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Great progress has been made in the investigation on mutation and expression of splicing factor. However, little is known on the
role of alternative splicing of splicing factors across cancers. Here, we reported a pan-cancer analysis of alternative splicing of
splicing factors spanning 6904 patients across 16 cancer types, and identified 167 splicing factors with implications regulating
cancer-specific splicing patterns through alternative splicing. Furthermore, we found that abnormal splicing events of splicing
factors could serve as potential common regulators for alternative splicing in different cancers. In addition, we developed a splicing-
derived neoepitopes database (ASPNs), which provided the corresponding putative alternative splicing-derived neoepitopes of 16
cancer types. Our results suggested that alternative splicing of splicing factors involved in the pre-RNA splicing process was
common across cancer types and may represent an underestimated hallmark of tumorigenesis.
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INTRODUCTION
Alternative splicing allows the synthesis of multiple mature
mRNAs from a single gene to translate diverse proteins, which is
a critical factor in increasing the complexity of protein functions
[1–3]. Approximately 95% of the genes in the human genome are
alternatively spliced [4]. Alternative splicing changes are fre-
quently observed in tumor samples and are recognized as
important signatures for tumor progression and therapy [5].
Aberrant regulation of alternative splicing can lead to tumor
progression by influencing the expression of genes or isoforms
involved in cell proliferation control, apoptosis, DNA damage
response, energy metabolism, angiogenesis, and metastasis [6].
For instance, alternative splicing changes of BCL2L1, NUMB, and
MET genes affect pathways involved in apoptosis, cell prolifera-
tion, and cellular cohesion in lung cancer [7]. Recent studies have
shown that alternative splicing is a potential source of neoepi-
topes [8–11]. Especially, B-cell acute lymphoblastic leukemia
patients have low prevalence of somatic mutations and copy
number variations. It is difficult to select a suitable target for the
development of efficient immunotherapies. Nevertheless, patients
have extensive alternative splicing differences, which can expand
the number of suitable targets for immunotherapy [12].
Alternative splicing is regulated by splicing factors [13].

Mutation of splicing factors can generate different splicing
patterns which may generate abnormal isoforms in tumor samples
[14]. For instance, RBM10 and U2AF1 in lung cancer [15, 16], and
SF3B1 in breast cancer [17, 18] mutated. On the other hand,
increasing evidences suggest that changes in the expression of
splicing factors can lead to abnormal splicing in cancers [19]. The

splicing factor SR and hnRNP family are overexpressed in many
cancer types and induce alternative splicing changes, promoting
cell proliferation, and metastasis [20]. Recently, a study showed
that abnormal splicing of splicing factors such as HNRNPA1 and
HNRNPC could produce multiple isoforms in Acute Myeloid
Leukemia [21]. However, a comprehensive pan-cancer analysis of
alternative splicing of splicing factors has not been reported. To
illustrate the influence of abnormal splicing of splicing factors to
cancer-specific splicing patterns across 16 cancer types, we
globally analyzed gene expression and alternative splicing data
from The Cancer Genome Atlas (TCGA) project and constructed
the splicing-derived neoepitopes database. Our results implicated
that abnormal splicing of splicing factors could serve as a
regulator of cancer-specific splicing patterns, which were a
potential source of neoepitopes.

RESULTS
Landscape of alternative splicing events across cancer types
We described alternative splicing landscape across 16 human
cancer types from 6904 patients, including 880 matched adjacent
normal samples (Table 1 and Methods). Alternative splicing events
were divided into seven types, namely Exon Skip (ES), Alternate
Donor site (AD), Alternate Acceptor site (AA), Retained Intron (RI),
Mutually Exclusive Exons (ME), Alternate Promoter (AP), and
Alternate Terminator (AT). To highlight the specificity and
commonality of alternative splicing across cancer types, we used
t-SNE to visualize the splicing diversity across the full cohort [22].
We observed that cancer from different tissues of origin, such as

Received: 4 February 2021 Revised: 1 July 2021 Accepted: 8 July 2021
Published online: 20 July 2021

