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Abstract
Proteomic signatures associated with clinical measures of more aggressive cancers could yield molecular clues as to disease
drivers. Here, utilizing the Clinical Proteomic Tumor Analysis Consortium (CPTAC) mass-spectrometry-based proteomics
datasets, we defined differentially expressed proteins and mRNAs associated with higher grade or higher stage, for each of
seven cancer types (breast, colon, lung adenocarcinoma, clear cell renal, ovarian, uterine, and pediatric glioma), representing
794 patients. Widespread differential patterns of total proteins and phosphoproteins involved some common patterns shared
between different cancer types. More proteins were associated with higher grade than higher stage. Most proteomic
signatures predicted patient survival in independent transcriptomic datasets. The proteomic grade signatures, in particular,
involved DNA copy number alterations. Pathways of interest were enriched within the grade-associated proteins across
multiple cancer types, including pathways of altered metabolism, Warburg-like effects, and translation factors. Proteomic
grade correlations identified protein kinases having functional impact in vitro in uterine endometrial cancer cells, including
MAP3K2, MASTL, and TTK. The protein-level grade and stage associations for all proteins profiled—along with
corresponding information on phosphorylation, pathways, mRNA expression, and copy alterations—represent a resource for
identifying new potential targets. Proteomic analyses are often concordant with corresponding transcriptomic analyses, but
with notable exceptions.

Introduction

Mass spectrometry-based proteomics can provide a win-
dow into cancer biology not possible using other -omics
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technologies. Cancers arise from DNA damage, including
single nucleotide variants or indels. However, mutation
events for a particular gene in a given cancer type tend to
be sparse and would not necessarily capture the down-
stream gene expression alterations initiated by different
mutations in different genes [1]. While gene transcript or
mRNA levels often correspond to total protein levels for a
given gene, there is also widespread decoupling between
proteins and their mRNAs, due to differences in transla-
tion [2–5]. Moreover, the stability, function, and activity
of proteins are precisely regulated through posttranscrip-
tional modifications, including the phosphorylation of
kinases that regulate growth signaling pathways in can-
cers. By combining proteomic data with transcriptomic
data, we can obtain a more comprehensive view of the
complex regulatory mechanisms that underlie cancer. The
National Cancer Institute’s Clinical Proteomic Tumor
Analysis Consortium (CPTAC) is a national effort to
accelerate the understanding of the molecular basis of
cancer through the application of large-scale proteomics.
CPTAC-generated proteomics data for human tumors of
several different cancer types [3,5–8], just recently pro-
vided to the research community, represent a resource for
identifying protein correlates of interest, which may pro-
vide clues as to deregulated pathways.

Specific sets of differentially expressed proteins, or
proteomic “signatures,” associated with clinical measures
of advanced disease, could provide molecular clues as to
the drivers of more aggressive cancers [9, 10]. Indicators
of more aggressive disease, as used in the clinical setting,
include grade and stage. Cancer grade is a histologic
parameter assigning the degree of differentiation of the
cancer cells, where high-grade cancers look poorly-
differentiated and tend to grow and spread more quickly
than low-grade cancers that look well-differentiated
(resembling the tissue of origin) and tend to have a more
indolent clinical behavior. Cancer stage is a clinical
parameter indicating how extensively the tumor has spread
outside of its site of origin. Patient survival or time to
adverse event represents another indicator of aggressive
disease. However, such information requires tracking
patients over a long period, and such follow-up data are
not present in the CPTAC cohorts, as freshly collected
patient samples are required for proteomics research.
Nevertheless, both grade and stage can predict patient
survival to a high degree.

Our present study hypothesizes that grade and stage
differences among cancer cases represent altered path-
ways manifested at the protein level, and that such data
can also aid in the identification of functional targets.
Pan-cancer molecular analyses seek to bring data from
diverse cancer types together, to identify commonalities,
differences, and emergent themes across tumor lineages

[11–15]. Past pan-cancer efforts in proteomics, such as by
The Cancer Genome Atlas (TCGA), have been limited to
focused analysis of ~200 protein features as available by
Reverse Phase Protein Array platform [11]. In contrast,
mass spectrometry-based proteomics allows for profiling
of thousands of proteins, representing a unique opportu-
nity for CPTAC proteomics data. Our study follows
a similar basic approach as that of a previous study
examining grade-specific transcriptomic differences [15].
At the same time, here we expect some unique differ-
ences that would exist at the proteome level. We also
utilize data on proteomic grade correlations to identify
protein kinases having a functional impact in vitro in
uterine endometrial cancer cells.

