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Abstract
MLL rearrangements play a crucial role in leukemogenesis and comprise a poor prognosis. Therefore, new treatment
strategies are urgently needed. We used the CRISPR/Cas9 system to generate an innovative leukemia model based on 100%
pure MLL-AF4 or -AF9 rearranged cells derived from umbilical cord blood with indefinite growth in cell culture systems.
Our model shared phenotypical, morphological and molecular features of patient cells faithfully mimicking the nature of the
disease. Thus, it serves as a fundamental basis for pharmacological studies: inhibition of histone methyltransferase disruptor
of telomeric silencing 1-like (DOT1L) is one specific therapeutic approach currently tested in clinical trials. However,
success was limited by restricted response warranting further investigation of drug combinations. Recently, it has been
shown that the inhibition of protein arginine methyltransferase 5 (PRMT5) exhibits anti-tumoral activity against human cell
lines and in MLL mouse models. Here, we used DOT1L and PRMT5 inhibitors in our human MLL-rearranged model
demonstrating dose-dependent reduced proliferation, impairment of cell cycle, increasing differentiation, apoptosis,
downregulation of target genes and sensitization to chemotherapy. Strikingly, the combination of both compounds led to
synergistic anti-tumoral effects. Our study provides a strong rationale for novel targeted combination therapies to improve
the outcome of MLL-rearranged leukemias.

Introduction

The MLL/KMT2A gene is frequently translocated in acute
leukemias leading to an epigenetic dysregulation respon-
sible for the oncogenic properties of the disease [1]. MLL-
rearranged (MLLr) leukemias account for over 80% in
infants and about 10% in adults [2]. The prognosis is dismal

and current therapeutic approaches are accompanied with
several severe side effects induced by intensive che-
motherapy regimens employed with only limited success
[3]. Thus, new targeted therapeutic strategies are urgently
needed to improve the outcome of these patients. The
impact of MLL fusion proteins on the pathogenesis of the
disease has already been investigated in various mouse
models using retrovirally overexpressed MLL oncogenes,
which commonly lead to incommensurable results for the
underlying patient disease [4–9]. Therefore, representative
human models to test new compounds are urgently
required, since primary leukemic cells are not suitable due
to their limitation of rapid differentiation in in vitro cultures.
Recently, we and others utilized novel genetic tools for
genome editing in primary human hematopoietic stem and
progenitor cells (HSPCs) with intent to generate a new
representative MLL leukemia model [10–15]. We were able
to generate MLL-AF9 cells with transcription activator-like
effector nucleases (TALENs) showing indefinite mono-
clonal outgrowth in in vitro cultures by using a cytokine
milieu based on the requirements of rearranged cells [11].
Although this approach recapitulated many features of the

* Corina Schneidawind
corina.schneidawind@med.uni-tuebingen.de

1 Department of Hematology and Oncology, University Hospital
Tuebingen, Tuebingen, Germany

2 Institute of Medical Genetics and Applied Genomics, University
of Tuebingen, Tuebingen, Germany

3 Institute of Pathology and Neuropathology, University of
Tuebingen and Comprehensive Cancer Center, University
Hospital Tuebingen, Tuebingen, Germany

Supplementary information The online version of this article (https://
doi.org/10.1038/s41388-019-0937-9) contains supplementary
material, which is available to authorized users.

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41388-019-0937-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41388-019-0937-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41388-019-0937-9&domain=pdf
http://orcid.org/0000-0002-5496-293X
http://orcid.org/0000-0002-5496-293X
http://orcid.org/0000-0002-5496-293X
http://orcid.org/0000-0002-5496-293X
http://orcid.org/0000-0002-5496-293X
mailto:corina.schneidawind@med.uni-tuebingen.de
https://doi.org/10.1038/s41388-019-0937-9
https://doi.org/10.1038/s41388-019-0937-9


disease, the results were limited due to technical issues based
on extensive in vitro cultures to obtain sufficient numbers of
translocated cells for further investigations [11]. In this
report, we used the clustered regularly interspaced short
palindromic repeats (CRISPR)/Cas9 system with high effi-
ciency to specifically engineer reciprocal chromosomal
translocations in primary human HSPCs not only in the MLL
and AF9 genes, but also in the AF4 gene representing the first
reliable human MLL-AF4 model based on patient sequences.