1School of Life Science and Technology, Harbin Institute of Technology, Harbin, China. 2Key Laboratory of Biological Big Data (Harbin Institute of Technology), Ministry of
Education, Harbin, China. 3These authors contributed equally: Rui Cheng, Lixing Xiao, Wenyang Zhou. ✉email: qhjiang@hit.edu.cn

www.nature.com/oncOncogene

http://crossmark.crossref.org/dialog/?doi=10.1038/s41388-021-01947-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41388-021-01947-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41388-021-01947-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41388-021-01947-7&domain=pdf
http://orcid.org/0000-0002-9398-3514
http://orcid.org/0000-0002-9398-3514
http://orcid.org/0000-0002-9398-3514
http://orcid.org/0000-0002-9398-3514
http://orcid.org/0000-0002-9398-3514
http://orcid.org/0000-0003-0929-0086
http://orcid.org/0000-0003-0929-0086
http://orcid.org/0000-0003-0929-0086
http://orcid.org/0000-0003-0929-0086
http://orcid.org/0000-0003-0929-0086
http://orcid.org/0000-0002-3676-0584
http://orcid.org/0000-0002-3676-0584
http://orcid.org/0000-0002-3676-0584
http://orcid.org/0000-0002-3676-0584
http://orcid.org/0000-0002-3676-0584
http://orcid.org/0000-0003-2795-6451
http://orcid.org/0000-0003-2795-6451
http://orcid.org/0000-0003-2795-6451
http://orcid.org/0000-0003-2795-6451
http://orcid.org/0000-0003-2795-6451
http://orcid.org/0000-0003-1799-5529
http://orcid.org/0000-0003-1799-5529
http://orcid.org/0000-0003-1799-5529
http://orcid.org/0000-0003-1799-5529
http://orcid.org/0000-0003-1799-5529
http://orcid.org/0000-0002-6130-8610
http://orcid.org/0000-0002-6130-8610
http://orcid.org/0000-0002-6130-8610
http://orcid.org/0000-0002-6130-8610
http://orcid.org/0000-0002-6130-8610
http://orcid.org/0000-0001-8888-8005
http://orcid.org/0000-0001-8888-8005
http://orcid.org/0000-0001-8888-8005
http://orcid.org/0000-0001-8888-8005
http://orcid.org/0000-0001-8888-8005
http://orcid.org/0000-0003-0622-9060
http://orcid.org/0000-0003-0622-9060
http://orcid.org/0000-0003-0622-9060
http://orcid.org/0000-0003-0622-9060
http://orcid.org/0000-0003-0622-9060
http://orcid.org/0000-0002-8009-7660
http://orcid.org/0000-0002-8009-7660
http://orcid.org/0000-0002-8009-7660
http://orcid.org/0000-0002-8009-7660
http://orcid.org/0000-0002-8009-7660
http://orcid.org/0000-0002-9930-0104
http://orcid.org/0000-0002-9930-0104
http://orcid.org/0000-0002-9930-0104
http://orcid.org/0000-0002-9930-0104
http://orcid.org/0000-0002-9930-0104
http://orcid.org/0000-0001-9083-7004
http://orcid.org/0000-0001-9083-7004
http://orcid.org/0000-0001-9083-7004
http://orcid.org/0000-0001-9083-7004
http://orcid.org/0000-0001-9083-7004
http://orcid.org/0000-0003-2039-7167
http://orcid.org/0000-0003-2039-7167
http://orcid.org/0000-0003-2039-7167
http://orcid.org/0000-0003-2039-7167
http://orcid.org/0000-0003-2039-7167
http://orcid.org/0000-0001-7486-9452
http://orcid.org/0000-0001-7486-9452
http://orcid.org/0000-0001-7486-9452
http://orcid.org/0000-0001-7486-9452
http://orcid.org/0000-0001-7486-9452
http://orcid.org/0000-0002-9889-3964
http://orcid.org/0000-0002-9889-3964
http://orcid.org/0000-0002-9889-3964
http://orcid.org/0000-0002-9889-3964
http://orcid.org/0000-0002-9889-3964
http://orcid.org/0000-0001-7402-5081
http://orcid.org/0000-0001-7402-5081
http://orcid.org/0000-0001-7402-5081
http://orcid.org/0000-0001-7402-5081
http://orcid.org/0000-0001-7402-5081
http://orcid.org/0000-0002-1827-0389
http://orcid.org/0000-0002-1827-0389
http://orcid.org/0000-0002-1827-0389
http://orcid.org/0000-0002-1827-0389
http://orcid.org/0000-0002-1827-0389
mailto:qhjiang@hit.edu.cn
www.nature.com/onc