Results

Proteomic signatures of high grade or high stage
cancers by cancer type

We sought to define differentially expressed proteins and
mRNAs associated with higher grade or with higher
stage, for each of seven cancer types (Table 1 and Sup-
plementary Data 1): breast invasive carcinoma (n= 105
cases), colon adenocarcinoma (n= 97), lung adeno-
carcinoma (lung AD, n= 111), clear cell renal cell car-
cinoma (renal, n= 110), ovarian serous carcinoma (n=
169), uterine corpus endometrial carcinoma (n= 100),
and pediatric glioma (n= 102). Mass spectrometry-based
proteomic data were provided by CPTAC, with mRNA
data on these cases provided using expression arrays
(ovarian) or RNA-sequencing. Both total protein and
phosphoprotein features were profiled, involving 14586
total proteins (by unique gene) and 44763 phosphopro-
teins detected across the various projects, where for each
cancer type the average number of total proteins detected
was ~9700. Histologic grade information was available
for lung AD, renal, ovarian, uterine, and glioma cancer
types. Clinical or pathological stage information was
available for breast, colon, lung AD, renal, ovarian, and
uterine cancer types (as pediatric gliomas are not typi-
cally staged but instead are classified using World Health
Organization guidelines [16]). To facilitate access to
CPTAC proteomic results by the general biomedical
research community, we integrated CPTAC data with the
UALCAN data portal [17], allowing users to query
proteins of interest for associations with grade or stage
(http://ualcan.path.uab.edu/). To determine differential
levels for a given gene or protein according to increasing
tumor grade or stage, we took the Pearson’s correlation
between the log-transformed gene-level molecular values
and the grade or stage as translated into a numerical
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value (e.g., translating grade categories such as “G1”,
“G2”, and “G3” into 1, 2, and 3, respectively).

For most cancer types studied, we found on the order of
hundreds of total proteins and of phosphoproteins to be
differentially expressed with higher grade or with higher
stage at a nominal significance level of p < 0.01 (Pearson’s,
Figs. 1a and Figs. S1 and S2 and Supplementary Data 2–6).
Except for stage correlates in the instance of breast and
colon cancers, the numbers of nominally significant proteins
exceeded that expected in a randomized proteomic dataset
for which no relation between grade or stage and protein
expression would be expected (Fig. S3). Protein correlates
of grade in ovarian cancer were also notably low. Even in
instances of nominally significant proteins not exceeding or
only moderately exceeding chance expectations, the nom-
inally significant proteins may still contain molecular
information. Such information would represent real biolo-
gical differences, which may be revealed by downstream
analyses, as described below. For example, we could also
find widespread patterns involving gene transcripts or
mRNAs associated with grade or stage (Fig. 1b), and, for all
cancer types, there were significant overlapping gene fea-
tures between the total protein signatures and the mRNA
signatures (Fig. 1c). Most phosphoprotein signatures also
overlapped significantly with their corresponding total
protein signatures (Fig. S2b). At the same time, an appre-
ciable fraction of proteins in the proteomic signatures—on
the order of half—were not included in the corresponding
mRNA signature (Fig. 1c). Except for ovarian cancer, for
each cancer type, the global proteomic and mRNA patterns
associated with grade were respectively broadly similar
to proteomic and mRNA patterns associated with stage
(Fig. 1d, taking the t-statistics for all profiled features for the
respective grade/stage associations and then correlating
them to each other).

Proteomic signatures predict patient survival

As another indication of the biological information contained
in our proteomic signatures of grade or stage, the mRNAs
represented by the signatures for a given cancer type could
significantly predict patient survival in that cancer type. For
each cancer type, we examined an independent dataset of
primary tumor sample transcriptomic profiles of that cancer
type, for which sufficient patient follow-up information was
available (taken from previously published datasets, see
Supplementary Methods). We applied each proteomic sig-
nature of grade or stage (from Fig. 1a) to the corresponding
independent dataset, to score patient profiles based on overall
similarities of the mRNA patterns with the direction of change
associated with grade (Fig. 2a) or stage (Fig. 2b) at the protein
level. Lung AD grade and stage proteomic signatures [18],
renal grade and stage signatures [9], uterine grade and stageTa
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signatures [19], ovarian stage signature [20–25], breast stage
signature [26], and pediatric glioma grade signature could all
stratify patients of the corresponding cancer type to high-,