AF4 and AF9 account for the majority in over 100 dif-
ferent known fusion partners of the MLL gene [2]. The
resultant fusion proteins arouse their oncogenic properties
by recruiting cofactors like the H3K79 methyltransferase
DOT1-like (DOT1L) serving as ideal target for new ther-
apeutic strategies [16]. Although DOT1L inhibition has an
acceptable side effect profile (clinical trial NCT01684150),
it shows only modest clinical activity in adult leukemias and
further combination approaches are required to improve
efficiency [17]. Protein arginine methyltransferase 5
(PRMT5) is known to be overexpressed in several solid
tumors and correlates with a poor prognosis [18, 19]. Thus,
one clinical trial has already been implemented to test small
molecules that inhibit PRMT5 in patients with relapsed
solid tumors or non-Hodgkin’s lymphoma (NCT02783300).
Recently, Kaushik et al. and Serio et al. also highlighted the
impact for PRMT5 inhibition in mouse models of MLLr
leukemia in vivo and in human MLLr cell lines in vitro but
until now no human MLL model exists demonstrating the
anti-tumoral activity of this compound [20, 21]. We admi-
nistered inhibitors of DOT1L and PRMT5 in our MLL
leukemia model resulting in anti-leukemic effects that were
significantly enhanced when both drugs were applied
simultaneously. Both compounds conveyed these effects
without any negative impact on control cells. Remarkably,
addition of both compounds to standard chemotherapy
either as pretreatment or co-administered simultaneously
improved MLLr cell killing. Our model can overcome
existing limitations in genome editing techniques and
pharmacological studies allowing to reliably test new tar-
geted therapies. We thereby establish the preclinical ratio-
nale to target PRMT5 and DOT1L in the treatment of
leukemia patients harboring MLL translocations.

Results

CRISPR/Cas9 demonstrates high cutting efficiencies
and induces t(9;11) and t(4;11) chromosomal
translocations in human HSPCs

Previous studies have identified frequent MLL-AF4 and
-AF9 chromosomal translocation breakpoints in patients [2].
Using CRISPRscan, we designed different sgRNAs

recognizing patient-specific sequences in intron 11 of the
MLL, exon 3 of the AF4 and intron 5 of the AF9 genes,
respectively [4, 22, 23]. Using plasmid- and virus-free
delivery of sgRNAs with Cas9 protein, we nucleofected
K562 cell line as proof-of-principle to identify the best
working sgRNAs for the respective regions. Following
nucleofection genomic DNA was isolated and the targeted
regions of interest were amplified via PCR and analyzed by
the T7 endonuclease I assay showing high cutting effi-
ciencies (Fig. 1a, upper row) [24]. The sgRNAs most effi-
cient at cleavage were further validated in our CD34+ target
cells derived from human umbilical cord blood (huCB)
(Fig. 1a, lower row). To induce t(9;11) and t(4;11) trans-
locations in HSPCs, we isolated CD34+ cells and nucleo-
fected with Cas9 protein and sgRNAs targeting MLL and
AF4 or AF9, respectively. Cas9 alone was used as control.
Following nucleofection, MLL-AF4 and -AF9 fusion junc-
tions were detected by PCR and Sanger sequencing
demonstrating specific fusion sequences (Fig. 1b, c and
Supplementary Fig. 1a).

Engineered MLLr cells rapidly reach purity, express
fusion transcripts and present with a
myelomonocytic phenotype

Following nucleofection, the cells were maintained in liquid
culture supplemented with cytokines and chemokines opti-
mized for growth of MLLr cells [11]. PCR analyses of
genomic DNA showed increasing signals from MLL-AF4,
MLL-AF9 and the respective reciprocal fusion junctions
over time (Fig. 2a and Supplementary Fig. 1b). To quantify
the percentage of cells with translocations, FISH analysis
was performed. On day 30 (MLL-AF4) and day 40 (MLL-
AF9) of liquid culture, an MLL break-apart probe detected
MLL translocations in 100% of cells allowing for further
analysis of pure MLLr cells (Fig. 2b). Likewise, G-banding
analysis demonstrated the presence of both derivative
chromosomes resulting in reciprocal t(4;11) and t(9;11)
translocations (Fig. 2c). To confirm the functional expres-
sion on RNA level RT-PCR analyses were performed
revealing both MLL-AF4 and -AF9 fusion transcripts (Fig.
2d, Supplementary Fig. 1c and Supplementary Table 4).

Patients harboring MLL translocations typically present
myelomonocytic surface markers and loss of CD34 expres-
sion on their blast cells [25, 26]. Similarly, the genome-
engineered MLLr cells in our model displayed a myelomo-
nocytic phenotype with CD64 and CD15 and low expression
of CD34 and CD38, respectively (Fig. 2e). Interestingly, the
MLLr cells express less mature markers like CD14 and
presented withMLLr typical leukemic surface expressions of
CD9 and CD32 compared with control cells as recently
published (Fig. 2f) [11, 25]. These results demonstrate that
using CRISPR/Cas9 targeting MLL and AF4/AF9 creates
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t(9;11) and t(4;11) chromosomal translocations, which
induce respective fusion transcript expressions and are
characterized by a patient-like myelomonocytic phenotype.

