumoral immune composition scoring
Undoubtedly, computational approaches have dominated the
field of immunogenomic prognostic signature development for
ovarian cancer. Bioinformatic tools such as single-sample gene set
enrichment (ssGSEA), ESTIMATE, and CIBERSORT, have made it
possible to estimate total infiltration of immune cell subsets from
heterogeneous tumoral genomic data. These advances have led to
a plethora of EOC based bioinformatic studies that have utilized
the publicly available The Cancer Genome Atlas (TCGA) datasets to
develop genomic signatures based upon immune infiltration. Wu
et al employed CIBERSORT to determine immune cell composition
and develop tumor microenvironment (TME) scores in data sets
obtained from TCGA and International Cancer Genome Con-
sortium. Differential expression analysis revealed 329 differentially
expressed genes (DEGs) in patients with a high versus low TME
score [9]. Gene ontology analysis confirmed that the majority of
these DEGs were involved in immune-related processes. A total of
48 DEGs were found to be associated with OS, with only seven
genes validating in additional publicly available datasets. Two
genes emerged with the highest significance: GPB1, a GTPase
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involved in cell cycle control [10] and the transcription factor [11]
ETV7. In vitro small interfering (siRNA) knockdown of GPB1 and
ETV7 in A2780 cells resulted in greater proliferation, migration, and
colony formation. While these in vitro studies further demonstrate
the protective effects of these genes, future directions should
include targeting these genes in the context of an immune TME
[9].
An additional study by Lu et al. created immune and non-

immune expression groups based on TME features and immune
cell infiltration from TCGA data and confirmed the prognostic
significance of these groupings using two independent validation
cohorts [12]. The immune cohort group was defined by higher PD-
1 signaling, immune cell infiltration, microsatellite instability,
increased tumor mutational burden (TMB), and higher neoantigen
levels. Moreover, this active immune cohort was stratified by
immune activation or cancer associated fibroblast (CAF) expres-
sion, in which the CAF sub-cohort was defined by immunosup-
pressive features such as transforming growth factor-beta (TGF-β)
signaling, and enrichment in epithelial-to-mesenchymal transition
(EMT) and M2 macrophages. Furthermore, the group sought to
replicate the activated immune cell type in vitro by performing a
knockdown of DIRAS3, a tumor suppressor that was under
expressed in the immune activation sub-cohort. The down-
regulation of DIRAS3 in the EOC cell line SKOV3 promoted cell
death when treated with paclitaxel compared to control cells.
Moreover, the knockdown of DIRAS3 resulted in an upregulation
of programmed death ligand-1 (PD-L1) and STAT1 phosphoryla-
tion, suggesting that IFNγ signaling was upregulated [12].
Together, this in vitro data suggests that the downregulation of
DIRAS3 in SKOV3 cells models an immune activated EOC subtype,
however these results should be further studied in an immuno-
competent preclinical mouse model.
Similarly, Wei et al utilized ssGSEA to divide EOC patients into

three immune cell subtypes of high, medium, and low immunity
classifications [13]. Interestingly, they found that TMB levels were
not significantly different between each cohort, but BRCA1
mutation was significantly associated with the high immunity
subgroup. The high immunity subgroup also exhibited elevated
levels of tumor infiltrating lymphocytes (TILs) and the following
immune checkpoint molecules: PD-1, LAG-3, TIM-3, CTLA-4, PD-L1,
PD-L2, CD80, and CD86. Furthermore, T and B cell receptor
signaling, NF-Kβ signaling, Th17 cell differentiation, IL-17, and TNF
signaling were all upregulated in the high immunity subgroup.
Intriguingly, the medium immunity sub-group was significantly
associated with worse prognosis, while no significant differences
were detected between the low and high immunity cohorts.
Nonetheless, immune gene set scores survival analysis revealed
that high expression of immune checkpoint molecules, MHC-1,
antigen-presenting cells co-inhibition, T-cell co-inhibition,
Th1 cells, Th2 cells, and T regulatory cells (Tregs) were all associated
with a significantly improved OS, however hazard ratios for these
outcomes were not reported [13].
Furthermore, Ding et al utilized the ESTIMATE algorithm to