HNSC and LUSC, were clustered closely together. On the contrary,
KICH, KIRP, and KIRC were separated clearly from kidney tissue
(Fig. 1a). We also used the same method to visualize the gene
expression diversity across the full cohort, and the result showed a
similar phenomenon (Supplementary Fig. S1).
The difference in the proportion of splicing types was not

significant, but we observed that the count of DASEs varied
greatly across cancer types from 593 (READ) to 3482 (LUSC)
(Fig. 1b). The UpSet graphs were used to display the distribution of
DASEs across cancer types (Fig. 1c). In addition to cancer-specific
DASEs, we found that DASEs can also share across cancer types. To
explore the functions of genes related to DASEs, we utilized
metascape to conduct a joint analysis. The results revealed that
genes were enriched in cancer development, including cell
growth, cell junction assembly, cell part morphogenesis, and
regulation of cell adhesion (Fig. 1d).
We expected that not all splicing events will have a potential

impact on subsequent protein translation. Among 16 cancer types,
the number of DASEs which did not change the CDS was from 133
(READ) to 876 (LUSC) (Fig. 1e). To further clarify the clinical
implications of DASEs which did not change the CDS, we used
multiple cox regression analysis of these events to determine the
association between the PSI value of these events and patients’
overall survival across 16 cancer types (Method). We found
survival-related events from DASEs, which did not change the
CDS, were detected in different cancer types. There was a big gap
in the proportion of splicing types (Supplementary Fig. S2a, b).
Besides, we also found other DASEs, such as CCND3_AP_76154
and IL11RA_AP_86208, had opposite survival results in different
cancer types (Supplementary Fig. S2c-f).
We translated the spliced and unspliced isoforms of each DASE,

which changed the CDS, into amino acid sequences. Furthermore,
we used InterProScan to analyze the loss/increase of the spliced
protein domain. According to the results, these events which

changed protein domain can be divided into four types: complete
loss of well-annotated protein domains (CDL), partial loss of
protein domains (PDL), the addition of protein domains (DA), and
unknown consequence (UC). We found that most events were
from the UC group, and these events may alter protein structure.
In addition, part of spliced proteins generated by DASEs lose their
domain completely (Fig. 1f). Overall, our results indicated that
alternative splicing changes recurrently occurred in patients and
lead to protein dysfunction.

Alternative splicing of splicing factors across 16 cancer types
Splicing factors amongst the genes related to DASEs had been
observed. Therefore, we investigated whether alternative splicing
changes of splicing factors could explain the alternative splicing
changes in cancers. The differential gene expression of 167 genes
encoding splicing factors between normal and tumor sample pairs
was analyzed (Supplementary Table S3). We found that few
splicing factors in tumor samples undergo splicing and expression
changes simultaneously (Fig. 2a). Similar phenomena were found
in oncogenes and tumor suppressor genes (Supplementary Fig.
S3a, b). The proportion of splicing factors with alternative splicing
changes was greater than that with expression changes among
some cancer types. Splicing factors that only undergo alternative
splicing changes across 16 cancer types were analyzed further.
Interestingly, we found that these splicing factors shared in
multiple cancer types (Fig. 2b) interacted with each other to form a
tightly interconnected network (Fig. 2c). Collectively, splicing
factors network analysis indicated that the abnormal splicing of
splicing factors can trigger a series of alternative splicing changes
in tumor patients.
To verify this, we used rMAPS [23] to perform binding motifs