low-, and intermediate-risk groups representing significant
differences in outcome. The ovarian grade and colon stage
[27] proteomic signatures could not successfully stratify
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patients in this way (Figs. 2 and S4a). For the other signatures,
in most instances, the actual differences in patient outcomes
were not enough to be able to potentially guide treatment
decisions, as all stratified groups would have a risk of death.
However, for the pediatric glioma signature, the low-risk
group of patients (2 high grade and 79 low grade, out of 281
cases) had no adverse events, and the intermediate-risk group
consisted mostly of low-grade cases (66 out of 80, Supple-
mentary Data 7). As another reflection of the proteomic sig-
natures containing information on disease aggressiveness,
significant numbers of proteins within most of the signatures
were for genes individually associated with patient survival
(Fig. S4b, c and Supplementary Data 7). Transcriptomic
signatures of stage or grade, as well as the intersection of the
above proteomic and transcriptomic signatures, yielded
similar levels of prognostic power as the proteomic signatures
(Figs. S5 and S6).

Proteomic patterns shared or not shared across
cancer types

We found some differential protein expression patterns asso-
ciated with grade or stage shared across multiple cancer types.
Still, at the same time, each cancer type showed a proteomic
signature that was distinctive from those of the other cancer
types. In comparing the respective proteomic signatures of
grade from each cancer type (from Fig. 1a) to each other, we
observed significant levels of gene set overlap (Fig. 3a), in
particular between lung AD and renal cancers, between lung
AD and glioma, between lung AD and uterine, and between

renal and glioma. For the proteomic signatures of stage (from
Fig. 1a), only lung AD and renal signatures significantly
overlapped (Fig. 3a). A set of 1056 total proteins associated
significantly with grade (p < 0.01) with the same direction of
change for two or more cancer types (Fig. 3b and Supple-
mentary Data 2), revealing many shared patterns between lung
AD, renal, and glioma cancer types in particular. Most of the
1056 proteins had differential expression patterns represented
at the mRNA level. However, for a subset of 142 proteins, we
found no significance (p < 0.05) at the mRNA level for any of
the involved cancer types. We examined protein and mRNA
patterns in our data for a set of genes previously identified as
part of a transcriptome-based meta-signature of undiffer-
entiated cancer [15] (i.e., mRNAs associated with high-grade
cancers). We found that this mRNA-based signature was
highly reflected in the mRNA patterns and mostly reflected but
to a somewhat lesser extent in the protein patterns (Fig. 3c). In
contrast to the grade associations, fewer total proteins, 60,
were significantly associated with stage (p < 0.01) with the
same direction of change for two or more cancer types (Fig. 3d
and Supplementary Data 3), mostly reflecting shared patterns
between lung AD and renal cancers. As compared to the
above regarding total proteins, phosphoproteins associated
with stage or grade showed similar patterns of overlap
between cancer types (Fig. S7).

Proteomic signatures involve copy number
alterations

We hypothesized that some of the proteins associated
with grade or stage might reflect somatic copy number
alterations (CNAs) in the cancer genome. We collected
CNA data on each of the cancer types in our study, and for
each cancer type, we compared the proteins associated
with grade or stage with the genes showing higher or lower
copy numbers with increasing grade or stage. For both
the proteomic and transcriptomic grade signatures (from
Fig. 1a, b), significant numbers of genes showed CNA
changes in the same direction (Figs. 4a, S8, and Supple-
mentary Data 8). In particular, proteins having lower
expression with higher grade involved genes more fre-
quently lost with higher grade. In contrast, gene set
overlap involving the proteomic stage signatures and CNA
patterns were not significant or not as markedly significant
(Fig. 4a).

Focusing on the genes showing both protein under-
expression and lower copy numbers with higher grade in
renal, ovarian, uterine, or glioma cancer types, we could
identify significantly enriched cytoband regions associated
with each cancer type (Fig. 4b). (Our focus here was on
those cancer types for which CNA data with grade infor-
mation were available.) Genomic regions associated with
copy loss and corresponding protein changes with higher