stratify patients based upon calculated gene expression of
immune and stromal cell subsets, with a total of 294 DEGs
revealed between patients with a low and high immune and
stromal score [14]. Functional enrichment exposed that these
DEGs were related to pathways involving focal adhesion, human
papillomavirus infection, PI3K-Akt signaling, proteoglycans, and
cytokine-cytokine receptor interaction. LASSO and COX regression
analysis further identified that 34 of the 294 immune-related DEGs
were significantly associated with improved patient OS and a
nine-gene signature was created involving protective (UBD, GBP2,
CXCL11, CXCL13, D4S234E) and risky (VSIG4, CXC3R1, C5AR1, TFP12)
genes [14]. Examining the nine-gene signature individually with
immune cell infiltration, they found that CXC3R1 correlated with B
cell levels, GBP2 correlated with CD8+ T cells and DCs, CXCL13
correlated to CD4+ T cells, and VSIG4 correlated with

macrophages and neutrophils [14]. The prognostic significance
of this signature was validated in an additional GSE cohort and a
time-dependent receiver operating characteristic (ROC) analysis
was also performed in both datasets, which further demonstrated
the predictive accuracy of the nine-gene signature.
Khadirnaikar et al. identified five prognostic genes (C1QTNF3,

CD246, ADA, C6, and CASP8) through COX regression analysis that
were most associated with worse EOC patient survival from a GSE
dataset, and used these genes to develop an “immune prognostic
score” (IPS) [15]. Interestingly, none of these five prognostic genes
correlated with one another, suggesting that their prognostic
value is independent. Additionally, they found that C1QTNF3,
CD246, ADA, and CASP8 were all elevated in cancer compared to
heathy controls, while C6 was under expressed. Gene ontology
analysis revealed that these specific genes were associated with
immune system processes, and GSEA analysis showed that these
genes were negatively associated with INFγ levels and positively
associated with EMT, hypoxia, and KRAS signaling, suggesting that
this prognostic score indicates a less active immune TME and
increased tumorigenic properties [15]. These findings were
strengthened through the validation signature in a TCGA ovarian
cancer cohort, which revealed a similar significant relationship to
OS, although the hazard ratio was decreased compared to the
training cohort.
There have also been several bioinformatic studies that have

stratified patients into high and low risk immune cohorts, in which
the low risk immune cohort is associated with improved survival
[16–19]. Shen et al utilized ssGSEA and developed a 129-gene
immunogenomic prognostic signature, in which the majority of
the genes were cytokines, cytokine receptors, and were involved
in antimicrobial processes [16]. This immune-based signature
successfully categorized patients based upon high and low risk
immune groupings. This signature was validated in five separate
ovarian cancer cohorts, in which the signature performance
improved and exhibited higher hazard ratios compared to the
training cohort. Corroborating this finding, a study by Zhang et al
identified a 20-gene immune related paired signature, that
divided patients into high and low risk prognostic cohorts in
which the immune prognostic genes were similarly made up of
cytokines, cytokine receptors, and antimicrobials [17]. Functional
pathway analysis revealed that the high-risk group was enriched
for EMT and TGFβ, as well as immunosuppressive M2 tumor
associated macrophages, while the low-risk group exhibited
higher CD8+ T cell expression [17]. The prognostic predictability
of this 20-gene signature was validated in a meta validation
cohort; however, the hazard ratio was markedly decreased
compared to the test cohort.
A study performed by Yan et al. stratified EOC patients into high

and low risk groupings based on a five-gene prognostic signature,
including CXCL11, S1PR4, TNFRSF17, FPR1, and DHRS95, which
successfully predicted patient OS. Interestingly, no difference in
tumor mutational burden (TMB) was observed between high and
low risk immune patients, but a significant association with
chemosensitivity in the low risk group was detected. They also
found that immune cell subset composition differed in high- and
low-risk groups, with more monocytes and M2 immunosuppres-
sive macrophages and fewer CD8+ T cells and M1 macrophages
in the high-risk group compared to the low-risk group [18]. This
immune score was further validated in an RNA-sequencing and
two microarray datasets, and an ROC analysis was performed to
assess the score’s predictive survival accuracy. Finally, Zhang and
colleagues developed a 17-gene immune related gene pair
prognostic signature that split patients into high- and low-risk
immune groupings. Toll-like receptor and chemokine signaling
pathways were significantly associated with a lower risk immune
score [19]. Similarly, in the study performed by Yan et al, ROC
analysis was also performed on both the training and validation
cohorts, greatly strengthening the signature’s predictive accuracy
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for OS [18]. Overall, these studies highlight that patients in high-
risk immune groups exhibit a decrease in immune activating cell
subsets and an increase in immunosuppressive immune cell
subsets.

