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Abstract
Alternative splicing represents a critical posttranscriptional regulation of gene expression, which contributes to the protein
complexity and mRNA processing. Defects of alternative splicing including genetic alteration and/or altered expression of
both pre-mRNA and trans-acting factors give rise to many cancers. By integrally analyzing clinical data and splicing data
from TCGA and SpliceSeq databases, a number of splicing events were found clinically relevant in tumor samples.
Alternative splicing of KLK2 (KLK2_51239) was found as a potential inducement of nonsense-mediated mRNA decay and
associated with poor survival in prostate cancer. Consensus K-means clustering analysis indicated that alternative splicing
events could be potentially used for molecular subtype classification of cancers. By random forest survival algorithm,
prognostic prediction signatures with well performances were constructed for 31 cancers by using survival-associated
alternative splicing events. Furthermore, an online tool for visualization of Kaplan–Meier plots of splicing events in 31
cancers was explored. Briefly, alternative splicing was found of significant clinical relevance with cancers.

Introduction

Alternative splicing, compared with constitutive pre-mRNA
splicing, refers to the process of producing different mRNA
isoforms, which has been found widespread in metazoan,
including human, plants, animals, and fungi, and plays
important roles in controlling cellular differentiation and
organismal development [1, 2]. Alternative splicing is also a
critical method of posttranscriptional regulation, which may
transform products of a coding gene to protein isoforms
deactivated or delocalized by varying exons composition
and mRNA isoforms with no translations or degraded by
nonsense-mediated decay (NMD) [3–6]. It has been

reported that in humans most multi-exon genes are alter-
natively spliced, and only 60% of the spliced products will
encode protein isoforms [7, 8]. Alternative splicing involves
seven basic splicing patterns [8], including alternate
acceptor sites (AA), alternate donor sites (AD), alternate
promoter (AP), alternate terminator (AT), exon skipping
(ES), mutually exclusive exons (ME), and retained intron
(RI) (Supplementary Fig. S1B). Although the mechanisms
of AP have been reported to be different from those of
typical alternative splicing, they both involve the alternative
use of variable exons and production of different protein
isoforms with distinct functional activities [8, 9]. Since the
processed alternative splicing data include the AP splicing
method, we have retained these seven splicing modes
throughout the article.

The different protein isoforms produced by alternative
splicing may have varied or even opposite biological
functions, which greatly generating abundance and com-
plexity of the organism’s protein–protein interactions [3].
However, splicing abnormalities producing irregular protein
isoforms may also lead to many diseases, including cancers
[10]. Many researches indicated that outlier alternative
splicing of cancer-related genes involve in regulation of
various biological processes, prediction of cancer prog-
noses, and treatment responses. For instance, alternative
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splicing of exon 2 (AD) of BCL2 causes the upregulation of
antiapoptotic BCL-XL in tumors, leading to apoptosis tol-
erance of tumor cells [11]. Compared with prostate cancer
patients that characterized as a negative androgen receptor
variant-7 (AR-V7), in our previous study, the AR-V7-
positive patients suffered significantly lower PSA response
rates to androgen-deprivation therapy and worse survival
for castration-resistant prostate cancer (CRPC) [12].

In recent years, many anticancer target drugs have been
developed based on genetic alterations including gene
mutations, and altered genes expression, drugs targeting
PD-L1 is a powerful example. Determining the molecular
mechanisms and regulatory networks of alternative splicing
is necessary for designing individual treatments targeting
cancer-related splicing events. With the flourishing of
algorithm explored for detecting alternative splicing,

currently, several comprehensive analyses were performed
in cancers focused on the landscape of alternative splicing
in genetic alterations, tissue specificity and splicing reg-
ulatory networks. For example, a pan-cancer analysis in 32
human cancers by Kahles et al. showed that alternative
splicing events increased in TCGA tumors compared with
GTEx normal tissues and associated with identified varia-
tions of trans-acting factors [13]. Another team analyzed the
splicing quantitative trait loci (sQTLs) and explored a
database that provides informative resource for potential
relationships of SNPs and irregular spliced transcript iso-
forms in human cancers [14]. Jayasinghe et al. discovered
1964 mutations that induce evidently splice site creation
and produce alternative splice junctions among 32 TCGA
cancers by the developed tool MiSplice [15]. Prognostic
values of alternative splicing events were also analyzed in