Fig. 1 Proteomic and transcriptomic signatures of high grade or
high stage cancers, according to cancer type. a For each of the
indicated cancer types, numbers of top differentially expressed proteins
(p < 0.01, Pearson’s using log-transformed data), associated with higher
cancer grade (left) or with higher cancer stage (right). Numbers of unique
genes tested are indicated for each comparison (involving proteins for
which measurements were made in over half of samples profiled).
b Similar to part a, but for differentially expressed mRNAs. Numbers of
unique genes tested are indicated for each comparison (involving
mRNAs with available data for which proteins were considered in part
a). c Overlapping top protein and mRNA features (p < 0.01 for protein
and p < 0.05 for mRNA, based on shared gene) by comparisons
according to grade (left) or according to stage (right). P values for sig-
nificance of overlap by one-sided Fisher’s exact tests. d For each cancer
type, overall concordance or discordance in differential gene feature
patterns between grade (columns) and stage (rows) comparisons for
both protein data (left) and mRNA data (right). For all gene features
examined, correlations between t-statistic by grade comparison versus
t-statistic by stage comparison were computed (based on all profiled
features). R-values by Pearson’s are shown. Red square denotes overall
concordance between grade and stage results for the given cancer type,
and blue square denotes discordance. Breast, Breast invasive carcinoma;
Colon, Colon adenocarcinoma; Lung AD, Lung adenocarcinoma; Renal,
Clear cell renal cell carcinoma; Ovarian, Ovarian serous carcinoma;
Uterine, Uterine corpus endometrial carcinoma; Glioma, Pediatric
glioma. See also Figs. S1, S2 and S3 and Supplementary Data 1–6.
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grade included 9q21-q34, 13q14-q22, 14q11-q32, and
18q14-q21 for renal cancers; 16q22-q23 for ovarian cancer;
15q15-q24 for uterine cancers; and 10q26 and 11p15 for
pediatric gliomas (Fig. 4b, c). The above regions showed
loss at the copy number level at a higher frequency in higher
grade versus lower grade cancers for the given type
(Fig. 4c). For clear cell renal cell carcinoma, lower average
levels of genes in the 13q14-q22 region—either CNA or
mRNA—were associated with worse patient outcomes in

two separate patient cohorts (Fig. 4d) [9, 28]. Similarly,
lower average levels of 15q15 genes and 15q24 genes were
associated with worse patient outcomes in uterine corpus
endometrial carcinoma [19] (Fig. 4e).

Proteomic signatures represent common pathways
across cancer types

The information contained within the proteomic signatures
can represent altered pathways or functional gene categories.
In terms of functional gene categories, we found significantly
enriched Gene Ontology (GO) annotation terms for each
proteomic signature of grade or stage (Figs. 5a and S9 and
Supplementary Data 9 and 10, signatures taken from Fig. 1a).
However, we found markedly fewer significant GO terms for
the proteomic stage signatures as compared to the corre-
sponding grade signatures (Fig. S9). GO terms significant
for the proteomic signatures for multiple cancers included
“extracellular exosome,” “immune system process,”
“response to stress,” “cadherin binding,” “cell cycle process,”
and “translational initiation” (Fig. 5a). GO terms significant
for one or more proteomic signatures were often but not
always significant in the corresponding mRNA-based sig-
natures, and vice versa. GO terms significant for proteomic
but not transcriptomic signatures of grade included “Golgi
subcompartment,” “MHC protein binding,” and “ribosome”
for renal cancers, and “p53 binding” and “euchromatin” for
gliomas (Fig. S9a). GO terms significant for transcriptomic
but not proteomic signatures of grade included “T cell
receptor signaling pathway,” “regulation of Wnt signaling
pathway,” and “protein ubiquitination” for renal cancers, and
“tricarboxylic acid cycle” and “electron transport chain” for
gliomas (Fig. S9b).

In terms of represented pathways, we searched the wiki-
Pathway [29] gene sets with the respective sets of proteins/
phosphoproteins and mRNAs over-expressed (p < 0.01,
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a b Fig. 2 For specific cancer types, the corresponding proteomic
signatures of grade or stage are associated with worse patient
survival across independent patient cohorts. a For each of the
indicated cancer types (Lung adenocarcinoma, Clear cell renal cell
carcinoma, Ovarian serous carcinoma, Uterine corpus endometrial
carcinoma, Pediatric glioma), the corresponding proteomic signature
(“sig.”) of higher grade (from Fig. 1a) was applied to an independent
set of primary tumor sample mRNA profiles of the same cancer type
[9, 18, 19, 45] (using datasets for which sufficient patient follow-up
data were available). Across the sample mRNA profiles in the inde-
pendent set, the grade signature similarity scores (t-statistic as derived
from the “t-score” metric [9, 45, 46]) were correlated with patient
survival. P values by log-rank test (comparing patients with top third
or middle third or bottom third of signature scores) or by univariate
Cox, as indicated. b Similar to part a, but for proteomic signatures of
higher stage (Lung adenocarcinoma, Clear cell renal cell carcinoma,
Ovarian serous carcinoma, Uterine corpus endometrial carcinoma,
Breast invasive carcinoma) [9, 18, 19, 45]. See also Figs. S4, S5, and
S6 and Supplementary Data 7.
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Pearson’s, from Fig. 1a, b) with tumor grade for each cancer
type (Supplementary Data 11). Out of 417 pathways con-
sidered, 49 were significant by one-sided Fisher’s exact test