Pan-cancer immunologic signatures developed with ovarian
cancer datasets
Ovarian cancer TCGA cohort data has also been included in larger
analyses that have sought to develop a pan-cancer immunoge-
nomic signature. Jones et al developed an immune prognostic
signature based on gene clusters related to TME function, TILs, T
cell trafficking, and M2 tumor associated macrophages [20]. This
genomic signature was then tested on the high-grade serous
ovarian cancer (HGSOC) TCGA cohort and validation HGSOC
cohorts from the Cleveland Clinic and Mayo Clinic. The ratio of T
cell trafficking to M2 macrophages was most significantly
associated with improved OS. The immune signatures identified
were also significantly associated with BRCA1/2 mutation status
and collagen, type II, alpha 1 (COL2A1) expression, which
interestingly is associated with TGF-β/Smad signaling [21]. A
pan-cancer analysis was also performed by Chifman et al of over
5000 microarray dataset samples of breast, colon, lung, ovarian,
and prostate tumor specimens [22]. A nine-gene immune-based
prognostic metagene signature was composed of various enrich-
ments of immune cell-subtype gene clusters of T and NK cells,
lymphatic B cells, plasma B cells, monocytes, DCs, MHC-Class II
family, neutrophils, and IFNy signaling and was found to be
significantly associated with improved OS in all cancer subtypes
studied, with the highest significance detected in breast and skin
cancer cohorts [22].

Specialized immunogenomic signatures
There has been a handful of studies examining specific
immunogenomic signatures such as transcription factors (TF),
micro (mi)-RNA, and long-non-coding (lnc)-RNA. A study by Li et al
developed a 17 TF gene signature from TCGA and GEO databases
that could predict OS in serous ovarian cancer patients [23]. A
pathway analysis of the gene signature revealed enrichment in
chronic inflammatory response, positive upregulation of VEGF, T
cell mediated cytotoxicity regulation, TNF biosynthesis, MyD88-
dependant toll-like receptor signaling, coagulation regulation, and
lymphocyte migration. Furthermore, when using the TF signature
to designate patients with a high and low immune risk score, the
low immune risk score group exhibited improved survival [23]. An
additional investigation corroborated that TFs are integral to
immune response and prognosis in EOC, as it was found that a
survival associated 21-gene immunogenomic signature was
significantly positively correlated with levels of four TFs (CIITA,
BAFT, VDR, and CBX2), highlighting the important critical
interactions between TFs and immune response genes in EOC
[24].
Moreover, Ray et al developed a combined miRNA and mRNA

signature utilizing TCGA ovarian and breast cancer cohort datasets
and found that the combinational approach of both signatures
was superior at predicting prognosis compared to either alone
[25]. In addition, when incorporating the miRNA signature, M1
macrophages emerged as the immune-cell subtype most asso-
ciated with improved prognosis [25]. A study by Guo et al found
that two protective lncRNAs (RP11-284N8.3.1 and AC104699.1.1)
both independently predicted survival in EOC patients. Gene
ontology analysis revealed that both these lncRNAs play a
prominent role in immune system activation [26]. Finally,
Korsunsky et al performed a miRNA array in EOC patient tumors
and found that levels of miRNA-197, miRNA-22, miRNA-22#,
miRNA-28, miRNA-339-5p, miR-340#, miRN-328-5p, miR-629, miR-
661, miRNA-98 are linked to heightened infiltration of T cells, NK
cells, cytotoxic TILs, and macrophages, suggesting that miRNA
markers could potentially serve as immune prognostic markers as

well [27]. Taken as a whole, these studies demonstrate that
specialized immunogenomic signatures can serve as prognostic
biomarkers in EOC. While the implementation of a multi-omics
biomarker appears to improve prognostic predictability, this
approach is not without challenges. A major concern is the
difficulties that come with integrating different omics datasets, as
measures derived from different methods may not correlate well
with one another. Furthermore, cost is a significant limitation, as is
the availability of adequate patient samples collected in an
appropriate manner that allow for efficacious testing of potential
multi-omics markers [28].