enrichment analyses of differentially spliced transcripts to
determine if they might be targets for the abnormal spliced
splicing factors. We focused on the most common alternative
splicing types among the typical patterns of alternative splicing
(ES, AD, AA, RI, and ME): ES. Compared with adjacent normal
samples, we identified that exons were recurrently skipped in
tumor samples when the change of PSI value (ΔPSI) <−0.1, while
retained when ΔPSI > 0.1. We also identified a control set of non-
differentially spliced exons. We observed that the well-
conservative binding motifs of these splicing factors were
significantly over-represented in the transcript sequences of
flanking the skipped/retained exons compared with non-
differentially spliced exons (Fig. 2d), and these splicing factors
generated many DASEs across cancer types (Fig. 2e). We also
found that some motifs showed enrichment in the same cancer
type both upstream and downstream and for both inclusion and
skipping. The transcript sequences of flanking the skipped/
retained exons in the same cancer type were different. These
results indicated that the binding preference of these splicing
factor might be different in the inclusion and skipping groups.
Other motifs showed enrichment only in the same cancer type
either inclusion or skipping. Especially compared with the non-
differentially skipped exons in CHOL and LUSC, the well-
conserved binding motif of HNRNPA1 was significantly over-
represented the flanking retained exons in tumor samples.
However, HNRNPA1 was not significantly over-represented flank-
ing the retained exons in adjacent normal samples (Fig. 2f).
HNRNPA1 serves as a splicing repressor in alternate splicing [12].
As the RNA-binding protein, HNRNPA1 can bind to pre-mRNA in
the nucleus and affect pre-mRNA processing, mRNA metabolism
and transport [24–26]. According to our results, the expression of
HNRNPA1 was not significantly different between normal and
tumor samples, while HNRNPA1 would produce a nonfunctional
protein (HNRNPA1_ES_212638) through alternative splicing. ΔPSI
of HNRNPA1_ES_212638 > 0.1 indicated the proportion of exon
inclusion in tumor samples within transcript was higher, which
would bind and repress splicing (Fig. 2g). Our results suggested

Table 1. Detail information of samples across cancer types.

Cancer type Full name Tumor Tumor-
adjacent
tissues

BLCA Bladder Urothelial
Carcinoma

406 19

BRCA Breast invasive carcinoma 1094 112

CHOL Cholangiocarcinoma 36 9

COAD Colon adenocarcinoma 457 41

HNSC Head and Neck squamous
cell carcinoma

501 42

KICH Kidney Chromophobe 66 23

KIRC Kidney renal clear cell
carcinoma

533 72

KIRP Kidney renal papillary cell
carcinoma

290 31

LIHC Liver hepatocellular
carcinoma

371 50

LUAD Lung adenocarcinoma 514 56

LUSC Lung squamous cell
carcinoma

501 48

PRAD Prostate adenocarcinoma 497 52

READ Rectum adenocarcinoma 166 9

STAD Stomach adenocarcinoma 412 26

THCA Thyroid carcinoma 515 57

UCEC Uterine Corpus
Endometrial Carcinoma

545 23
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that alternative splicing changes of splicing factors might
contribute to the abnormal splicing across cancer types.

Alternative splicing of splicing factors affects cancer-specific
splicing patterns
To investigate whether the alternative splicing changes between
tumor and adjacent normal samples were affected by splicing
events of splicing factors, we analyzed the relationship between
different alternative splicing events of splicing factors (SDASEs)
and the second principal component (PC2) of the DASEs set
(Supplementary Fig. S4). We found high correlations between PSI
values of SDASEs and cancer-specific splicing patterns (Fig. 3a and
Supplementary Table S4). In particular, the PSI value of
MBNL1_ES_67324 was correlated with cancer-specific splicing
patterns among most cancer types, including BLCA, BRCA, CHOL,
COAD, KICH, KIRC, LUAD, LUSC, PRAD, READ, and STAD. Another
event MBNL1_ES_67315 related to MBNL1 was also correlated with
seven cancer types, including BLCA, COAD, KICH, PRAD, READ,
STAD, and UCEC. We also used the same method to analyze the
relationship between different alternative splicing events of
splicing factors (SDASEs) and the second principal component
(PC2) of random control set of DASEs (Supplementary Fig. S5).