with FDR <10% for at least one cancer type (Fig. 5b). Path-
ways significant by protein analysis were often significant by
corresponding mRNA analysis, but with some exceptions.
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One example pathway of particular interest, significant for
four of the five cancer types, involved core metabolic path-
ways (Fig. 5c), including glycolysis, lipid synthesis, Krebs
cycle, and Warburg effect (Fig. 5d). For the above pathways,
different cancer types had higher expression of different sets
of proteins with higher grade, and differences at the protein
level were often reflected at the mRNA level though not
always. Another example pathway of interest involved
translation factors, significantly associated at the protein level
with higher grade for four out of five cancer types yet sig-
nificant at the mRNA level for only two of these four cancer
types (Fig. 5b, e).

Proteomics reveals kinases having functional impact

Proteomic correlates of stage or grade would include proteins
having a functional impact in cancer cells. To identify such
proteins, we focused on protein kinases, as these would
represent stronger candidates for therapeutic targets [30]. As
each cancer type showed a distinctive proteomic signature of
higher grade or stage (Fig. 3), we chose to examine the uterine
data for potential targets for functional studies in uterine
endometrial cell lines. Taking a set of 347 protein kinases
with available uterine data, we compared the protein-level
associations with higher tumor grade, against the corre-
sponding mRNA associations (Fig. 6a), paying particular
attention to the proteins associated with grade in more than
one cancer type. Of the 347 kinases, 37 associated (p < 0.05,
Pearson’s) with higher grade in uterine cancer, and 20 of these
proteins were associated with grade in three or more CPTAC
cancer types (including uterine). From these 20 kinases, we
selected four for functional studies—MAP3K2, MASTL,
SCYL1, and TTK—although other selection criteria and
cutoffs could reveal other candidates. Of these four kinases,
three had a corresponding mRNA association with grade,

while MAP3K2 did not (Fig. 6a). We surveyed the expression
of these kinases at the mRNA and protein level in five dif-
ferent malignant human uterine cell lines, with expression
detected for all four kinases by qRT-PCR and Western blot
(Figs. 6b and S10). We transfected Ishikawa and HEC-1-A
cell lines with non-targeting siRNA (siNT) or siRNA target-
ing TTK (siTTK), MASTL (siMASTL), MAP3K2
(siMAP3K2), and SCYL1 (siSCYL1). After 48 h of siRNA
treatment, the transfected cells were lifted and seeded for cell
viability assays (schematically depicted in Fig. S11a). In
parallel, we evaluated transfected cells for knock-down effi-
ciency by qRT-PCR and Western blot (Fig. S11b–e).

To evaluate the potential role of the selected kinases in
malignant processes of sustained proliferation and activated
invasion [31], we evaluated cell viability and 2-D migra-
tion (wound-healing) in Ishikawa and HEC-1-A cell lines
following siRNA-mediated depletion (Fig. 6c–h). Ishikawa
cells treated with siSCYL1 demonstrated increased viabi-
lity compared to control cells treated with siNT. In contrast,
treatment with siMASTL significantly decreased cell via-
bility five days after seeding (Fig. 6c). Noticeably, siTTK
treatment potently suppressed Ishikawa cell viability
beginning at day 3 (Fig. 6c). In HEC-1-A cells, both siTTK
and siMASTL treatments robustly and significantly
decreased cell viability. siMAP3K2 led to a slight but
significant increase in HEC-1-A cell viability on the last
day of analysis (Fig. 6d). To assess the candidate kinases’
contribution to cell migration, we measured the wound-
healing capacity of Ishikawa and HEC-1-A cells 72 h after
siRNA treatment (Fig. 6e–h). Compared to siNT-treated
Ishikawa cells, cells treated with siTTK demonstrated a
significant reduction in wound closure (60.64% ± 11.46 vs.
14.11% ± 12.32) (Fig. 6e, f), indicating the critical con-
tribution of this kinase to the migratory potential of the
Ishikawa endometrial cancer cell line. HEC-1-A cells on
the other hand, showed a significant reduction in wound-
closure capacity compared to siNT after treatment with
siMAP3K2 (75.78% ± 9.36 vs. 43.66 ± 5.34), siMASTL
(75.78% ± 9.36 vs. 28.44 ± 9.22) and siTTK (75.78% ±
9.36 vs. 29.58 ± 4.13). These results suggest that compared
to Ishikawa cells (representative of grade I), the migratory
potential of HEC-1-A cells (grade II) is more sensitive to
siRNA knock-down of MAP3K2 and MASTL. Notably,
although cell viability was not affected by siMAP3K2
treatment in HEC-1-A cells (Fig. 6d), a significant reduc-
tion in wound-healing capacity was observed, suggesting a
unique role for MAP3K2 in cell migration.