Immunologic signatures associated with disease progression
and survival
Bioinformatic based approaches have also been used to capture
immunologic changes within an ovarian tumor as disease
progresses. An investigation by Chang et al compared expression
of immune-based genes in stage I, II, III, and IV patient tumors and
performed gene ontology assessment, which revealed five key
deregulated processes as EOC tumors progress: B cell activation
and differentiation, T helper cell mediated immunity, antigen
receptor mediated signaling, regulation of leukocyte chemotaxis
and extravasation, and macrophage activation [29]. Moreover, a
study by Liu et al examined specific immune cell subset
composition across EOC tumor grades and discovered a
significantly decreased level of CD4+ resting memory T cells in
grade 3 tumors versus grade 1 or 2, while resting DCs were
significantly higher in grade 2 tumors [30]. Furthermore, CD8+
T cells and M1 macrophages were strongly correlated with other
immune cell populations, and patients with higher M1 macro-
phage and CD4+memory activated T cells exhibited improved
survival [30].
There have been a few studies that have looked at immunologic

signatures based upon the stratification of PFS and OS. Our group
recently performed an immune modeling analysis incorporating
RNA sequencing and machine learning to generate an immuno-
logic prognostic signature in HGSOC patient tissue [31]. This
analysis defined a multidimensional immune “biomarker” char-
acterized by increased expression of CTLA-4, LAG-3, and Tregs,
which was associated with improved patient PFS. Furthermore,
individual analyte performance revealed that LAG-3 and the
immune activating co-receptor ICOS were significantly higher in
patients with improved outcomes, a result that was also
corroborated by TCGA data. In addition, infiltration of immune
cell subsets was not significantly associated with PFS, suggesting
that the observed upregulation of these factors was not caused by
a general increase in immune infiltrate [31]. Siamakpour-Reihani
et al also performed an immunogenomic analysis that revealed
IL6R expression as being significantly associated with improved
OS and validated their findings in TCGA and GSE datasets [32].
Finally, Mairinger et al performed a Nanostring Pan Cancer
immune profiling panel in HGSOC patient tissue and discovered
that high expression of SLAM7, CXCL9, HSD11B1, COLEC12 were
significantly associated with improved OS. HSD11B1 was also
associated with improved PFS, which was corroborated by TCGA
data [33].
Another immune profiling study by Rådestad et al performed a

risk factor analysis based on prognostic immune related proteins
in EOC ascites and tumors [34]. Utilizing ELISA and flow cytometry
based approaches, they developed an eight-immune related risk
factor signature consisting of high levels of soluble IFNα2,
macrophage inflammatory protein (MIP)-1α, and MIP-1β in ascites;
high percentage of TIM-3+PD-1-LAG-3-CD8+ T cells in ascites;
low percentage of CD4γβ T cells in the ascites and tumor; tumoral
CD8+ co-inhibitory negative T cells; and high percentage of
tumor CD127+ TIM-3+ CD8+ T cells. Patients with 5-8 of these
immune risk factors, compared to only 0-4 exhibited a significantly
shorter OS [34]. Overall, these studies exemplify that immune
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signatures are related to patient outcomes in EOC and possess
prognostic utility. However, additional studies are needed to
integrate results from these disparate studies and identify
simplified, clinically useful biomarker candidates. Future directions
to address this problem include measuring these candidates in a
larger prospective cohort so that the predictive value of these
putative markers can be compared within the same study cohort.
Moreover, it will be imperative to take into account the practicality
of measuring these biomarkers in the least invasive and cost-
effective manner for the patient.

Signatures of immunotherapy response
Immune profiling has given way to the discovery of novel factors
that could potentially be developed as immunotherapies and may
aide in identifying patients who would respond favorably to
immunotherapeutic interventions. In recent years, machine
learning tools, such as the tumor immune dysfunction algorithm
(TIDE) has allowed researchers to predict how well patients would
respond to PD-1 checkpoint blockade, utilizing TCGA ovarian
cancer datasets. Liu et al found that patients who had an immune
signature enriched in CD4+ resting memory cells were predicted
to be significantly more responsive to PD-1 based immunotherapy
compared to a cluster of patients that exhibited enrichment in
resting DCs, M1 macrophages, activated NK cells, plasma cells,
CD8+ T cells, and Tregs [30]. Interestingly, clincopathological
parameters within both groups were similar. Similarly, Li et al
utilized the TIDE algorithm to test if their identified TF-based
prognostic signature would characterize patient immunotherapy
response, and discovered that patients categorized as low risk by
the TF-based signature were predicted to be more responsive to
PD-1 based therapeutics [23].
In EOC, there has only been one prospective study that utilized