RNA-seq reveals patient-like gene expression profile
of MLL-AF4 rearranged cells

To validate our MLLr leukemia model as a suitable patient-
like in vitro model, we compared the transcriptome of our
genome-engineered and control cells to publicly available
patient samples harboring an MLL-AF4 rearrangement
[27, 28]. MLL-AF4 translocated cells and the respective

control cells from the two different donors were maintained
in similar culture conditions. After reaching 100% purity of
the MLLr cells, they were subjected to RNA-seq. Compar-
ing the gene expression profiles of the MLL-AF4 cells with
the respective controls, we found 2729 of the 13276 genes
(∼21%) to be differentially expressed (p < 0.01), of which
1417 were upregulated in the MLLr cells (Supplementary
Fig. 2a). Sample correlation revealed a higher similarity of
MLL-AF4 translocated cells between different donors than
to their respective control cells (Supplementary Fig. 2b).
We listed our 100 most differentially genes (50 up- and 50
downregulated) in Supplementary Table 5. Similarly, in
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Fig. 1 CRISPR/Cas9 induces specific double-strand DNA breaks
within the MLL, AF4, and AF9 genes leading to translocations in
HSPCs. a Gel images show representative results of T7 endonuclease
assays performed on genomic DNA isolated from K562 cells (upper
row) nucleofected with the different sgRNAs (MLL: 1–3, AF4: 1–4,
AF9: 1–2) and Cas9 protein. The sgRNAs with the best cutting effi-
ciencies in K562 were applied to CD34+ cells (lower row). K562 cells
or CD34+ huCB cells nucleofected with Cas9 alone were used as
controls (ctrl). Digested PCR products represent the presence of strand

mismatches resulting from indels that are generated by non-
homologous end joining (NHEJ) repair of double-strand breaks
(DSBs) and were quantified with ImageJ. Resulting cutting efficiencies
are displayed. b Representative positive PCR products of genomic
DNA isolated from CD34+ cells nucleofected with MLL sgRNA3 and
AF4 sgRNA3 or AF9 sgRNA2 and Cas9 protein or Cas9 alone as
controls (ctrl) on day 15 and day 26 of culture, respectively. c Sanger
sequencing results of PCR products displayed in (b) showing trans-
located gene products of MLL-AF4 and MLL-AF9
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comparison to the top 100 genes in MLLr patients, we also
detected MEIS1 and FLT3 supporting their conserved roles in
the MLL leukemogenesis and in our model [28]. Moreover,

within this top 100 most differentially genes inMLLr patients,
we found these five genes MEIS1, APOL2, GFOD1,
SPTBN1, and ZNF827 almost identically expressed compared
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with our MLLr model (Supplementary Fig. 2c) [28]. To fur-
ther highlight the comparability of our human in vitro model
to patient MLLr leukemia we performed gene set enrichment
analyses (GSEA), which confirmed significant enrichment of
patient-derived MLL-AF4 signatures (Fig. 3a) [27–30]. Our
model demonstrated a typical MLLr leukemia signature, such
as upregulation of HOXA cluster and downregulation of
HOXB cluster (Fig. 3b) [31–33]. In addition, self-renewing
leukemic stem cell (LSC) signature defined by overexpression
of CBX5, MYB, and HMGB3 was observed in our MLL-AF4
model (Fig. 3b) [34]. Overexpression of PRMT5 is known to
correlate with poor prognosis in several tumors [18, 19].
Furthermore, MLLr mouse models identified PRMT5 as one
potential driver of MLL leukemogenesis [21, 35]. Here, we
confirmed PRMT5 overexpression in the RNA-seq data of our
human patient-like system, supporting its important role to
validate targeted therapy (Fig. 3b). For further confirmation of
the RNA-seq data, we performed qPCR of representative
target genes, LSC signature and PRMT5.MLL-AF4 andMLL-
AF9 translocated cells express high levels of MEIS1, HOXA9,
CBX5, MYB, HMGB3, and PRMT5 comparable to the MLL-
AF4 cell line SEM, the MLL-AF9 cell line MONO-MAC-6
(MM6) and patient leukemic cells harboring t(4;11)(q21;q23)
or t(9;11)(p22;q23) (Fig. 3c and Supplementary Table 6).

These data indicate that the expression profile of our
model correlates with MLLr leukemia patients therefore
faithfully mimicking the nature of the underlying disease.
Furthermore, our results revealed PRMT5 to be a poten-
tially suitable target in the treatment of poor prognosis
MLLr leukemias.

Inhibition of both DOT1L and PRMT5 acts
synergistically and restrains proliferation of MLLr
cells