Table 1 Cancer types integrated
in these study

Cancer type Full name Tumor
samples

Samples paired Samples with
clinical data

BLCA Bladder cancer 407 19 348

BRCA Breast cancer 1094 113 1055

COAD Colon cancer 459 41 436

HNSC Head and neck cancer 502 42 498

KICH Kidney chromophobe 67 25 65

KIRC Kidney clear cell carcinoma 534 72 525

KIRP Kidney papillary cell carcinoma 291 32 250

LIHC Liver cancer 372 50 330

LUAD Lung adenocarcinoma 515 57 486

LUSC Lung squamous cell carcinoma 502 49 474

STAD Stomach cancer 415 34 373

UCEC Endometrioid cancer 546 23 531

ACC Adrenocortical cancer 89 0 79

CESC Cervical cancer 256 0 250

CHOL Bile duct cancer 45 0 36

DLBC Large B-cell lymphoma 48 0 47

ESCA Esophageal cancer 181 0 166

GBM Glioblastoma 160 0 137

LAML Acute myeloid leukemia 178 0 165

LGG Lower- grade glioma 515 0 510

MESO Mesothelioma 87 0 85

OV Ovarian cancer 420 0 395

PAAD Pancreatic cancer 182 0 177

PRAD Prostate cancer 498 0 466

READ Rectal cancer 176 0 158

SARC Sarcoma 261 0 259

SKCM Melanoma 104 0 102

TGCT Testicular cancer 149 0 134

THCA Thyroid cancer 518 0 499

UCS Uterine carcinosarcoma 57 0 56

UVM Ocular melanomas 80 0 80

Total ~ 9708 557 9172
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some individual cancers, including non-small cell lung cancer
[16]. Integrated pan-cancer analysis about clinical relevance
of alternative splicing events, however, has not been reported
yet. To comprehensively and comparably explore clinical
relevant splicing events that may function in the tumorigen-
esis, progression, molecular classification, and prognostic
prediction of different cancer types, RNA-seq (level 3), clin-
ical information, and splicing data of 31 cancers were inte-
grated and analyzed in this study. Besides, a website (www.
oncosplicing.com) has been explored for Kaplan–Meier
plotting of splicing events in 31 human cancers.

Results

Profiles of alternative splicing events in 31 human
cancers

Integrated analysis of mRNA splicing profiles in 31 human
cancers were performed in patients of TCGA cohort

(Table 1). For different cancer types, the numbers of spli-
cing events ranged from 28,281 of UCEC to 50,342 of
ESCA. The most common splice type ES and the least
common type ME account for 34.5–41.4% and 0.3–0.6% of
total events, separately. The percentages of splice types AP,
AT, AA, AD, and RI account for the total events in different
cancers ranged by 15.8–20.8%, 16.8–27.6%, 7.6–8.4%,
6.3–7.3%, and 6.0–7.2%, respectively (Fig. 1a). We have
observed that proportions of different splice types varied
much more peaceably than that of the total splicing events
between these different cancers. The total sizes of splicing
events and genes across these 31 cancers were 64,174 and
12,692, separately, and the intersection size was 21
908 splicing events within 6693 genes. For most splicing
events crossed in two or more cancer types, only a few
events were found cancer specific. LGG have 1166, but
both of COAD and BLCA have zero exclusive events
compared with other cancers (Fig. 1c). Furthermore, we
found that the ratio of average events and average genes of
31 cancers fluctuated significantly among splice patterns

Fig. 1 Profiles of alternative
splicing events in 31 cancers. a
The numbers and proportions of
splicing events in different
splice types. b Comparison of
average splicing events and
allied genes of 31 cancers and
their ratios between different
splice types. c The numbers of
cancer-specific events in
different cancers. There are
21,908 (central circle) events
shared commonly between 31
cancers, but only a few events
were cancer specific (inner
circles) for each individual
cancer. The numbers in the
medial circles represent that the
total events of each cancer,
except commonly shared events
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ranging from 1.02 of ME to 2.54 of ES (Fig. 1b; Supple-
mentary Fig. S2A).

There were 12,692 genes (a half of the known ~20,530
coding genes) detected with splicing events spreading in
these 31 cancers. The numbers of gene allied events were
5.05 in average and 685 in maximum, and most genes were
detected with more than two splicing events (Supplemen-
tary Fig. S2B). Upset graph and heatmap were used to
display the distribution of spliced genes in different splice
types (Supplementary Fig. S2C, D). Though many genes
were spliced in multi different types, there were still 4636
genes that spliced singly by one of the seven pattern, the
most 2175 of which were spliced in ES. Events number of
genes spliced in ES were significantly larger than that in
other splice types.

Different alternative splicing events in 12 cancers

Different alternative splicing events (DASEs) were defined
as median PSI value varied more than 0.1 between tumor
tissues and adjacent normal tissues and corrected p-value
< 0.05, which was assessed by Wilcoxon test and corrected
for multiple testing by Benjamini–Hochberg method. These
cancers with paired samples more than 20 were contained in
this analysis, including BLCA (19 paired samples), BRCA,
COAD, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, LUSC,
STAD, and UCEC (Table 1). There were an average of
1924 DASEs in these 12 cancers ranged from 1036 of LIHC
to 3471 of LUSC (Fig. 2a).

To describe the different potential mechanisms of
tumorigenesis of these cancers, genes related to cancer-
specific DASEs were submitted to DAVID website (https://
david.ncifcrf.gov/) for enrichment analyses, separately [17].
The comparison of top five KEGG pathways enriched in
each cancer showed that there were several communal
pathway terms in many cancer types (Supplementary Fig.
S3B). For example, adherens junction and focal adhesion
pathways were found enriched in more than six cancers. In
STAD, genes were characteristically enriched to the cGMP-
PKG signaling pathway; in UCEC genes were character-
istically enriched to the MAPK signaling pathway; and in
KIRC genes were characteristically enriched to the PPAR
signaling pathway. Similarly, these genes of each cancer
were variably enriched to different GO pathway terms
(Supplementary Fig. S3A). Furthermore, a clustering algo-
rithm named molecular complex detection (MCODE) was
used to detect densely connected regions correspond to
known molecular complexes in the large protein–protein
interaction networks [18]. Genes related to DASEs were
submitted to Metascape (a website for gene annotation &
analysis, http://metascape.org) for MCODE analysis. The
results showed that genes of the largest sets MCODE1 and

MCODE2 of LIHC were mostly enriched in cell cycle and
mRNA splicing pathways (Fig. 2b, c and Table 2).