immunogenomic profiling methods to uncover prognostic mar-
kers of combined immunotherapy and PARP response. The study,
which utilized highly-multiplexed single-cell imaging and single-
cell spatial analysis from patient tumors enrolled in an anti-PD-1
and PARP Phase I/II clinical trial (NCT02657889), identified that a
“mutational signature 3” indicative of homologous recombination
DNA repair deficiency and a positive immune score represented
by interferon-primed exhausted T cells within the TME were
associated with improved response to combinatorial blockade
[35]. In addition, single-cell spatial analysis revealed that interac-
tions between CD8+ T cells and PD-L1+ tumor cells and
macrophages could serve as mechanistic determinants of
combined PARP and PD-1 therapeutic response [35]. Overall,
while it is valuable to employ machine based algorithms to initially
test immune prognostic based signatures, there is a critical deficit
in prospective immunogenomic profiling studies, which will be
essential in order to establish whether immune-based prognostic
signatures can serve as biomarkers for EOC immunotherapy
response.

Immunogenomic markers of chemotherapy response
In other cancers, such as breast and colon, analyses have been
performed that have revealed differences in immune-based genes
that correlate with varying chemotherapy response [8]. However,
immune signatures of chemotherapy response are just beginning
to be explored in EOC. In mouse models, frontline chemotherapy
can induce intratumoral T cell infiltration, antigen presentation,
and expression of PD-L1 [5]. Furthermore, an in vivo study by
Vankerckhoven et al. found that when comparing carboplatin,
paclitaxel, pegylated liposomal doxorubicin, gemcitabine, carbo-
platin/paclitaxel combined, and carboplatin/gemcitabine com-
bined, that carboplatin/paclitaxel in combination most
successfully promoted an active immune TME by producing the
highest interferon-gamma (INFγ) serum levels and the strongest
decrease in immunosuppressive immune-cell subsets within the
ascites [36]. Interestingly, the combination of carboplatin and

gemcitabine seemed to promote an immunosuppressive TME, as
an increase in Tregs was detected, as well as an increase of serum
macrophage-inflammatory-protein-10β, suggesting that che-
motherapies exert differential effects on the ovarian TME [36].
Specific immune based signatures are also related to chemore-

sistant disease in EOC. Koti et al. performed a broad genomic
analysis that revealed STAT1, widely regarded as a tumor
suppressor and member of the IFNγ signaling pathway [37] was
significantly differentially expressed between chemosensitve and
chemoresistant EOC tumors, and that high intratumoral expression
of STAT1 is associated with an increased patient PFS [38]. These
results were further validated at the protein level in an expanded
cohort of chemoresistant and chemosensitive patients [38].
Furthermore, a computational study led by Hao and colleagues
uncovered that a high immune score in patient tumors is
characterized by high expression of INFγ pathway genes and that
this score is associated with an improved chemotherapy response
[39]. A study by Mairinger et al found 11 immune-related DEGs
attributed to platinum response. ATG10, BMI1, FCF1, PDGFC,
HSD11B1 were overexpressed and TNFRSF9, COLEC12, TCF7 were
under expressed in platinum sensitive tumors, while EWSR1,
CD274, and KLRCI were overexpressed in platinum resistant tumors
[33]. Signaling pathways for NK-mediated cell toxicity, T and B cell
receptor signaling, and leukocyte migration were enriched in
platinum resistant patients, which was attributed to a high
proportion of Tregs, as indicated by enhanced levels of CD3, CD4,
and CD25 [33]. Finally, Weberpals et al reported that PD-L1 gene
expression and tumor inflammation scores were higher in patient
samples with a good response to chemotherapy, and also reported
specific gene mutations were associated with response [40].
A few studies have sought to determine immunologic effects of