Among the 16 cancer types, the number of SDASEs that
correlations with PC2 of the random control set were less than
that associated with PC2 of the DASEs set (P < 0.05).
Compared with the unspliced isoforms, the spliced isoforms,

MBNL1_ES_67324 and MBNL1_ES_67315, skipped exon 8 and
10–11, respectively (Fig. 3b). We found that spliced proteins did
not change the well-annotated protein domains, indicating that
protein structure stability might altered. To illustrate the impact
of the alternative splicing on the stability of the protein
structure at the molecular level, we conducted molecular
dynamics simulations (MDS) for 50 ns for spliced and unspliced
proteins (Fig. 3c). We obtained root mean square deviation
(RMSD), solvent-accessible surface area (SASA), and radius of
gyration (Rg) from the resultant trajectory files of 50 ns
simulation to analyze the protein stability, compactness,
hydrophobic and hydrophilic nature of the proteins. RMSD plot
illustrated that unspliced protein had better stability than
spliced proteins (Fig. 3d). Figure 3e illustrated that the SASA of
unspliced protein was larger than spliced proteins. Compared
with unspliced protein, the Rg value of spliced proteins was
lower, indicating that density was increased after splicing (Fig.
3f). The results indicated that the capability of MBNL1 unspliced
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proteins binding to other elements might stronger. Meanwhile,
we validated the splicing isoforms of MBNL1 in BRCA and COAD.
The results showed that the proportion of unspliced proteins in
tumor samples was higher than in normal samples (Supple-
mentary Fig. S6a–d).

Common splicing patterns across cancer types are mediated
by alternative splicing of splicing factors
To further characterize whether common cancer splicing patterns are
associated with alternative splicing of splicing factors. We identified
common patterns of splicing changes between pairs of cancer types
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by selecting alternative splicing events correlated with the SDASEs in
the two cancer types. Here, only the SDASEs with more than 50
correlation events in paired cancer types were shown. Figure 4a
showed the ΔPSI of common events between cancer pairs. Here, we
found a positive correlation in most pairs of cancer types. It indicated

potential common splicing regulators in different cancer types. In
addition, COAD and LUSC were highly correlated with 14 other cancer
types, while LIHC was only correlated with THCA. Consistent with our
t-SNE results, COAD and LUSC were unclearly separated from other
cancer types. On the contrary, LIHC was distinguished well (Fig. 1a).

Fig. 2 Alternative splicing of splicing factors. a Bar plots showed the ratio of splicing factors with only difference in expression (Only DEG),
splicing factors with only difference in alternative splicing (Only DASG), and splicing factors with the difference both in expression and
alternative splicing (Overlap). b The Circos plot showed the interactive sets of splicing factors with only difference in alternative splicing
among 16 cancer types. Each line was colored according to its cancer type. c The interaction network indicated protein-protein interactions
(edges) between splicing factors with only difference in alternative splicing (nodes). d Enriched binding motifs of abnormal spliced splicing
factors in differentially spliced skipping exon events in each cancer type (P value < 0.05, Wilcoxon’s rank sum test), separated by upstream (left)
or downstream (right), and by skipping (top panel) or inclusion (bottom panel). e The heatmap showed the ΔPSI value of DASEs related to
splicing factors across cancer types. f The binding motif enrichment analyzes of HNRNPA1 in CHOL and LUSC. The upstream and downstream
represented the 250 bp of flanking the exons. The left axis and right axis represented the enrichment score and P value (Wilcoxon’s rank sum
test), respectively. The dotted line represents the scores of retained (blue) and skipped (red) exons in tumors, while the black line represents
the scores of background from all non-differentially spliced exons. g The unspliced and spliced isoforms of HNRNPA1_ES_212638. Blue and
white rectangles were all represented exons. Blue rectangles were represented exons in the CDS region, and white rectangles were
represented exons in the UTR region.
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The correlation between LUAD and LUSC tumors was 0.97 (Fig.
4b), and there were 1389 shared events associated with 13
SDASEs. In contrast, BRCA and KIRC shared 406 events associated
with 4 SDASEs (Fig. 4c). These results suggested that abnormal
splicing events of splicing factors could serve as potential
common regulators for alternative splicing in different
cancer types.