Discussion

Using CPTAC proteomic data, we explored protein features
and associated pathways of aggressive cancers, which

Fig. 3 Proteins shared among the cancer type-specific grade or
stage proteomic signatures. a For both the proteins over-expressed or
under-expressed with higher grade for at least one cancer type (left,
proteins from Fig. 1a) and the proteins over-expressed or under-expressed
with higher stage for at least one cancer type (right, proteins from Fig. 1a),
the numbers of overlapping proteins between any two cancer types are
indicated, along with the corresponding significances of overlap (using
color map, p values by one-sided Fisher’s exact test). b Heat map of
differential t-statistics (Pearson’s on log-transformed data), by cancer type,
comparing higher grade versus lower grade (red, higher expression with
higher grade; white, not significant with p > 0.05), for 1056 proteins
significant for two or more cancer types (p < 0.01). Differential t-statistics
by grade for the mRNA corresponding to the 1056 proteins are also
shown. Proteins significantly over-expressed (p < 0.01) with higher grade
for three or more cancer types are indicated by name. c For both protein
and mRNA, differential t-statistics by grade are shown for a set of genes
previously identified as part of a transcriptome-based meta-signature of
undifferentiated cancer [15]. d Similar to part b, but for a set of 60
proteins significant for two or more cancer types (p < 0.01) when com-
paring higher stage versus lower stage cancers. See also Fig. S7.
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associations may cut across multiple cancer types at the
protein level in addition to the mRNA level. Results from
protein analysis were often concordant with corresponding

mRNA analysis. However, proteomic patterns were often
not observable in transcriptomic patterns or vice versa. This
aspect demonstrates the need for proteomics in capturing
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biological information that may not be present within
transcriptomics data, where the vast majority of gene
expression profiling studies to date have dealt with only
the transcriptome. Interestingly, we found more proteins
differentially expressed with higher grade than with higher
stage, suggesting that grade as a clinical measure could be
capturing more in terms of biological differences. Simul-
taneously, significant associations for both grade and
stage signatures were identified in downstream analyses
integrating protein results with other modalities such as
pathway associations, demonstrating the signatures as
enriched for real biological correlations. Our results are
consistent with previous studies involving multiple cancer
types identifying widespread transcription patterns asso-
ciated with tumor grade [15, 32, 33]. The associations of a
subset of the proteomic grade signatures with CNA patterns
may represent proteins that are selectively amplified or lost
in the more aggressive cancers. Numerous pathways of
interest are associated with the grade- or stage-associated
proteins, including pathways of altered metabolism and
Warburg-like effects. This particular finding substantiates
previous findings from other studies utilizing mRNA or
protein analysis of clear cell renal cell carcinoma [9, 34] and
lung adenocarcinoma [35].

Gene-level and protein-level results of the present study, for
all proteins profiled, are provided as supplementary data, with
the intention that these would provide a resource to the
research community. Supplementary data tables offer not only
differential statistics by grade or stage for each protein across
multiple cancer types, but also corresponding differential
patterns at the mRNA or phosphoprotein levels, corresponding
differential gain or loss at the copy number level, and corre-
sponding patient survival associations in independent cohorts.
By integrating differential protein expression with the other
modalities offered here, one may be more confident of a given
association or obtain more information as to what the asso-
ciation may represent. Besides the supplementary data, we
have added the CPTAC datasets to the user-friendly UAL-
CAN data portal [17], facilitating differential analyses by
protein. These data would facilitate exploration for potential
and novel targets for therapy. Also, genes studied extensively
in the laboratory setting, using experimental models that may
not entirely reflect human tumors, may be examined in our
results, thereby reinforcing the gene’s potential relevance to
disease in the patient setting. The potential of these proteomic
signatures to form the basis of a molecular assay to guide
clinical decision making represents future work. However,
this would be conceivable given analogous efforts with
mRNA-based testing [36].