DASEs of 574 cancer-related genes (CRGs) were also
analyzed in the 12 cancers. A total of 398 DASEs within
184 CRGs were involved in one or more cancer types
(Supplementary Table S1). These DASEs that spliced in
more than five cancers were shown using bubble plots (Fig.
2d). When compared with adjacent normal tissues in most
cancers, the trends were consistent for most upregulated or
downregulated DASEs in tumor tissues, except for the
splicing of TPM4, PBRM1, NCOR2, and CASP8 in KIRC.

Survival-associated alternative splicing events in 31
cancers

Survival-associated alternative splicing events (SASEs)
were derived from univariate cox regression analysis with
p-value < 0.05 (wald χ2 test). There are average 1580
SASEs of these 31 cancers ranged from 440 of DLBC to
7391 of KIRC, including the second most 5363 of LGG
(Supplementary Fig. S4A, B). Fewer SASEs were found
overlapping with DASEs for each type of the 12 cancers
(Supplementary Fig. S4C).

There were more than one splicing event for most
splicing-related genes (Supplementary Fig. S2B). To study
the varied functions of allied splicing events, genes related
to SASEs with good or poor survival were analyzed,
respectively, in each cancer type. There were 4417 genes
found with survival-bipolar events in different cancers, and
totally 11,384 times in 31 cancers (Fig. 3a). Importantly,
these survival-bipolar genes are mostly associated with
splicing events involved in pattern AP or AT (Fig. 3d).
These results validating that irregular alternative splicing of
a coding gene would deactivate the product function and
even reverse it in some conditions. Furthermore, there were
506 paired survival-bipolar events of 189 validated CRGs
found in 31 cancers and 57 of them with p-value < 0.001 in
13 cancers were integrally displayed (Fig. 3b; Supple-
mentary Table S2). Kallikrein-related peptidase 2 (KLK2),
for example, was considered as an important biomarker of
prostate cancer and associated with bone metastasis of
CRPC [19, 20]. KLK2 allied SASEs KLK2_51234 (AT)
and KLK2_51239 (ES) were found survival opposite in
PRAD (Fig. 3c). Speckle-type BTB/POZ protein (SPOP)
that promotes tumorigenesis of renal cancer is a potential
target for tumor therapy [21]. SPOP allied events
SPOP_42302 (AP) and SPOP_42303 (AP) were found as
two survival-bipolar events in KIRC (Fig. 3c). It is also
notable that survival-bipolar events of few genes may also
appear oppositely in different cancers, such as
TFEB_76123 (AT) and TFEB_76124 (AT) in LAML and
PRAD.
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Fig. 2 Different alternative splicing events (DASEs) in the 12 cancers.
dasTN represents median PSI values differed in tumor tissues and
adjacent normal tissues. a The numbers of DASEs and allied genes in
different 12 cancers are shown by bar plots. b,c Molecular complex

detection between genes related to DASEs of LIHC. d Twenty-eight
DASEs of cancer-related genes in more than five cancer types are
shown in the bubble plot

6682 Y. Zhang et al.



Clinical relevant splicing events identified in the 12
cancers

TNM-stage system, a standard reference for treatment
decision and prognosis prediction, is widely used for clas-
sifying cancer patients. Patients in stage IV, often found
with metastasis in most cancers, may surfer much shorter
survival and worse life quality, whom need much more
specific individual treatment. Splicing events with median
PSI varied more than 0.1 and corrected p-value < 0.05
between stage IV and non-stage IV patients were considered
as advanced stage-related events (AASEs) in our study.
There are average 70 AASEs of 8 cancers ranged from 17 of
COAD to 148 of KIRC.

Splicing events that involved in any one of the DASEs,
SASEs, and AASEs were considered as clinical relevant
events, which appeared in more cancer types may asso-
ciated greater significantly with tumorigenesis or clinical
prognosis [22]. Totally, there are 95 splicing events of 65
genes that relevant to clinical characters in ten and more
cancer types (Fig. 4). Given SASEs and AASEs are much
more characteristic for each cancer, those clinical relevant
events were mostly involved in DASEs. Furthermore, there

are 83 splicing events of 51 CRGs that relevant to clinical
characters in 5 and more cancers (Supplementary Fig. S5A).
GO enrichment analysis showed that these cancer-related
genes were mainly enriched in regulation of the transcrip-
tion pathway (Supplementary Fig. S5B).

Splicing events potentially used for molecular
classification

Pan-cancer clustering analysis for molecular subtype clas-
sification of protein expression data and genome variations,
including mRNA/ncRNA expression, mutation, DNA
methylation, and copy number alterations, have been per-
formed in several studies [22–25]. Alternative splicing is an
important regulator of gene expression of coding or non-
coding genes and proportions of protein transforms, which
may work in molecular classification. In our study, we
performed an unsupervised hierarchical clustering analysis
first between 31 cancers by mean PSI values based on the
most varied 1590 splicing events (Supplementary Fig.
S6A). These events appeared significant tissues specificity
especially in cancers of blood and central nerve system. By
using consensus k-means clustering method furtherly, a

Table 2 Top three GO pathways
of molecular complex detection
in LIHC

MCODE GO Description Log10(P)

MCODE_1 R-HSA-68886 M phase −17

MCODE_1 R-HSA-69278 Cell cycle, mitotic −16

MCODE_1 R-HSA-1640170 Cell cycle −15

MCODE_2 GO:0044283 Small-molecule biosynthetic process −7

MCODE_2 R-HSA-72163 mRNA splicing–major pathway −5.5

MCODE_2 R-HSA-72172 mRNA splicing −5.4

MCODE_4 GO:0006614 SRP-dependent cotranslational protein targeting to the
membrane