The MLL fusion protein gains new function through
recruitment of other cofactors like DOT1L. DOT1L hereby
acts as catalyst for the MLL fusion protein-driven transfor-
mation and accordingly, serves as specific therapeutic target
in this disease [16, 36]. However, until now the efficacy of
DOT1L inhibition as a single agent was only modest in
clinical trials [17]. Recently, it has been demonstrated that
PRMT5 as a direct target of polymerase-associated factor
complex (PAFc) interacting with the MLL fusion protein
contributes to the progression and maintenance of MLL-
driven leukemia in mouse models and in human cell lines
in vitro [21, 35]. To study the impact of DOT1L and
PRMT5 inhibition alone and in combination, we performed
a proliferation assay using our human MLLr model system:
we monitored proliferation by cell counting with Trypan
blue staining of MLL-AF4 and -AF9 or control cells in the
presence of increasing concentrations of EPZ004777
(DOT1Li) and EPZ015666 (PRMT5i) for 6 days. For both
inhibitors, we found a dose-dependent inhibition of MLLr
cell proliferation whereas control cells were only affected
when the highest concentration of PRMT5i was used
(Supplementary Fig. 3a). It is known that DOT1L con-
tributes to the transcriptional activation of target genes [16].
Therefore, following inhibition of DOT1L we determined
cellular differentiation by monitoring expression of the
differentiation marker CD14 via flow cytometry. As
expected, we found a dose-dependent increase of CD14
expression in our DOT1Li-treated MLLr cells whereas
control cells were not affected (Supplementary Fig. 3b).
Recently, it has been demonstrated that PRMT5 is respon-
sible for methylating p53. Consequently, depletion of
PRMT5 triggers p53-dependent apoptosis [37]. Therefore,
we determined apoptosis via Annexin V staining by flow
cytometry upon PRMT5i treatment and confirmed a dose-
dependent increase of apoptotic cells in MLLr cultures
(Supplementary Fig. 3b). According to these results, we
considered a concentration of 1 µM for both inhibitors in
further experiments. To improve therapeutic effectiveness
to treat MLLr leukemias, we tested a combination of
DOT1Li and PRMT5i for synergy in our MLLr model. For
that purpose, we performed again dose response curves of
single and combination treatment of both compounds at a
constant ratio of equipotency (Supplementary Fig. 4a). For
synergy determination, IC50 values were interpolated
(Supplementary Fig. 4b) and isobolograms at 50% effect
level as well as the calculation of combination indexes
(CI < 1) indicate synergism (Supplementary Fig. 4c).

Next, to evaluate the effect of the compounds on pro-
liferation, we used our MLLr model for single and

Fig. 2 Pure MLL-AF4 and -AF9 cells showing indefinite growth in
in vitro cultures and present with typical MLLr myelomonocytic
immunophenotype. a Representative semi-quantitative PCR of geno-
mic DNA (100 ng) isolated from CD34+ cells nucleofected with
sgRNAs for MLL- and AF4/AF9 over time of culture showing
increasingMLL-AF4/-AF9 and the respective reciprocal PCR products.
b FISH analyses of CD34+ cells nucleofected with sgRNAs for MLL
and AF4 or AF9 were performed after reaching strong PCR products
(on day ~30 of culture) via manual inspection of 100 cells demon-
strating 100% purity of the MLLr cells, and c representative kar-
yotyping. Arrows indicate the reciprocal breaks. d mRNA was isolated
from MLL-AF4/-AF9 cells or control (ctrl; CD34+ cells nucleofected
with Cas9 alone) and fusion transcripts were identified by RT-PCR. e
Flow cytometry of MLLr cells reveals stable myelomonocytic
expressions of CD15 and CD64 and low expression of CD34 and
CD38 after reaching purity. Representative and combined results of
three biological replicates (n= 3). f MLLr cells present with lower
expression levels of differentiation marker CD14 and higher expres-
sion of known MLLr surface markers (CD32 and CD9) compared with
control cells (ctrl; CD34+ huCB cells nucleofected with Cas9 alone
and cultured for the same time) [11, 25]. Gray shading indicates
control cells; black line denotes indicated marker expression of MLLr
cells. Representative and combined results of three biological repli-
cates (n= 3). M-4, MLL-AF4; M-9, MLL-AF9. Bars represent the
mean. Student’s t test was used: *p < 0.05, **p < 0.01, ***p < 0.001.
Error bars indicate standard deviation (SD)
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combination treatment and determined cell count via
microscopy and flow cytometry. Inhibitors alone already
induced significant reduction of proliferation, whereas both
compounds further enhanced the growth-inhibitory effect

(Fig. 4a, b). The anti-proliferative capacity of DOT1L and
PRMT5 inhibition was also demonstrated in cell cycle
analysis: BrdU and 7-AAD staining revealed no changes in
control cells, whereas a decrease in the percentage of MLLr
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cells in the S phase was detected by the respective single
treatment that was further enhanced by the combination of
the compounds (Fig. 4c).

These data indicate that the inhibition of DOT1L and
PRMT5 results in a synergistic suppression of proliferation
and reduction of DNA synthesis in MLL fusion protein-
driven leukemogenesis without impact on control cells.

Inhibition of DOT1L and PRMT5 compromises MLL
leukemogenesis by alternative pathways resulting
in increased apoptosis of MLLr cells

Recently, it has been shown in an MLL-AF9 mouse model
that PRMT5i does not affect direct MLL target gene
expression [35]. Similarly, we found downregulation of
target gene expression such as HOXA9 and MEIS1 upon
DOT1L but not PRMT5 inhibition (Fig. 5a). In contrast to
PRMT5i, treatment with DOT1Li significantly promoted
MLLr cell differentiation assessed by upregulation of CD14
consistent with our findings and those of Serio and collea-
gues, respectively [10, 21]. Subsequently, we performed
May-Gruenwald-Giemsa staining to evaluate cell mor-
phology after respective treatments. Untreated (DMSO
control) MLLr cells presented an immature myelomonocytic
phenotype whereas treatment with DOT1Li resulted in
morphologic changes to macrophage-like cells consistent
with the detected CD14 expression (Fig. 5b, c, d). In con-
trast, PRMT5i led to induction of apoptosis that was further
pronounced in the combined treated samples (Fig. 5e).