Putative neoepitopes derived from alternative splicing across
cancer types
The direct oncogenic effect is a consequence of alternative
splicing changes of splicing factors across cancer types. Cancer-
specific isoform regulated by abnormal splicing of splicing factors
was translated and could potentially lead to specific neoepitopes.
We proposed a comprehensive workflow for the analysis of
neoepitopes derived from alternative splicing. In our workflow, we
first obtained TCGA alternative splicing data. Then, we got amino
acid sequences from spliced and unspliced isoforms. After
chopping up the two proteins into 9-mer peptides, we filtered
the normal peptides set to obtain the novel peptides. Finally, we
used NetMHCpan-4.1 [27] to predict the possibility for peptides to
bind the 227 HLA types (Fig. 5a and Materials and methods).
According to the result from our workflow, we defined putative
neoepitopes generated by alternative splicing as ASPNs.
We observed multiple ASPNs related to splicing factors (Fig. 5b),

and found that genes related to DASEs would averagely produce
multiple ASPNs (Fig. 5c). The result of statistical analysis of the top 5
ASPNs, which can be a binder with most of HLA types in each
cancer, was shown that these ASPNs could be shared across
multiple cancer types (Fig. 5d). ASPNs might use for expanding the
repertoire of potential targets for immunotherapy. We constructed a
database (http://jianglab.org.cn/ASPN/) which enabled the search of
corresponding ASPNs through screening of cancer and HLA types.

DISCUSSION
We reported alternative splicing changes of splicing factors in
6904 patients from 16 cancer types. Our comprehensive survey
revealed that alternative splicing changes of splicing factors were
pervasive in cancers and powerfully affected cancer-specific
splicing patterns. This study suggested that the importance of
alternative splicing changes of splicing factors in mediating
common splicing patterns across cancer types. Focusing on
neoantigens in tumor cells, possible neoepitopes derived from
alternative splicing are usually overlooked [11]. We constructed a
database (http://jianglab.org.cn/ASPN/) for the putative neoepi-
topes derived from alternative splicing across 16 cancer types.
Using TCGA RNA-seq data, we characterized the alternative

splicing landscape across 16 cancer types. We found that
alternative splicing can generate different isoforms which were
different 5ʹUTRs/3ʹUTRs but encode identical amino acid
sequences. These splicing events still played an important role
in the survival of patients. The sequence characteristics within 5′
UTRs and 3ʹUTRs played important roles in differential regulation
of translation efficiency [28, 29]. Our result showed that alternative
splicing affected cancers by changing the complexity of the
protein. In addition, it can also play its potential function by
changing the UTR sequence of isoforms.
Alternative splicing is regulated by multiple splicing factors and

influences the expression of most eukaryotic genes [30]. Abnormal
splicing is correlated with different aspects of cancer biology
[31–34], such as cell proliferation and metastasis [35–37],
apoptosis [7, 38, 39], cell differentiation [40, 41], angiogenesis
[34, 42–44], and energy metabolism [45–47]. Although changes in
the expression and mutations of genes encoding splicing factors
have been increasingly recognized [19], alternative splicing of
splicing factors over large patient sample cohorts have not been
reported. Here, we performed a comprehensive characterization