−18

MCODE_4 GO:0006613 Cotranslational protein targeting to the membrane −18

MCODE_4 R-HSA-1799339 SRP-dependent cotranslational protein targeting to the
membrane

−18

MCODE_5 GO:0010256 Endomembrane system organization −5.2

MCODE_5 GO:0006997 Nucleus organization −5.1

MCODE_5 R-HSA-8856828 Clathrin-mediated endocytosis −4.9

MCODE_6 R-HSA-211945 Phase I–functionalization of compounds −5.8

MCODE_6 GO:0006805 Xenobiotic metabolic process −5.6

MCODE_6 GO:0071466 Cellular response to xenobiotic stimulus −5.1

MCODE_7 R-HSA-983168 Antigen processing: ubiquitination & proteasome degradation −7.6

MCODE_7 GO:0000209 Protein polyubiquitination −7.6

MCODE_7 R-HSA-983169 Class I MHC-mediated antigen processing and presentation −7.3

MCODE_8 GO:0043401 Steroid hormone-mediated signaling pathway −6.4

MCODE_8 GO:0009755 Hormone-mediated signaling pathway −6

MCODE_8 GO:0071383 Cellular response to steroid hormone stimulus −5.9

MCODE_9 R-HSA-373076 Class A/1 (Rhodopsin-like receptors) −5.6

MCODE_9 R-HSA-418594 G alpha (i) signaling events −5.3

MCODE_9 R-HSA-500792 GPCR ligand binding −5.2
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Fig. 3 Survival-associated alternative splicing events (SASEs) in 31
cancers. a The numbers of genes with at least two survival-bipolar
SASEs and genes with only survival good or poor SASEs of each
cancer type are shown by bar plots. b Sixty-seven SASEs of 58
survival-bipolar cancer-related genes in 13 cancers with P (p-value)
< 0.001 were integrally displayed. P-values and HRs were derived

from univariate cox regression analysis. c SPOP in KIRC and KLK2 in
PRAD were listed as two examples to show gene allied splicing events
with opposite survival results. d The number of genes with survival-
bipolar events in different splice pattern. AT-AT and AP-AP were the
most two patterns producing survival opposite events
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total of 9172 tumor samples with clinical data in 31 cancers
were clustered in different 12 clusters based on the most
varied 1590 splicing events (Fig. 5a; Supplementary Fig.
S6B, C). For most clusters, they clustered with different
types of cancer samples symmetrically such as clusters C1-
3. For cluster C12, C11, and C4, however, they

predominately clustered with LGG, GBM, and LAML,
respectively (Supplementary Fig. S6D). For most cancer
types, they were clustered to different clusters similarly,
except specific cancers like LGG, GBM, and LAML (Fig.
5a, b). Interestingly, COAD, READ, ESCA, STAD, UCEC,
and OV were similarly clustered together to C10, C6, C1,

Fig. 4 Frequencies of clinical relevant events in the 12 cancers. There are 95 splicing events of 65 genes in more than 9 cancers. NA none, DASEs
different alternative splicing events, SASEs survival-associated alternative splicing events, AASEs advanced stage associated splicing events

Pan-cancer analysis of clinical relevance of alternative splicing events in 31 human cancers 6685



Fig. 5 Clustering analysis in 9172 samples of 31 cancers based on
1590 most varied events revealed potentials of alternative splicing for
molecular subtypes classification. a Distribution of cancer types by
clusters are shown in heatmap and annotations. Top 200 cluster-
specific events of cluster C3 and C12 are marked by rectangles. b The
proportion of each type of cancer that clustered in different clusters. c

Different clinical outcomes of 12 clusters are shown by Kaplan–Meier
plot. Samples in cluster C12 were considered with the best survival,
while samples in C3 suffer the worst survival. d GO enrichment
analyses of genes related to cluster-specific events of cluster C3 and
C12 were performed, respectively, and top ten terms of each cluster are
displayed in bubble plots

6686 Y. Zhang et al.



and C3. Thus, we furtherly analyzed microsatellite
instability (MSI) signatures of those samples in COAD,
READ, ESCA, STAD, and UCEC, which were attached
with MSI information in clinical data sets, and observed that
the MSI-high (MSI-H) account for a larger proportion in
cluster C3 than other clusters (Supplementary Fig. S6E).

Kaplan–Meier plot showed that samples in cluster C12
have significantly better survival, while samples in cluster C3
oppositely have worse survival (Fig. 5c). To identify cluster-
specific events that may contribute to those two opposite
results, Mann–Whitney test was performed between cluster
C3 vs non-C3 and C12 vs non-C12 samples, and top
200 splicing events with the most significant p-value were
identified and ranked (Fig. 5a). Enrichment analyses showed
that genes of cluster C12 specific events were mainly enri-
ched to the cell–cell adhesion pathway. Genes of cluster
C3 specific events were mainly enriched to terms of protein
transport and regulation of proteinase activity. Though quite
different of the enriched genes (C3: SEC23A, SEC31A,
LGMN, DCTN5, DCTN6; and C12: SEC31A, AP1B1,
DCTN1, DCTN2), both of these two clusters significantly
enriched to term of antigen processing and presentation
exogenous peptide antigen via MHC class II, indicating that
regulations of immune responses by alternative splicing play
important roles in tumor patients’ survival (Fig. 5d).