Likewise, MLLr cells showed a significantly higher per-
centage of Annexin V positive cells when treated with both
inhibitors compared with single compounds indicating that
combination treatment leads to synergistic apoptosis (Fig.
5e). Importantly, key findings could be verified using
alternative inhibitors against DOT1L (EPZ5676, aDOT1Li)
and PRMT5 (EPZ015938, aPRMT5i) (Supplementary Fig.
5). These data suggest that DOT1L and PRMT5 contribute
to MLL-driven leukemia in two pathways: DOT1L leads to
increased transcription of target genes promoting matura-
tion arrest and PRMT5 inhibits apoptosis. Both compounds
act synergistically by inhibiting proliferation, inducing
apoptosis and promoting differentiation in our human MLLr
model.

Treatment with DOT1Li and PRMT5i sensitizes MLLr
cells to chemotherapy

To further determine the activity of both inhibitors in a more
clinical setting, we determined the fate of MLLr cells after
removal of the compounds and the impact of combining the
inhibitors with chemotherapy on proliferation and cell cycle
of MLLr cells. For that purpose, we treated the cells with the
compounds alone or in combination for 6 days, washed the
compounds out, reseeded the cells at the same concentration
and subsequently determined cell count and cell cycle.
Although treatment ofMLLr cells stopped, proliferation was
still significantly reduced indicated by the low cell count
and enhanced doubling time (Td) compared with untreated
MLLr cells (Supplementary Fig. 6a, b). The reduced cell
growth was most pronounced by the preceding combination
treatment, implying a durable reprogramming of the epi-
genetic status of these cells after inhibitory treatment. As
expected, the compounds induced both apoptosis and
reduced DNA synthesis, that was only partially rescued
after 4 days of interrupted treatment. Interestingly, the
compounds did not influence G0/G1 phase of the treated
MLLr cells (Supplementary Fig. 6c) implying that both
compounds may not impede chemotherapy responses.
Cytarabine represents one of the most commonly used
chemotherapy agents to treat patients with AML. Therefore,
we evaluated the effect of DOT1Li and PRMT5i on the
proliferation of the MLLr cells when used in combination
with cytarabine either simultaneously or sequentially with
compound-pretreated cells. First, we titrated cytarabine
alone and in combination with the compounds and deter-
mined 5 nM as an appropriate concentration to evaluate
potential additional effects in ourMLLr model (Fig. 6a). Co-
administration of cytarabine with the respective inhibitors
simultaneously induced a superior effect on the MLLr cell
killing than cytarabine alone, which was again increased by
using both compounds at once (Fig. 6b). For the sequential
treatment experiments, we pretreated MLLr cells with the

Fig. 3 MLL-AF4 rearranged cells revealed patient-like gene expression
profile. RNA-seq was performed with MLL-AF4 cells (two different
donors, n= 2) and the respective controls (two different donors, n= 2,
CD34+ huCB cells of the same donor nucleofected with Cas9 alone
and cultured for the same time). a Gene set enrichment analysis of the
MLL-AF4 signature derived from two published patient datasets are
shown: upregulated gene sets in patients (MLL-AF4 vs non-MLLr UP)
are enriched in MLL-AF4 translocated cells, while downregulated gene
sets in patients (MLL-AF4 vs non-MLLr DOWN) are enriched in
control cells of our model. Values indicate normalized enrichment
score (NES), p-value for statistical significance and q-value for the
false discovery rate (FDR). b Differential gene expression by RNA-seq
of the MLLr cells compared with control cells examined characteristic
up- and downregulation of known MLLr target genes plotted as indi-
vidual data points with mean (upper row). Known upregulation of a
leukemia stem cell signature (CBX5, MYB, and HMGB3) as well as
overexpression of PRMT5 are shown (lower row). Values in normal-
ized reads per kilobase million (nRPKM), each dot represents a sample
(n= 2). c Validations of target genes, CBX5, MYB, HMGB3, and
PRMT5 profiled by RNA-seq were confirmed by qPCR. MLL-AF4 and
MLL-AF9 cells were normalized to control (ctrl; CD34+ huCB cells of
respective donors nucleofected with Cas9 alone and cultured for the
same time) and compared with the MLL-AF4 cell line SEM or MLL-
AF9 cell line MM6 and patient cells (unique patient number, UPN1
and UPN2) harboring t(4;11)(q21;q23) or t(9;11)(p22;q23), respec-
tively. Experiment was performed in biological duplicates (n= 2) and
horizontal bars represent the mean. Student’s t test was used: *p <
0.05, **p < 0.01, ***p < 0.001. Error bars indicate SD
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respective inhibitors again for 6 days, washed them out and
added cytarabine to the culture for another 2 days.
Remarkably, also in the sequential treatment we can
observe the complementary effect of the compounds on

chemotherapy response, indicating that the preceding epi-
genetic alteration sensitizes them to chemotherapeutic
agents, even when the inhibitors have been removed (Fig. 6c).
Taken together, our results showed that both PRMT5i and
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DOT1Li induce a durable inhibition of proliferation and favor
their response to chemotherapy. Therefore, this observation
indicated considerable flexibility regarding dose scheduling of
combinations of inhibitors and chemotherapy in clinical
translation.