neoadjuvant chemotherapy (NACT) in EOC. Jimenez-Sanchez et al
performed immunogenomic analysis on site-matched EOC tumors
pre- and post-NACT and found an increase in natural killer (NK)
cell infiltration, with no significant differences in CD8+ cytotoxic
T cells observed [41]. This observation was validated in an in vivo
EOC mouse model, which showed that NK cell infiltration was
enhanced following cisplatin treatment, suggesting that NK cells
are the primary immune cell-subset affected by NACT. Further-
more, through T-cell receptor (TCR) sequencing, the group found
that TCR oligoclonal expansion, frequently used as a marker of T
cell activation following neoantigen recognition, was significantly
higher in patient tumors post-NACT [41]. The second study by
Brunekreeft et al performed flow cytometry and immunohisto-
chemical analysis of a cohort of pre- and post-NACT treated
tumors and found no significance difference in the number of TILs
in each group [42]. They also detected low levels of major-
histocompatibility complex-1 (MHC-1) in post-NACT tumors.
However, an important caveat of this study was that matched
pre- and post-NACT samples were not used, which may have
significantly altered the group’s findings. Finally, Mesnage et al
employed immunohistochemistry to examine tumor infiltrating
lymphocytes (TILs) and PD-L1 positivity in tissue sections from pre-
treatment and post-treatment NACT patients, identifying
increased TILs and PD-L1 levels following NACT [43] Interestingly,
the finding that TILs were increased post-NACT is discrepant with
the study by Brunekreeft et al, which is potentially a result of the
lack of matched samples utilized in the Brunekreeft study, or
differential techniques utilized. One study sought to understand
the relationship of chemotherapy-induced immunologic changes
and clinical outcomes. Bohm et al. showed that effector T cells are
activated and Tregs are reduced in omental metastases following
NACT, particularly in good responders [44]. Despite these findings,
there is overall a deficiency in studies investigating immunologic
effects of chemotherapy in ovarian cancer, particularly in relation-
ship to clinical outcomes. There has yet to be a comprehensive
investigation of immune-based genes, pathways, and cell subsets
in pre- and post-NACT matched patient ovarian cancer tumors.
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Table 1. Summary of EOC prognostic immunologic signatures.

Signature identified Cohort Methods Predictive for

48-gene signature: GPB1, ETV7
demonstrating highest significance
[9].

TCGA CIBERSORT OS

PD-1 pathway, immune cell
infiltration, microsatellite instability,
TMB, and neoantigen enrichment
[12].

TCGA ssGSEA OS

Immune checkpoint molecules (PD-1,
LAG-3, TIM-3, CTLA-4, PD-L1, PD-L2,
CD80, CD86), MHC-1, antigen-
presenting cells co-inhibition, T-cell
co-inhibition, Th1 cells, Th2 cells, and
Tregs [13].

TCGA ssGSEA, ESTIMATE, and CIBERSORT OS

Nine gene signature: (protective UBD,
GBP2,CXCL11,CXCL13,D4S234E) and
(risky:VSIG4,CXC3R1,C5AR1,TFP12)
genes [14].

TCGA ESTIMATE OS

Five-gene signature: (C1QTNF3,CD246,
ADA,C6,and CASP8 [15].

GSE9899 GSEA OS

129-gene signature with significant
enrichment in cytokine, cytokine
receptor, and antimicrobial processes
[16].

TCGA, GSE26712, GSE32062,
GSE14764, GSE23554, GSE26712,
GSE3149, GSE18520, GSE19829,
GSE26193, GSE30161, GSE63885,
GSE9891, GSE17260, GSE32062,
GSE53963,GSE73614, GSE13876,
and GSE9997

ssGSEA OS

20 immune-related gene pair
signature with enrichment in
cytokine, cytokine receptor,
antimicrobial processes, antigen
processing and presentation, BCR
signaling, TCR signaling, NK cell
cytotoxicity [17].

GSE26712 and GSE32062 CIBERSORT OS

Five gene signature: CXCL11, S1PR4,
TNFRSF17, FPR1, and DHRS95 [18].

TCGA ssGSEA OS

17 immune-related gene pair
signature enriched for caspase and
interferon receptor families [19].

GSE14764, GSE26712, and TCGA InnateDB database and LASSO regression OS

Cytotoxic lymphocyte immune
signature, T-cell trafficking (TCT), and
TCT to M2 macrophage ratio [20].

TCGA RNA-seq cluster analysis OS

Nine immune-based metagene
signature; T and NK cells, lymphatic B
cells, plasma B cells, monocytes, DCs,
MHC-Class II family, neutrophils,and
IFNy signaling [22].