Results from our functional studies indicate that
identifying overexpressed kinases using proteomic ana-
lysis of tumor tissues is a useful and tractable approach
for the identification of novel therapeutic drug targets.
The experimental results provide a proof-of-concept
regarding the resource value of our compiled results.
We observed impacts on either cell viability or 2-D
migration in uterine endometrial cancer cells or both
for kinases MAP3K2, MASTL, and TTK. The kinase
MAP3K2 (MEKK2) activates the MEK5/ERK5 cell
signaling pathway and is thought to play an important
role in tumor growth and metastasis [37]. MASTL, or
microtubule-associated serine/threonine kinase like, is an
important mitotic kinase that regulates mitotic progres-
sion of normal or transformed cells by blocking tumor
suppressor protein phosphatase 2 A (PP2A) activity,
where MASTL deregulation has been detected in multiple
cancer types and associated with aggressive clin-
icopathological features [38]. The spindle assembly
checkpoint kinase TTK (Mps1) is a key regulator of
chromosome segregation, with functional roles demon-
strated for multiple cancer types [39]. Inhibitors exist for
MAP3K2, MASTL, and TTK [37–39]. Previously stu-
died in other cancer types, these kinases may represent
therapeutic targets for uterine endometrial cancer in
particular. Additional proteins of interest remained to be
uncovered and explored for uterine and other cancer
types, using the CPTAC proteomic datasets.

Fig. 4 Copy Number Alterations (CNAs) associated with pro-
teomic signatures of higher versus lower grade cancers. a For both
the proteins altered with higher grade for at least one cancer type (left)
and the proteins altered with higher stage (right), the numbers of
overlapping gene features with protein expression and copy number
changes in the same direction (using Pearson’s p < 0.01 for each
comparison), along with the corresponding significances of overlap
(using color map, p values by one-sided Fisher’s exact test). TCGA
LUAD [18] CNA data do not include grade information. b For the sets
of overlapping genes showing both protein under-expression and
lower copy numbers with higher grade for renal, ovarian, uterine, or
glioma cancer types, significantly enriched cytoband regions (FDR <
1% [42], one-sided Fisher’s exact test). c For the sets of overlapping
genes showing both protein under-expression and lower copy numbers
with higher grade for renal, ovarian, or uterine cancer types, heat maps
represent t-statistics according to increasing grade (blue, lower with
higher grade) for differential protein expression, differential mRNA
expression, and differential CNA, as well as CNA patterns (blue, copy
loss) by cancer type. d Taking all of the genes in the 13q14-q22 region
(region associated in part b with both copy loss and protein under-
expression in high grade renal cancers), overall patient survival in
TCGA KIRC [9] patient cohort is assessed for cases with copy loss on
average for these genes (left) and for cases with low (bottom 5%)
average mRNA expression (middle). Overall patient survival is also
assessed for low average mRNA expression of 13q14-q22 genes in
an independent clear cell renal cell carcinoma dataset [28] (right).
P values by log-rank test. e In the TCGA UCEC [19] patient cohort,
overall survival is assessed for cases with copy loss on average for all
15q15 genes (left), for cases with copy loss on average for all 15q24
genes (middle), and for cases with low average mRNA expression of
genes (bottom 20%) in 15q15 or 15q24 cytoband regions. P values by
log-rank test. Copy loss for parts (d and e) defined as average log2
(tumor/normal) less than −0.4. See also Fig. S8.
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Methods

Additional details are provided in Supplementary
Materials

Molecular profiling datasets

Results are based in part upon data generated by CPTAC, by
TCGA Research Network (http://cancergenome.nih.gov/), and
by the Children’s Brain Tumor Tissue Consortium (CBTTC).
CPTAC [40] generated the mass spectrometry-based pro-
teomic data used in this publication. Molecular profiling data
were generated through informed consent as part of CPTAC
efforts and analyzed per CPTAC data use guidelines and
restrictions. We obtained processed protein expression data
from the supplementary tables of the associated CPTAC
publications or from the CPTAC Data Portal (https://cptac-da
ta-portal.georgetown.edu/cptacPublic/) [41].

Statistical analysis

All p values were two-sided unless otherwise specified. We
performed all tests using log2-transformed expression values.
To determine differential levels for a given gene or protein
according to increasing tumor grade or stage, we took the
Pearson’s correlation between the log-transformed gene-level
molecular values and the grade or stage as translated into a
numerical value. When converting tumor grade into a
numerical variable, grade categories such as “G1”, “G2”, and

“G3”, for example, were translated as 1, 2, and 3, respec-
tively, for differential analyses. When converting clinical or
pathological stage into a numerical variable, stage categories
such as “1 A”, “1B”, “II”, “III”, and “IV”, for example, were
translated as 1, 1, 2, 3, and 4, respectively, for differential
analyses. For a given cancer type, we considered for differ-
ential analyses only proteins and mRNAs for which the
protein was detected in over half of the cancer cases by mass
spectrometry. For each cancer type, we selected for down-
stream analyses the set of differential genes or proteins with
Pearson’s p value < 0.01. The FDR that may be associated
with each differential gene or protein set was estimated by
both Story and Tibshirani method [42] and by permutation
testing. Even in instances of nominally significant proteins
not exceeding or only moderately exceeding chance expec-
tations by FDR, the nominally significant proteins may still
contain molecular information that would represent real
biological differences. Therefore, we used the nominally
significant p < 0.01 cutoff for downstream analyses, in which
most of the protein lists examined showed significant
enrichment patterns involving mRNA expression, patient
survival, results from other cancer types, copy number
alterations, and pathways. We evaluated enrichment of GO
annotation terms [43] and wikiPathways [29] within sets of
differentially expressed genes using SigTerms software [44]
and one-sided Fisher’s exact tests, with FDRs estimated
using the method of Storey and Tibshirini [42].