Discussion

In this study we used CRISPR/Cas9 to generate both t(4;11)
and t(9;11) chromosomal translocations encoding the MLL-
AF4 or -AF9 and reciprocal AF4- or AF9-MLL fusion
products in primary human HSPCs to establish an authentic
human leukemia model based on patient-specific sequences.
CRISPR/Cas9 demonstrated superior effects modifying
CD34+ huCB to induce balanced translocations than our
previously used TALEN technology [11]. The main lim-
itation of our previous study was the long duration until
only few polyclonal MLLr cells in the beginning reached
monoclonal purity for further analysis [11]. By using
CRISPR/Cas9 with higher efficiency in primary cells, we
were able to generate 100% pure MLLr cells within only
30 days. Further advantage to our previous study is the
development of not only an MLL-AF9 but also an accurate
human MLL-AF4 model. Until now no human model exits
that recapitulates all features of MLL-AF4 patient cells
although significant efforts have been made leading to the
hypothesis that MLL-AF4 is potentially unable to transform
cells without, for example, cooperating mutation partners or
the reciprocal fusion product [38–41]. Nevertheless,
recently, Lin et al. have developed a human MLL-AF4
model by using a retroviral transduction approach [42].
Although they successfully recapitulated the lymphoid
phenotype of the disease, the study experienced limitations:
they used retroviral constructs resulting in unphysiologi-
cally high-titer virus to be able to transform human CD34+

cells and furthermore, the murine Af4 partner did not mimic
the underlying human patient disease. In contrast, our
model based on patient-specific sequences with complete

translocation modeling the consequences of endogenous
oncogene activation, bypasses these limitations by demon-
strating unlimited in vitro growth potential and recapitu-
lating all molecular aspects of the disease demonstrated by
high similarity to MLLr patient cells detected in RNA-seq.
Furthermore, we were able to identify the MLL leukemic
stem cell signature by expression of high levels of CBX5,
MYB, and HMGB3 in our MLLr cells, another hallmark of
MLLr leukemias [34, 43]. In addition, under myeloid culture
conditions the MLLr cells displayed immature morphology
and the typical myelomonocytic phenotype with known
patient-elevated surface markers like CD9 and CD32
[11, 25]. Thus, our genome engineered human system
provides a reliable model to unravel the pathogenesis of
MLLr leukemogenesis and forms the basis for testing novel
therapeutic strategies.

Despite large investment and many new available com-
pounds in drug development, the success rate of translation
to the clinic is very low. One major explanation is flawed
preclinical research suffering from using the right model
that is pivotal to bridge the translational gap [44]. Primary
leukemic cells differentiate rapidly in in vitro cultures and
mouse models bear problems in the interpretation of the
results since there are known differences between the
genetic and epigenetic profile of mouse and human. Fur-
thermore, animal models cannot accurately reproduce the
disease with all its complexities [45]. Therefore, the selec-
tion of a validated and authentic human model is essential to
address the clinical questions. By using our patient-like
human MLLr model with indefinite growth in in vitro cul-
tures we can at least in part overcome these limitations.

Although DOT1Li showed promising results in treating
MLLr leukemia in preclinical studies, the expected effec-
tiveness to promote long-term remission in MLLr patients
held off [17]. This reflects the necessity to target MLLr
leukemia more profoundly than with single treatment. It is
known that overexpression of PRMT5 has critical implica-
tions in cancer development providing the rationale for a
therapeutic approach to inhibit PRMT5 methyltransferase
activity [46]. Moreover, it has been demonstrated that
inhibition of PRMT5 impaired leukemia development in
MLLr mouse models and we therefore focused on PRMT5i
as combination partner of DOT1Li [21, 35, 47]. In our
human MLLr model, we provided robust data showing that
PRMT5 was overexpressed in our system and subsequently
combining two targeted therapies could serve as an effective
therapeutic strategy inMLLr leukemia: synergistic treatment
leads to increased inhibition of proliferation, impairment of
cell cycle, differentiation, downregulation of target genes
and finally apoptosis of the MLLr cells whereas control cells
were not affected. Interestingly, DOT1L and PRMT5
unfold their oncogenic properties in different pathogenic
pathways: only DOT1Li was responsible for