of 167 selected splicing factors across the 16 cancer types. This
report constituted the first pan-cancer exploration of alternative
splicing of splicing factors. Our results highlight that alternative
splicing changes of splicing factors across cancer types were
common. In normal tissue, abnormal spliced splicing factors
formed a tightly interconnected network. Abnormal splicing of
splicing factors could trigger a cascade of splicing alterations in
cancer patients. We observed that the well-conservative binding
motifs of abnormal spliced splicing factors were significantly over-
represented in the transcript sequences of flanking the skipped/
retained exons compared with non-differentially spliced exons.
The difference in splicing causes the change in the ratio of splicing
factor’s dominant functional protein. Especially, HNRNPA1 which
as a splicing repressor would produce a nonfunctional protein
through alternative splicing in Acute Myeloid Leukemia [21].
Consistent with the results, we further found that HNRNPA1, a
gene in abnormal spliced splicing factors set, produced a
dominant proportion of nonfunctional protein in normal adjacent
samples within CHOL and LUSC.
In summary, this analysis, utilizing a large sample set size,

revealed alternative splicing of splicing factors could contribute to
the alternative splicing differences in cancer.
Our study of the alternative splicing landscape demonstrated

that taking information of alternative splicing events of splicing
factors into account was beneficial for characterizing cancer-
specific splicing patterns. Systematic correlation analysis of
splicing events in tumors demonstrated high correlations between
PSI values of SDASEs and cancer-specific splicing patterns. These
events, included MBNL1_ES_67324 and MBNL1_ES_67315, were
strongly correlating with cancer-specific splicing patterns. A
previous study has shown that MBNL1 regulates alternative
splicing of NUMA1 through changes in expression [19]. Compared
with adjacent normal samples, we found that MBNL1 expression
was not significantly different in some cancer types, but the
alternative splicing changes were significant. We found MBNL1, as
a splicing factor, could modulate alternative splicing of pre-mRNAs
more efficiently under unspliced conditions. Our results revealed
that the proportion of MBNL1 unspliced isoform in the tumor
samples was higher than in the normal samples. It may explain the
previous study that there were more alternative splicing events in
tumor samples compared with normal samples [48, 49]. In this
context, we would like to note that alternative splicing of splicing
factors could contribute to tumor development independently of
expression alterations.
Immunotherapy has produced effective treatments for several

previously incurable tumors [50]. Alternative processing of mRNA, a
phenomenon that has been shown to alter the proteomic diversity
of many tumors, may expand the number of suitable targets for
immunotherapy [11]. In this work, we proposed a comprehensive
workflow for identifying putative alternative splicing-derived neoe-
pitopes. Taking together, we constructed a database (http://jianglab.
org.cn/ASPN/), which provided the corresponding putative alter-
native splicing-derived neoepitopes of 16 cancer types. Overall, the
putative neoepitopes derived from alternative splicing had the
potential to contribute to immunotherapy.
In summary, our study provided further insight into the relation-

ship between alternative splicing of splicing factors and cancer-
specific splicing patterns that could be used to improve molecular
understanding of the splicing transitions that take place during
cancer development. We also revealed the potential mechanism of
abnormal regulation in cancer. Furthermore, we emphasized the
importance of alternative splicing in immunotherapy.

MATERIALS AND METHODS
Data acquisition
Alternative splicing data were downloaded in TCGA SpliceSeq [51]. Tumors
with paired adjacent normal samples of at least nine were contained in this
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analysis (Supplementary Table S1). Alternative splicing events were
quantified by percent spliced-in (PSI) values, which ranged from 0–1. PSI
is the ratio of normalized read counts indicating inclusion of a transcript
element over the total normalized reads for that event (both inclusion and
exclusion reads) [51]. We filtered the results (percentage of samples with
PSI values ≥80%, average PSI value ≥ 0.05) to generate a set of alternative
splicing events. Level 3 RNA-seq and clinical data were obtained from the
TCGA cohort by the UCSC Xena website (http://xena.ucsc.edu/). The 167
known and potential auxiliary splicing factors were obtained from
Sebestyen, E. et al. [19]. Oncogenes and Tumor suppressor genes were
obtained from NCG (http://ncg.kcl.ac.uk/index.php) and TSGens (https://
bioinfo.uth.edu/TSGene/) [52, 53].