Splicing networks constructed by RNA-binding
proteins and splicing events

RNA-binding proteins (RBPs) including splicing factors
(SFs) are trans-acting factors that influence splicing sites
selection by recognizing trans-regulatory elements of the
pre-mRNA to regulate alternative splicing. There are thus
far about 1355 genes encoding known and predicted RNA-
binding proteins, including 228 splicing factors [26, 27].
Though alternative splicing regulated by lncRNA or histone
modification were reported recently, it is common sense that
the mainly regulators of alternative splicing are still RBPs
[28]. Correlation analysis of RBPs and splicing events have
been implemented to explore potential disease-related spli-
cing regulatory networks in several researches [16, 27].

To efficiently identify the potential relationships between
splicing events (PSI value) and specific RBPs (mRNA
level), we supposed that the more cancers involved, the
greater significantly to identify RBPs-splicing regulatory
networks. Therefore, correlations of PSI values of the spli-
cing events and mRNA levels of the specific RBPs were
calculated separately in 31 human cancers, and each network
with correlation coefficient >0.7 or <−0.7 were recorded.
Finally, significant RBP-splicing networks in more than 11
cancers were shown integrally (Fig. 6a, b). Specially, for
known splicing factors, the networks in more than four
cancers were also reported (Supplementary Fig. S7A, B).

Prognostic signatures constructed by SASEs
predicting clinical outcomes

Prognostic signatures constructed by abnormal gene
expression, mutation, and methylation were reported in
many researches. Recently, prognostic signatures of alter-
native splicing were studied to predict clinical outcome in
several tumors [16]. Generally, these signature-composed
splicing events were selected by ranking p-value (pRank)
that generated from univariate cox regression model, which
was restricted to widely use especially for a larger number
of variables. For a huge dimension data, there are 2n ways
of combination for n variables, which is intractable to
choose an applicable one as the optimal predicting sig-
nature. In our study, we have implemented a machine-
learning method named random forest survival model
(rfsModel) to identify critical events for efficiently sig-
nature constructing. For comparing, AUCs at 1, 3, 5 years
of signatures constructed by rfsModel and pRank were
calculated in 31 cancers, respectively. Significance of dif-
ferences of AUCs derived from these two methods was
accessed by paired sample Student’s test in each type of
cancer (Fig. 7a). Splicing events consisted in prognostic
signatures with best performance were integrally presented
(Supplementary Table S3). The results showed that
rfsModel was better than pRank when comparing AUCs of
their signatures in many cancers. BLCA, for example, there
were 17 SASEs selected by rfsModel to construct pre-
dicting signature. The AUC values of this signature for
survival prediction were 0.86, 0.87 and 0.90, separately, at
1, 3, and 5 year. Kaplan–Meier plot showed that patients
with high risk and low risk have quite different survival
(Fig. 7b, c).

Different splicing of KRAS, TCF7L2, and NUMA1
validated in renal cell carcinoma

In colorectal cancer, prognostic value of KRAS splicing
was reported that low relative KRAS-4A expression was
associated with higher level of KRAS signaling and lower
overall survival [29]. In the analysis section of different
alternative splicing events in this study, 398 DASEs within
184 CRGs were identified across 12 cancer types (Supple-
mentary Table S1). For splice type ES, KRAS_20820_ES,
TCF7L2_13156_ES, and NUMA1_17515_ES were three of
the most significant DASEs in KIRC. RT-PCR analysis
revealed that the shorter isoforms of KRAS and TCF7L2
were highly expressed in tumor tissues compared with
adjacent normal tissues of KIRC patients, while the shorter
isoform of NUMA1 was lowly expressed in tumor tissues
(Fig. 8a–c). It is still unclear whether the alternative splicing
of these genes is the cause or result of tumorigenesis.
Therefore, more work needs to be done to explore how
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alternative splicing of these genes can play a role in the
development of renal cell carcinoma.

Discussion

Alternative splicing represents a critical posttranscriptional
regulation of gene expression. Defects of alternative

splicing contribute to numerous diseases including cancers.
Many years recently, difficulties in precision detection and
quantitation of alternative spliced mRNA isoforms restrict
the application of alternative splicing in tumor diagnosis,
prognosis prediction, and targeting treatment. Based on
RNA-seq data, several algorithms to detect alternative
splicing have been explored, including SpliceSeq [30],
Cufflinks [31], SplAdder [32]. Instead of detecting mRNA

Fig. 6 RBPs-splicing regulatory networks identifying in 31 cancers. a
Splicing regulatory networks with correlation coefficients of RBPs and
splicing events > 0.7 in more than seven cancers. b Splicing regulatory

networks with correlation coefficients of RBPs and splicing events <
−0.7 in more than seven cancers

6688 Y. Zhang et al.



isoforms, however, these algorithms were applied for spli-
cing events, using PSI to describe the inclusion or exclusion
of exons, not to mention the quantitative analysis of iso-
forms. Therefore, the precise prediction and deterministic
causality of cancers based on splicing events are still chal-
lenged. More recently, a comprehensive study of splicing
events accompanying with genetic alterations were per-
formed using SplAdder, which had detected five alternative
splicing patterns (AA, AD, ES, ME, and RI), excluding AP
and AT [13]. The mechanisms involved in AP and AT may

be different from those of the other splicing modes, but they
all result in variable exons using and producing of different
protein isoforms. AP and AT also known as AFE and ALE,
separately, both of which often confer splicing isoforms
specific localization and control survival and migration of
cancer cells [33–36]. In our study, we have found that a
large number of splicing events in AP and AT were clinical
relevant in cancers, which may function in tumor genesis
and development. Alternative splicing of DNAJB6 (AP)
modulated by CDK12, for example, promoted migration