GSE18520, GSE26193, GSE26712,
GSE27943, and GSE6008

Extracting microarray gene expression
patterns and identifying co-expressed
genes (EPIG)

OS

17 TF-based signature enriched for
chronic inflammatory response, VEGF
upregulation, T-cell mediated
cytotoxicity, TNF biosynthesis,
MyD88-dependant-toll-like receptor
signaling, coagulation regulation,
and lymphocyte migration [23].

GSE9899 and TCGA LASSO COX Regression and TIDE
Algorithm

OS and Immunotherapy
Response

21-gene signature; enriched most
significantly for inflammatory
response pathways [24].

TCGA LASSO COX Regression and CIBERSORT 1-, 3-, and 5-year OS

miRNA and mRNA signature
indicative of M1 Macrophage
infiltration [25].

TCGA CIBERSORT OS

lncRNAs: RP11-284N8.3.1 and
AC104699.1.1 [26].

TCGA COX Regression OS

miRNA signature: miRNA-197,miRNA-
22, miRNA-22#, miRNA-28, miRNA-
339-5p, miR-340#, miRN-328-5p, miR-
629, miR-661, miRNA-98 [27].

20 advanced EOC patient
primary tissue
(TCGA validation)

Applied Biosystems OpenArray
MicroRNA Array and COX Regression

OS
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Circulating immunological signatures
The development of peripheral immune markers is integral when
optimizing the utility of a prognostic signature for EOC patients.

While tumor sampling is readily used for immune-based
biomarker assessment, obtaining on-treatment and post-
treatment specimens is challenging, as it is costly and invasive

Table 1. continued

Signature identified Cohort Methods Predictive for

Immunofunctiome deregulation
signature: B cell activation and
differentiation, T helper cell
mediated immunity, antigen receptor
mediated signaling, regulation of
leukocyte chemotaxis and
extravasation, and macrophage
activation [29].

GSE3149, GSE9891, GSE14767,
GSE15622, GSE18520, GSE19829,
GSE23554, GSE26193, GSE26712,
GSE27651, GSE30161, GSE51373,
GSE63885, and GSE65986

Gene set regularity (GSR) modeling Tumor Stage

CD4+ resting memory cells, M1
macrophages [30].

TCGA CIBERSORT, TIDE algorithm, and
Pharmaceutical Sensitivity Genomics in
Cancer (GDSC)

Tumor Grade, OS, and
Immunotherapy
Response

Multidimensional biomarker: LAG-3,
CTLA-4, and Tregs.
Individual analyte performance: LAG-
3 and ICOS [31].

26 HGSOC treatment naïve
patient tumors (TCGA validation)

Cofactor Genomics ImmunoPrism® Assay PFS and OS

IL6R [32] 51 HGSOC treatment naïve
patient tumors (TCGA,
GSE14764, GSE26712, GSE18520,
and GSE19161 validation)

Affymetrix HG-U133A GeneChip Arrays OS

KLCR1 TCF7 HSD11B1 COLEC12 PDGFC
FCF1 BMI1 TNFRSF9 ATG10 EWSR1
(Chemotherapy Response).
HSD11B1 (PFS).
SLAM7 CXCL9 HSD11B1 COLEC12 (OS)
[33].

23 HGSOC treatment naïve
patient tumors (TCGA validation)

Nanostring nCounter®PanCancer
Immune Profiling Panel

PFS, OS, and
Chemotherapy
ResponseMairinger)

Risk factor signature: high levels of
soluble IFNα2, MIP-1α, MIP-1β in
ascites, high % TIM-3+ (PD-1-LAG-3-)
CD8+ T cells in ascites, low %CD4γβ
T cells in the ascites and tumor,
tumoral CD8+ co-inhibitory negative
T cells, high % tumor CD127+ TIM-
3+ CD8+ T cells [34].

35 treatment naïve EOC patient
tumors, ascites, and blood

ELISA and flow cytometry OS

Mutational signature 3 (homologous
recombination DNA repair
deficiency)and interferon-primed
exhausted T cells [35].

Anti-PD-1 and PARP clinical trial
(NCT02657889)

Highly-multiplexed single-cell imaging
and single-cell spatial analysis

Immunotherapy
Response

STAT-1 [38] 34 advanced serous ovarian
cancer treatment naïve tumors

Nanostring nCounter® Human
Inflammation Panel
(immunohistochemistry validation)

Chemotherapy Response
and PFS

INFγ inducible chemokines [39]. TCGA, GSE13876, GSE14764,
GSE17260, GSE18520, GSE26193,
GSE26712, GSE30161, GSE32063,
GSE32062, GSE49997, GSE51088,
and ArrayExpress.