Differential expression and alternative splicing
A t-test was performed to identify different expressions with FPKM value
and different alternative splicing with PSI value. P values were corrected for
multiple testing using the Benjamini–Hochberg method. Different alter-
native splicing events (DASEs) were defined as mean PSI value varied more
than 0.1 between tumor and the adjacent normal sample and FDR < 0.05.
Moreover, if |log2(FC) | > 1 and the FDR value < 0.05, it was considered that
the gene was differentially expressed [54, 55]. We used a standard
dimensionality reduction technique t-distributed stochastic neighbor
embedding (t-SNE) to visualize the splicing across 16 cancer types [56].

Survival analysis
Multivariate cox regression analysis was based on the PSI value of the
alternative splicing events and the patient’s clinical information (overall
survival time, survival status, stage, age, and gender) to identify the
association between the PSI value of the alternative splicing events and
patients’ overall survival used R packages ‘survival (3.1.8)’ and ‘survminer
(0.4.7)’. Survival-related events were determined to be p value < 0.05. The
samples were divided into two groups according to the average value of
the PSI. The Kaplan–Meier curves were used to plot the overall survival
rates of the two groups, and the log-rank test was used to analyze the
differences between the two groups.

CDS sequence comparison and protein structure prediction
We obtained the unspliced isoforms according to the chromosome
coordinates of DASEs. The spliced isoforms were created by deleting, adding,
or changing the exons (e.g., the skipped exon) from the corresponding
unspliced isoforms. We defined the high content isoforms in normal samples
as the normal isoforms. The annotations were used from the UCSC (GRCh37/
hg19). We used python to compare the spliced and unspliced isoforms’ CDS
of each DASE. The gffread (v0.11.4) was used to retrieve each isoform’s nucleic
acid sequence, and then they were translated into the amino acid sequence.
Predicted motifs were retrieved from protein domain databases (i.e., Pfam,
ProSite, and SMART) using InterProScan [57–59].
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Molecular dynamic simulation
We used Groningen Machine for Chemical Structure (GROMACS) [60] to
MDS analysis of MBNL1_unspliced, MBNL1_ES_67324 spliced, and
MBNL1_ES_67315 spliced proteins. I-TASSER was used to predict the
MBNL1_unspliced protein structure [61]. Swiss-model Server was used for
homology modeling of MBNL1_ES_67324 and MBNL1_ES_67315 protein base
on the amino acid sequence [62]. PyMOL was used to visualize the results [63].

Neopeptides prediction
We translated unspliced and spliced isoforms of each DASE into amino
acid sequence from the translation start site to the stop codon and
chopped up the amino acid sequences into 9-mer peptides. We defined
the peptides produced by normal isoforms as normal peptides. We
selected a total of 227 HLA types, of which labels are “common” in IDAWG
(http://igdawg.org/). We used NetMHCpan-4.1 [27] to calculate the bind
rank of peptides to HLA, and those rank <5% peptides were considered as
putative neopeptides.

Binding motifs enrichment analyses
We used rMAPS to enrich the binding motifs of splicing factors across 16
cancer types [23]. rMAPS employs Wilcoxon’s rank sum test. P value < 0.05
was set as the cutoffs for the enriched binding motifs of splicing factors.

t-SNE
We used R package ‘Rtsne (0.15)’ for t-SNE analysis [64].

Protein-protein interaction networks
We used String (https://string-db.org/) and Cytoscape to generate
biological networks for proteins [65, 66].

Validation of splicing isoforms
Five pairs of tumor and adjacent normal tissues were obtained from breast
cancer patients treated at the Harbin Medical University (Harbin, China)
after their written informed consent. HCT116 and NCM460 cells were
purchased from The Global Bioresource Center, and no mycoplasma
contamination was found after testing. RNAiso Plus (TAKARA, 9109) and
PrimeScriptTM RT reagent Kit with gDNA Erase (TAKARA, RR047A) were
used for total RNA extracted and reverse-transcribed. RT-PCR was
performed in paired samples by splicing-specific primers (Supplementary
Table S2) using GoTaq® Green Master Mix (Promega, M7128). Sanger
sequencing (Comate, Jilin, China) to conform the isoform sequence.

CODE AVAILABILITY
The code for the analyses described in this study is available at https://github.com/
asd77088/Jiang-lab.
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