Functional studies

Cell lines were routinely monitored for mycoplasma con-
tamination and grown in sterile conditions and validated by
Short Tandem Repeat DNA fingerprinting test. SMARTPool
siRNAs were obtained from Dharmacon, Inc. Cells were
transfected with siRNAs using the Lipofectamine RNAi-
MAX Transfection Reagent per manufacturer’s instructions.
For cell viability assays, cells were lifted 48 h after siRNA
transfection and seeded at a density of 5000 cells per well in
BioLite 96 well plates (Thermo Scientific). A second pre-
paration of siRNA transfection media was applied to the
cells. Cell growth was monitored daily following the second
transfection treatment using the CellTiter-GLO® Luminescent
cell viability assay (Promega, G7570) per manufacturer’s
instructions. The experiments were performed three times,
and plotted as mean ± SEM. For wound healing assays, cells
were lifted 48 h after siRNA transfection and seeded 2.0 ×
105 cell/mL in 12-well plates. A second preparation of
siRNA transfection media was applied to the cells. Two
perpendicular wounds were made through the center of the
well using a sterile P200 pipette tip 24 h after seeding. To
measure wound healing, the same regions of each well were
photographed using an Axiovert A1 Tissue Culture micro-
scope attached to an Axiocam 208 camera (Zeiss). The area

Fig. 5 Pathways associated with proteomic or transcriptomic
signatures of high grade cancers. a Selected significantly enriched
Gene Ontology (GO) terms, involving the top set of proteins or
mRNAs either over-expressed (left) or under-expressed (right) with
higher grade for each cancer type represented. Differential gene fea-
tures selected using p < 0.01 by Pearson’s (Fig. 1a, b). Enrichment
p values by one-sided Fisher’s exact test. b Significance of enrichment
(by one-sided Fisher’s exact test) for wikiPathway [29] gene sets with
the respective sets of proteins and mRNAs over-expressed (p < 0.01,
Pearson’s) with tumor grade for each cancer type represented. The set
of pathways represented were significant (FDR < 10% [42]) within the
over-expressed proteins for at least one cancer type. c Heat map of
differential protein t-statistics (Pearson’s on log-transformed data), by
cancer type, comparing higher grade versus lower grade (red, higher
expression with higher grade; white, not significant with p > 0.05), for
proteins in the wikiPathway “Metabolic reprogramming in cancer”
(full name “Metabolic reprogramming in colon cancer”). d Pathway
diagram representing core metabolic pathways (“Metabolic repro-
gramming in cancer”), with differential protein and mRNA expression
patterns represented, correlating expression with increasing tumor
stage for Lung AD, Renal, and Glioma cancer types. RNA features are
indicated using italics. Phosphoprotein features are indicated by resi-
due. Red denotes significantly higher expression with higher grade and
blue denotes significantly lower expression. e Heat map of differential
protein and mRNA t-statistics (Pearson’s on log-transformed data), by
cancer type, comparing higher grade versus lower grade, for genes in
the wikiPathway “Translation factors”. See also Fig. S9 and Supple-
mentary Data 9–11.
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200 µm. f Quantification of 3 biological replicates for wound-healing in Ishikawa cells at 72 h (Mean ± SEM, One-way ANOVA with Dunnett’s multiple
comparisons post-test). g Brightfield images of representative wounds at 0 and 72 h post-scratch in HEC-1-A cells following siRNA-mediated depletion of
kinases. h Quantification of 3 biological replicates for wound-healing in HEC-1-A cells at 72 h (Mean ± SEM). RLU, relative luminescence units. For parts
(c, d, f, and h), p values are represented as follows: 0.033 (*), 0.002(**), and <0.001 (***). See also Figs. S10, S11.
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of the scratch in each image was measured using the Zeiss
Blue microscopy software and averaged across the 4 areas
measured. The experiments were performed three times, and
plotted as mean ± SEM Data was analyzed using an ordinary
one-way ANOVA and Dunnett’s multiple comparisons test.
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