Fig. 7 Critical events selecting and prediction signatures constructing
in 31 cancers. a AUCs at 1, 3, 5 years of each cancer-specific pre-
diction signatures constructed by pRank and rfsModel were compared
by median with range in bar plots. Paired samples Student’s test were
implemented for accessing the significances. “**”p < 0.01; “*”p <

0.05; “.”p < 0.1. b Predicting signature for BLCA constructed by
rfsModel was valued by AUCs at 1, 3, 5 years and showed by time-
dependent ROC curve. c Predicting signature for BLCA constructed
by rfsModel was evaluated by Kaplan–Meier plot. Patients in high risk
suffer a significant worse survival than the low risk
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capacity and invasiveness of breast tumor cells [36]. All
these data indicate that alternative splicing including spli-
cing events in AP and AT play important roles in tumors.

CRGs represent a catalogue of genes with mutations that
causally implicated in one or more cancer types. Genetic
alterations including irregular alternative splicing of many
genes especially for CRGs, that change genes expression or
activity, were involved in cancer development and progression
and used for tumor causality analysis. For instance, alternative
splicing of exon 8 (AA) of VEGFA transform its anti-
angiogenic function in normal tissues to angiogenesis function
in tumors [37]. Alternative splicing of exon 9 of spleen tyr-
osine kinase (SYK) producing two different isoforms: the
longer isoform SYK-L promoting cancer cells survival and
tumor malignancy and the shorter isoform SYK-S inducing
apoptosis of cancer cells [38]. Given tissue specificity of
alternative splicing and locality of splicing events, the same
splicing events were also reported with varied functions in
different cancers in previous studies and in our analysis.

A number of splicing events were found survival asso-
ciated and/or differentially spliced in tumor tissues. For
example, PBRM1 that involved in transcriptional activation
and negative regulation of cell proliferation was found
second most mutated in KIRC [39]. Inactivation of PBRM1
were reported associated with tumor aggressiveness and

advanced stage of KIRC [40–42]. When blast exon
sequence of PBRM1 to Ensembl database, exclusion of
exon 28 and 29 of PBRM1 (lower PSI of PBRM1_65236)
resulting defect of high mobility group (HMG) box domain,
which is essential for DNA binding of PBRM1 [43], were
found overregulated in KIRC (lowed PSI of PBRM1_65236
in tumors).

Nonsense-mediated mRNA decay (NMD) is one of
conserved RNA surveillance system, which recognizes and
eliminates deleterious mRNA isoforms that contain pre-
mature translation termination codons (PTCs) [44, 45].
Defects in NMD pathways, including genetic alteration of
UPFs (UPF1, UPF2, UPF3A, and UPF3B) that compile the
most important complex function in NMD, producing
accumulation of toxic truncated proteins, were confirmed
associated with cancers [4, 46–48]. PTCs were often
introduced by cassette exon or retained intron as well as
nonsense mutations or frame‐shift mutations [49, 50].
Derived from alternative splicing, ~30% of mRNA isoforms
have been estimated to contain a nonsense codon (PTC)
gave rise to NMD [51]. For example, increase expression of
polypyrimdine tract binding protein (PTBP1) targeting itself
leads to the skipping of exon 11 of PTBP1 pre-mRNA,
which in turn induces a frameshift and a PTC within exon
12 and results NMD consuming redundant PTBP1 products

Fig. 8 Validation of different splicing of KRAS, TCF7L2, and
NUMA1 in renal cell carcinoma. a The shorter isoforms of KRAS and
TCF7L2 were found highly expressed while the shorter isoform of
NUMA1 lowly expressed in tumor tissues by RT-PCR analysis. b

Wilcoxon signed rank test validated that different alternative splicing
of KRAS, TCF7L2, and NUMA1 was significant in human samples. c
Sanger sequencing conformed the sequence information of alternative
splicing of KRAS

6690 Y. Zhang et al.



[6]. Thus, alternative splicing producing varied transcript
isoforms not only contribute to diversity of proteins but also
participate in regulation of gene expression by cooperating
with the NMD pathway.

KLK2 encodes protein hk2 which consist 261 amino
acids (isoform KLK2-201). Genetic alterations of KLK2
were verified to be associated with prostate cancer as well as
KLK3 encoding protein prostate-specific antigen (PSA)
[52]. In our study, we found that inclusion of exon 2.2
(higher PSI of KLK2_51239) and AT splicing of exon 4.4
(higher PSI of KLK2_51235) were both associated with
worse survival of prostate cancer, while AT splicing of exon
5 (higher PSI of KLK2_51234) was related to better sur-
vival. When blast exon sequence of KLK2 to Ensembl, we
found that AT splicing of exon 5 was associated with
integrality (isoforms KLK2-201 and KLK2-203), while
inclusion of exon 2.2 (isoform KLK2-205) and AT splicing
of exon 4.4 (isoforms KLK2-208,214) were associated with
nonsense-mediated mRNA decay of KLK2. Furthermore,
correlation analysis showed that expression of UPFs in
PRAD were significantly positively correlated with
KLK2_51239, while negatively correlated with
KLK2_51234, especially for UPF3B (Supplementary Fig.
S8). Thus, we infer that inclusion of exon 2.2 (86 base) of
KLK2 (higher PSI of KLK2_51239) induces a frameshift
and a PTC (codon: TAA), resulting NMD and regulating
gene expression of KLK2 in prostate cancer.