Fig. 4 Inhibition of both DOT1L and PRMT5 acts synergistically and
inhibits proliferation in MLLr cells. MLL-AF4/-AF9 or culture-
expanded CD34+ huCB control cells were treated with either 1 µM
DOT1Li, 1 µM PRMT5i, in combination or vehicle (DMSO) for
6 days. a To demonstrate proliferation curves, total cell count was
determined by staining with Trypan blue. One representative pro-
liferation curve and the mean of pooled data of three biological
replicates (n= 3) performed in technical triplicates are shown. b
Proliferation was further determined by flow cytometry using counting
beads. Bars represent the mean of three biological replicates (n= 3)
performed in technical triplicates. c Representative flow cytometry
plots of BrdU cell cycle analysis and pooled data from three biological
replicates (n= 3) performed in technical triplicates are shown. Bars
represent the mean of % cells in S phase. Student’s t test was used: *p
< 0.05, **p < 0.01, ***p < 0.001. Error bars indicate SD
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downregulation of target genes, hereby unblocking the
myeloid differentiation as hallmark of MLLr leukemia [48].
This is in line with others suggesting that PRMT5i

compromises an MLLr LSC signature and self-renewal by
an alternative pathway like transcriptional silencing of
CDKN1a or regulated upstream by the PAFc complex
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[21, 35]. In contrast to Serio et al. and our study, Kaushik
et al. describe an increased differentiation upon PRMT5i in
a MLLr mouse model [21, 35]. Although these studies
provide important insights, it remains uncertain whether the
experimental models accurately reflect the pathology
underlying the disease as it manifests in human patients.
Thus, this observation stresses the need of human patient-
like models in testing pharmacological drugs in the future.

Leukemic patients bearing MLL-rearrangements are most
commonly treated with cytarabine. Therefore, we combined
exposition of MLLr cells to cytarabine with DOT1Li and
PRMT5i treatment in order to evaluate how these com-
pounds might influence each other with regard to clinical
translation. Remarkably, we detected complementary
effects in simultaneous and sequential treatment approaches
suggesting flexible dose scheduling. This flexibility could
result in optimized efficacy of the combined treatment and
reduced chemotherapy-associated side effects.

In summary, our study highlights the feasibility of
engineering chromosomal translocations at their endogen-
ous loci in primary human cells in high frequency to gen-
erate pure MLLr cells in a short period of time. Moreover,
our genome editing approach overcomes the limitations of
previous pharmacological studies and provides the rationale
to treat poor prognosis MLLr leukemias by combining
DOT1L and PRMT5 inhibitors in clinical trials. Further,
both compounds may be combined with standard che-
motherapy to reverse chemoresistance of MLLr cells.

Methods

Genomic engineering via CRISPR/Cas9

Single guide (sg)RNAs were designed with CRISPRscan
[49] to target patient-specific MLL-AF4 and -AF9

breakpoints [4, 22, 23]. Possible sgRNAs with high
CRISPRscan score resulting in high activity with low off-
target activity were selected. sgRNAs comprise T7 pro-
moter, PAM sequence, target complementary region and the
scaffold overlapping region. For higher efficiency
“ATAGC” sequence was added to the 3′ end [50]. Designed
oligonucleotides (Supplementary Table 1, Sigma-Aldrich,
St. Louis, Missouri, USA) and plasmid PX458 (Addgene,
Cambridge, Massachusetts, USA) were used to generate the
DNA template (KAPA HiFi HotStart ReadyMix PCR Kit,
Wilmington, Massachusetts, USA) following in vitro tran-
scription (NEB Hi-Scribe T7 Kit, Ipswich, Massachusetts,
USA, Zymo RNA Clean and concentrate-25, Irvine, Cali-
fornia, USA) according to the manufacturer’s protocol.
Cas9 protein was provided by PNAbio (Newbury Park,
California, USA) as purified protein for the formation of the
RNP complex (1 µg+ 1 µg) accomplished after 15 min of
co-incubation at room temperature. Electroporation was
performed using the 4D-Nucleofector (Lonza, Basel, Swit-
zerland) according to the manufacturer’s protocol for K562
or CD34+ cells (Lonza P3 Primary Cell 4D-Nucleofector X
Kit S) and as previously described [11]. Cutting efficiencies
of respective sgRNAs were determined after isolation of
genomic DNA (Macherey Nagel NucleoSpin DNA Rapid
Lyse, Dueren, Germany) via site-specific PCR (Supple-
mentary Table 2, Thermo Fisher Scientific AccuPrime Pfx
DNA Polymerase, Waltham, Massachusetts, USA) and T7
endonuclease I assay (NEB T7 endonuclease I). Gel images
were analyzed with ImageJ [51]. Translocations were
induced in CD34+ cord blood cells applying MLL and AF4/
AF9 sgRNAs in pair (1 µg each) together with Cas9 protein.
Rearrangements and reciprocal translocations were identi-
fied via PCR of 100 ng genomic DNA (Supplementary
Table 3, Thermo Fisher Scientific AccuPrime Pfx DNA
Polymerase), Sanger sequencing, fluorescence in situ
hybridization (FISH, Cytocell MLL (KMT2A) Breakapart
Probe, Cambridge, UK) and karyotyping as described pre-
viously [11, 52].

RNA sequencing and gene expression analyses

RNA was isolated (Macherey Nagel NucleoSpin RNA Kit)
and quality assessment was carried out by NanoDrop
(Thermo Fisher Scientific) and Bioanalyzer measurements
(Agilent, Santa Clara, California, USA). RNA sequencing
(RNA-seq) data quality was assessed using FastQC
(V0.11.4, Babraham Institute, Cambridge, UK) [53] to
identify sequencing cycles with low average quality,
adaptor contamination or repetitive sequences from PCR
amplification, before aligning reads with STAR (V2.5.4b)
[54] against the Ensembl H. sapiens genome V91 allowing
gapped alignments to account for splicing. Alignment
quality was analyzed using samtools (V1.1) [55].