Gene set enrichment analysis (GSEA) Chemotherapy Response

BRCA2 mutation status, PD-L1, and
EMSY. [40]

39 HGSOC patient tumors RNA Sequencing and Nanostring
nCounter®

Chemotherapy Response

NK cell infiltration, oligoclonal T cell
expansion [41].

40 site matched pre and post
NACT patient tumors

RNA and TCR sequencing, ssGSEA, and
ESIMATE algorithm

Chemotherapy Response

Decreased MHC-1 expression [42]. 20 unmatched pre and post
NACT patient tumors

Flow cytometry and
immunofluorescence

Chemotherapy Response

TILs and PD-L1 expression [43]. 83 matched pre and post NACT
patient tumors

Immunohistochemistry Chemotherapy Response

Increased effector T cell activation,
PD-1, PD-L1, and CTLA-4 expresion.
Decrease in Tregs, TNF, IL8 and IL6
expression[44].

54 matched HGSOC patient pre
and post NACT omental biopsies
and blood draws

Immunohistochemistry, flow cytometry,
RNA sequencing, and
electrochemiluminescence.

Chemotherapy Response

CXCL4, CCL20, CXCL1, CXCL19 and
CXCL10 [47].

40 advanced stage patient
serum samples

R&D Systems Proteome Profiler Human
Cytokine Array, and LEGENDplex Human
Proinflammatory Chemokine Panel

PFS and OS
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for patients to undergo additional, unnecessary biopsies [45].
Moreover, diagnostic biopsies can be associated with adverse
complications such as infection or bleeding [46]. In other cancer
subtypes, such as melanoma and NSCLC, there has been a push in
recent years to investigate immune-based circulating markers.
Numerous studies have examined specific peripheral immune
receptors and factors and have determined a correlation of these
circulating immune signatures with clinical response [45] How-
ever, in EOC, there has only been one study that has performed
immune-based profiling in circulating blood [47]. Mlynska and
colleagues found that higher treatment-naïve, serum levels of the
chemokines CXCL4, CCL20, CXCL1 are significantly associated with
a shortened PFS and OS. Furthermore, they established that
increased circulating levels of CXCL19 and CXCL10 can discrimi-
nate which patients with detectable levels of intratumoral
immune infiltration will experience a shorter PFS [47]. While these
results are illuminating, they are not comprehensive, as only a
select panel of cytokines and chemokines were profiled. Therefore,
an emphasis should be placed on examining a full range of
circulating immunologic signatures in EOC, as the non-invasive
nature of these signatures would possess the ultimate clinical
utility.

DISCUSSION
Overall, bioinformatic approaches have accelerated research that
seeks to identify immunologic prognostic signatures in EOC and
have demonstrated proof-of-principle that immune-based fac-
tors are indicative of patient prognosis in EOC. A summary of
these studies can be seen in Table 1. Despite the plethora of
these in silico investigations, there has been a lack of in vitro
mechanistic studies and studies in immunocompetent mouse
models that validate these findings. Moreover, translational
prospective studies are needed in order to investigate if
immunologic signatures are prognostic indicators of chemother-
apy or immunotherapy response, as a complete understanding
of how the immune microenvironment responds to these
therapies and how these changes relate to clinical outcomes is
lacking. In addition to traditional tumor-based markers, periph-
eral factors represent an integral part of the development of a
multidimensional immune signature related to prognosis and
therapy response, given the ease of accessibility to patient serum
and plasma. While tumor sampling during the initial tumor
reducing surgery can be readily used for immune biomarker
assessment, obtaining on-treatment and post-treatment tissue
specimens is unrealistic. In cancers such as melanoma and NSCLC
there have been numerous studies that have examined specific
peripheral immune receptors and factors associated with clinical
response [45]. However, comprehensive studies have yet to be
performed in ovarian cancer that seek to identify secreted
immune markers indicative of survival and response to clinical
regimens. Taken as a whole, translational immune profiling
research will facilitate the identification of immunogenomic
signatures and scientifically rational biomarkers that not only
predict patient survival and response to EOC therapeutic
regimens, but also inform novel therapeutic strategies that
target the tumor-host immune microenvironment.
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