In normal, alternative splicing varied transitionally when
tissues development contribute to the acquisition of adult
tissue functions and identity [1, 53]. Continuous evolving
produces tissue-, cell-, and development-specific alternative
splicing and regulatory networks by RBPs, which involved
in tissues normal development and disease genesis. For
example, thousands of cell-specific alternative splicing
events were identified between neuronal and nonneuronal
cells, and SLM2 individually activating a highly cell-
specific alternative splicing program was reported to control
the properties of glutamatergic synapses [54, 55]. Tissue
specificity of splicing networks regulated by RBPs were
also illustrated, that 90% of totally 82 tissue-specific RBPs
were identified in germline, brain, muscle, bone marrow, or
liver cells, indicating tissue specificity of numerous alter-
native splicing events targeted by these RBPs [26]. Simi-
larly in our study, LGG, GBM, and LAML that derived
from blood and brain systems significantly characterized
from other solid tumors and clustered predominately in
specific clusters, such as C12, C11, and C4. Furthermore,
cancers of the digestive system such as COAD, READ,
STAD, and ESCA that commonly ascribed with similar
characteristics were clustered closely together. We also
observed LUSC, CESC, and HNSC that derived from dif-
ferent tissues were clustered to the same clusters tagged by
pathologic characteristic of squamous cell carcinoma. These

results indicating that a number of splicing events are tissue-
and/or cell-specific and benefit to molecular classification of
cancers.

The RBPs wear many hats for regulations of post-
transcriptional modification and RNA processing. Defection
of RBPs including mutations and altered expression com-
monly associated with irregular alternative splicing as well
as mutations in pre-mRNA splice sites among cancers
[14, 15, 27]. RBPs were also reported to control each oth-
er’s function and expression at several levels, including by
synergistic or antagonistic modulation of their binding
activities and by mutual or automatic splicing [6, 27]. For
the 20,530 coding genes of 31 cancers, there are 64,174
events within 12,692 (61.8%) genes in total. While for the
1355 RBPs, there are 6467 splicing events within 1032
(76.2%) genes, which indicate that RBPs are preferred
genes for splicing. Similarly, genes allied to significant
different splicing events in different cancers enriched to the
mRNA splicing pathway (Table 2), regulation of RNA
splicing or mRNA splice site selection (Supplementary Fig.
S3) pathways, indicating that irregular splicing of these
RNA regulatory genes may play important roles in tumor
genesis and development.

Compared with the enormous number of detected alter-
native splicing events, however, only a few irregular spliced
isoforms have been validated as direct contributors to
tumors. Here, we have identified numerous of clinical rele-
vant splicing events especially for events of CRGs, which
may function as tumor suppressor or cancer driver events in
specific cancers. We have also explored an online resource
for visualization of clinical relevance of splicing events,
which could be used for identifying cancer relevant events
by combining with genetic information. The increasing
efforts to identify cancer-related defects in pre-mRNA spli-
cing and develop new chemotherapies targeting the varied
alternative splicing would offer more individual treatments
for cancer patients. Indeed, these fields have recently offered
many new therapeutic opportunities, including RNA-
binding regulators, anti-sense oligonucleotides, molecules
against core spliceosome machinery, and chemical inhibitors
of splicing factors kinase [56, 57]. By the development of
detecting alternative splicing, especial for the increasing
application of single-cell sequence and long-read sequence,
there will be many more cancer-related splicing isoforms
identified and targeted in the future [58, 59].

Materials and methods

Data obtaining and processing

Splicing data indicated as percent splice in (PSI) for all
cancers were obtained from the SpliceSeq database
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(http://bioinformatics.mdanderson.org/TCGASpliceSeq/
index.jsp). The PSI value of a splicing event, representing
the relative expression level of a longer transcript (Sup-
plementary Fig. S1C), is an intuitive ratio for calculating the
splicing efficiency of a gene sequence into a transcript
isoform [30, 60]. The primary PSI data with no more than
25% missing values were analyzed. In total, 9708 tumor
samples of 31 cancers and 557 paired tumor and adjacent
normal samples of 12 cancers were available for analysis. In
most cancer types, about 80% splicing events were found
with values in more than 90% samples, which were main-
tained to performing further analyses (Supplementary
Fig. S1A). Events with standard deviation more than 0.05
were used in the survival study, and the missing values were
filled up with average PSI value of each events. Samples
were then divided into two groups (indicated by 0= lower
and 1= higher) by the median of PSI values for univariate
cox regression analysis and Kaplan–Meier plot. Besides,
clinical data and level 3 RNA-seq data of 31 cancers were
obtained from TCGA cohort by UCSC Xena website. Known
cancer-related genes (tier= 1) were obtained from COSMIC
database (https://cancer.sanger.ac.uk/cosmic/download).

Differential and survival-associated splicing events

Twelve cancers (including BLCA that with 19 paired
samples) with more than 20 paired tumor and adjacent
normal tissues were analyzed to identify different alter-
native splicing events (DASEs). Wilcoxon test was per-
formed to evaluate the significances of DASEs in paired
tumor and adjacent normal tissues, and
Benjamini–Hochberg method was used to correct for mul-
tiple testing. Splicing events with varied median PSI > 0.1
in absolute and corrected p-value < 0.05 were considered as
significant different alternative splicing events (DASEs)
[27]. Univariate cox regression analyses were performed for
splicing events with standard deviation >0.05, and percent
samples with values >90% by the survival package in R
software. Survival-associated splicing events (SASEs) were
identified with p-value < 0.05. For patients with clinical
events of overall survival less than ten in PRAD, TGCT,
and THCA, cox regression analyses and Kaplan–Meier
plots of these cancers were performed based on recurrence
free survival data.