Fig. 5 Inhibition of DOT1L and PRMT5 compromise MLL leuke-
mogenesis by alternative pathways resulting in increased apoptosis of
MLLr cells. MLL-AF4/-AF9 or culture-expanded CD34+ huCB control
cells were treated with either 1 µM DOT1Li, 1 µM PRMT5i, in com-
bination or vehicle (DMSO). a Target gene expression analyzed by
qPCR from three biological replicates (n= 3) performed in technical
triplicates is shown. Results were normalized on 18S rRNA and
control cells were used as calibrator. b Representative flow cytometry
histograms of CD14 expression as marker of differentiation, and c
pooled data from three biological replicates (n= 3) performed in
technical triplicates is shown. d Images show representative
morphologies of MLLr and control cells displaying increased cell
differentiation (DOT1Li) and cell death (PRMT5i) after drug treat-
ment. Scale bars define 20 µm. e To demonstrate synergistic apoptotic
induction, externalization of phosphatidylserine was analyzed by
Annexin V staining from three biological replicates (n= 3) performed
in technical triplicates by flow cytometry. Bars represent the mean.
Student’s t test was used: *p < 0.05, **p < 0.01, ***p < 0.001. Error
bars indicate SD
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Normalized read counts for all genes were obtained using
GenomicAlignments (V1.14.2) and DESeq2 (V1.18.1) [56].
Transcripts covered with <50 reads were excluded from
subsequent analyses leaving 13 267 genes for determining
differential expression. Significance thresholds were set to
|log2 fold-change|≥1 and BH-adjusted p-value ≤ 0.01. Sur-
rogate variable analysis (sva, V3.26.0) was used to mini-
mize unwanted variation between samples [57]. Raw counts
from DESeq2 went into calculating nRPKMs (normalized
Reads Per Kilobase per Million total reads) as a measure of
relative gene expression as motivated before [58]. Gene set
enrichments were determined with GSEA (V3.0) [29, 30]

using gene sets provided by Andersson et al. and Stam et al.
[27, 28]. RNA-seq data have been deposited in NCBI’s
Gene Expression Omnibus (GEO) and are accessible
through GEO Series accession number GSE128342.

DOT1L and PRMT5 inhibition assays

DOT1L inhibitor EPZ004777 (Tocris, Bristol, UK) or
EPZ5676 (Selleck Chemicals LLC, Houston, Texas, USA)
and PRMT5 inhibitor EPZ015666 (Sigma-Aldrich) or
EPZ015938 (GSK3326595, Selleck Chemicals LLC) were
prepared in stock solutions with DMSO.
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Cytarabine (Ara-C, Stadapharm, Bad Vilbel, Germany)
was diluted in PBS for stock solutions. MLLr cells and
culture-expanded CD34+ huCB control cells seeded with
7.5 × 105 cells/mL were subjected to inhibitor treatment for
a total of 6 days in liquid culture. Cells were retreated and
reseeded at original density every 2 days. For sequential
experiments, cells were preincubated for 6 days, com-
pounds were washed out and cells were reseeded at 7.5 ×
105 cells/mL.

BrdU cell-cycle and apoptosis analyses

BrdU incorporation assays were performed using FITC
BrdU flow kit (BD Biosciences) according to the manu-
facturer’s protocol with cells pulsed with BrdU for 40 min.
Cells were co-stained with 7-AAD for DNA content mea-
surement. Annexin V apoptosis staining was performed
using FITC Annexin V Apoptosis Detection Kit I (BD
Biosciences) to evaluate early apoptotic cells and accumu-
lated dead cells according to the manufacturer’s protocol.
All experiments were performed following single cell gat-
ing. Analyses were performed using FlowJo (Tree Star).

May-Gruenwald-Giemsa cytospin staining

Cytospins were prepared and stained as previously descri-
bed [10]. Images were collected using a Nikon Eclipse
TS100 microscope with an ×40 objective and a Nikon
Digital Sight camera using NIS elements software (Nikon,
Tokyo, Japan) at a resolution of 1280 × 960 pixels.

Statistical analyses

Statistical methods (two-sided Student’s t test), sample
sizes, replicates and p-values are presented in each figure
legends. Variance was factored into statistical tests where
applicable. P-value < 0.05 was considered statistically sig-
nificant. Data were analyzed with Prism 7.03 (GraphPad
Software, La Jolla, California, USA). IC50 values of dose
response curves were interpolated from a four-parameter
logistic model. Synergy was calculated using the Chou-
Talalay method [59]. The combination index (CI) was used
to define additivity (CI= 1), synergism (CI < 1), and
antagonism (CI > 1). CI values: 0–0.1, very strong syner-
gism; 0.1–0.3, strong synergism; 0.3–0.7, synergism;
0.7–0.85, moderate synergism; 0.85–0.90, slight synergism;
0.90–1.10, nearly additive).
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