Identification of clinical relevant splicing events

Advanced stage associated splicing events (AASEs) were
identified in eight cancers (BLCA, BRCA, COAD, HNSC,
KIRC, LUAD, STAD, and UCEC), of which there are
>20% or absolute 20 patients in stage IV. Median PSI
values were calculated in stage IV and non-stage IV

patients, separately, for each splicing event, and
Mann–Whitney test was used to evaluate the difference in
two groups, and Benjamini–Hochberg method was used to
correct for multiple testing. As result, splicing events with
PSI values varied >0.1 and corrected p-value < 0.05 were
considered as significant AASEs. Splicing events that
involved in any one of the DASEs, SASEs, and AASEs
were considered as clinical relevant events. Clinical relevant
events that appeared in more cancers were depicted as more
critical cancer-related events that may associated with
tumorigenesis or prognosis [22].

Clustering analysis and identification of cluster-
specific splicing events

Average PSI value of each events in all cancer types were
calculated separately, then standard deviation of average
PSI value between these cancers were calculated, and
1590 splicing events with standard deviation (s.d.) >0.1
were considered as most variable events and selected for
further study. Unsupervised hierarchical clustering were
performed first between mean PSI of these 31 cancers based
on the 1590 splicing events. By the consensus k-means
clustering method (using the “ConsensusClusterPlus” R
package), furthermore, the 1590 splicing events with the
most variation were taken for clustering analysis in 9172
tumor samples with clinical data of 31 cancers. Consensus
matrix and delta area plots affiliated to Consensu-
sClusterPlus program were used for selecting k-value of
clustering. For cluster C3 and C12, Mann–Whitney test was
performed to identify top 200 significant cluster-specific
events.

Critical splicing events identified by random forest
survival analysis

To professionally recognize the panel of splicing events
with optimal clinical prognostic value from the char-
acteristic SASEs, we performed a random forest survival
analysis using machine-learning algorithm, which is a
highly integrated method. A developed R package named
RandomForestSRC was used in this study. First, whole
SASEs were selected to construct the random forest sur-
vival model (rfsModel) (parameters setting: ntree= 1000,
mtry= p/3, and nodesize= 3, p represent number of
SASEs). Second, formula var.select() depending on
minimal tree depth algorithm was used to identify
important variable (parameters setting: method= “vh” and
nrep= 100). The top important variables selected were
furthermore used to fit a multivariate coxPH model finally,
and variables with p-value < 0.1 were considered as
individual prognostic factors.
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Prognostic signatures generation

The traditional method that the most significant SASEs
ranked by p-value (pRank) were further fit a multivariate
cox regression model in each type of cancer separately,
generating a panel of signature to predict clinical outcome.
We also constructed another signature in each cancer with
critical SASEs selected by the rfsModel. The area under
receiver-operating characteristics curve (AUCs) of sig-
natures were calculated at 1, 3, 5 years, and compared by
paired sample Student’s test in each cancer. AUCs of each
signature constructed by these two methods were then used
to access their performance on predicting patients’ survival.
Risk scores of these signatures were calculated by coeffi-
cients of their component features and corresponding PSI
levels, by which patients were re-split into two groups: the
higher and the lower. Kaplan–Meier plots were generated to
evaluate their impacts on clinical outcomes.

Validation in human samples

Ten pairs of tumor and adjacent normal tissues were obtained
from KIRC patients treated at the Department of Urology of
Tongji Hospital (Wuhan, China) after their written informed
consent. All the tissues were kept in liquid nitrogen before
RNA extraction. The total RNA was extracted using Trizol
(Invitrogen, USA), and reverse-transcribed to cDNA using
revertase (TaKaRa, Dalian, China) as recommended by the
manufacturer. RT-PCR was performed in paired samples by
splicing-specific primers (Supplementary Table S4) using
2 × Green PCR Mix (Vazyme, Jinan, China). Splicing-
specific products were isolated by agarose gel electrophor-
esis and grayscale measurement by software Image J (Rawak
Software Inc., Stuttgart, Germany). Splicing isoforms iso-
lated by electrophoresis were recovered and performed
Sanger sequencing (Tsingke, Wuhan, China) to conform the
gene sequence of KRAS splicing.

Statistical analyses and visualization

Statistical analyses were performed using the R software
(version 3.4.2) and Python (version 3.6). The data visuali-
zation tools including the ggplot2, pheatmap, survival,
survminer, survivalROC, ConsensusClusterPlus, and ran-
domforestSRC packages of Rwere used in this study. Bar
and some other graphs of splicing landscape were visua-
lized by Graphpad Prism version 7.01 (GraphPad Software
Inc., San Diego, CA, USA).

Construction of online resource

The OncoSplicing website was developed in JSP using a
Struts2 framework and was deployed on a Tomcat 6.0.44

web server that ran under a Redhat 6.4 system. All data in
OncoSplicing were stored and managed by using MySQL
(version 5.7.18). Rserve (version 1.86) and two pieces of R
code were used to manage the results and visualization.

Code availability

Research code that was used to implement methods
described in this study is publicly available on GitHub:
https://github.com/yjzhang2013/OncoSplicing.
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