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Abstract
The chromatin state is finely tuned to regulate function and specificity for transcription factors such as oestrogen receptor
alpha (ER), which contributes to cell growth in breast cancer. ER transcriptional potential is mediated, in large part, by the
specific associated proteins and co-factors that interact with it. Despite the identification and characterisation of several ER
coregulators, a complete and systematic view of ER-regulating chromatin modifiers is lacking. By exploiting a focused
siRNA screen that investigated the requirement for a library of 330 chromatin regulators in ER-mediated cell growth, we find
that the NuRD and coREST histone deacetylation complexes are critical for breast cancer cell proliferation. Further, by
proteomic and genomics approaches, we discover the transcription factor TRPS1 to be a key interactor of the NuRD and
coREST complexes. Interestingly, TRPS1 gene amplification occurs in 28% of human breast tumours and is associated with
poor prognosis. We propose that TRPS1 is required to repress spurious binding of ER, where it contributes to the removal of
histone acetylation. Our data suggest that TRPS1 is an important ER-associated transcriptional repressor that regulates cell
proliferation, chromatin acetylation and ER binding at the chromatin of cis-regulatory elements.

Introduction

The transcription factor oestrogen receptor alpha (ER) is
known to be a primary driver in several breast cancer

subtypes and is present in >75% of all diagnosed cases [1].
Activation of ER by its ligand oestrogen leads to receptor
dimerisation and this subsequently elicits transcriptional
change by directly binding to chromatin [2]. ER activation
in breast cancer models lead to both activation and repres-
sion of genes [3]. In breast cancer, ER is routinely targeted
therapeutically, using direct ER antagonists such as
Tamoxifen or by inhibiting oestrogen synthesis using aro-
matase inhibitors (AIs) [1]. Although these treatments that
target ER activity have dramatically improved patient sur-
vival, response to therapy is variable and resistance to
hormonal therapy is common. Understanding the funda-
mental components of the ER complex and the factors
involved in mediating gene expression or repression is
essential for understanding treatment response differences
and for developing newer treatment strategies.

Recent studies have highlighted the importance of epi-
genetic regulation in cancer [4, 5]. Chromatin modifiers can
affect post-translational modifications of histones that are
associated with regulating chromatin accessibility in active
regions. Chromatin accessibility at ER-binding regions is
thought to be regulated prior to ER activation through the
help of pioneering transcription factors such as FOXA1 and
others [6]. This suggests that chromatin remodelling and
epigenetic mechanisms regulate and predetermine ER-
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binding capabilities. This is particularly important given
that ER-binding patterns are known to vary substantially
within tumours from women who have distinct treatment
responsiveness and clinical outcome [7].

Aberrant transcriptional activity in cancer is often linked
with mutations in chromatin regulators [8]. For example, the
H3K4 histone methyltransferase MLL2 and MLL3 are
mutated in 7.4% and 12.3% of breast cancers, respectively
[9]. We have recently identified a role for MLL3 in reg-
ulating ER activity [10, 11], suggesting that MLL3 muta-
tions may be directly influencing the transcriptional activity
of ER activity in cancer. Indeed, several chromatin reg-
ulators have been shown to influence ER activity. Compo-
nents of the SWI/SNF complex such as BRG1 and BRM
have been shown to regulate ER activity [12, 13] and are
often deregulated in cancer [14]. Chromatin modifiers and
readers are becoming viable drug targets and are currently
the subject of intensive and promising pharmacological and
clinical studies [15]. In vitro, Histone Deacetylase (HDAC)
inhibition or altering the methylation status of cancer lines
have been shown to reverse resistance to tamoxifen [16].
Recent studies targeting the ER cofactor BRD4 have
demonstrated promising results in both ER-negative and
relapsed ER-positive breast cancer [17–19]. The basis of ER
gene regulation is a dynamic and complex one and an
understanding of the epigenetic mechanisms underpinning
ER function is essential for exploiting chromatin regulatory
proteins as putative drug targets.

In this study, we take a multifaceted approach, involving
small interfering RNA (siRNA) screens, genomic and pro-
teomics approaches to identify the key chromatin regulators
involved in modulating histone acetylation and ER function
at enhancer elements within breast cancer cells. Our find-
ings reveal a critical nexus involving the NuRD and coR-
EST complex, which results in the discovery of TRPS1 as a
direct modulator of enhancer potential.

Results

We employed a high-throughput siRNA screen assay to
identify chromatin regulators implicated in ER-positive
breast cancer cell growth. Coupled with this genetic
approach, we also undertook a proteomic screening
approach called rapid IP-mass spectrometry of endogenous
protein (RIME) [20], allowing us to identify ER interactors
by pulldown and proteomics analysis (Fig. 1a) while
simultaneously revealing insight into which of these factors
have a functional role in breast cancer cell growth.

We systematically performed a siRNA-based genetic
screen for 332 chromatin regulators using the ER-positive
breast cancer cell line MCF7. This screen has been pre-
viously validated and used to identify chromatin regulators

in human epidermal stem cells [21]. Asynchronous MCF7
cells were transfected and subsequently grown for 5 days
after which cell viability was assessed using a cellular ATP
assay. A pool of three individual siRNAs were used against
each target factor and four replicates were performed.
Transfection plates were verified to have no position based
artefacts. Analysis of results indicated that siRNA treat-
ments resulted in both increased and decreased cell pro-
liferation (Fig. 1b) when compared with non-targeting (NT)
control siRNA. BRCA1, BRD4, CHAF1A, EP400, MLL2,
SMNDC1 and TDRD7 were among the top 10% of genes
where siRNA knockdown led to growth inhibition. As such,
these represent genes that are required for cell viability and
proliferation. Several of these factors such as BRCA1 and
BRD4 have been previously linked with the direct regula-
tion of ER, strengthening the validity of our screen [22, 23].
More recently, MLL2 has also been implicated as an
important factor in shaping the chromatin landscape for ER
binding [24]. Interestingly, siRNA knockdown of several
transcriptional repressors such as the members of the NuRD
and coREST complexes: CHD3, CHD4, LSD1, MTA1,
MTA2, RBBP7 also led to decreased growth (Fig. 1b). This
is in contrast to their perceived role as inhibitors of tran-
scription and cell growth and shows that each of these
putative co-repressor proteins are required for cell pro-
liferation. Given that multiple components of the NuRD and
coREST complex were identified, there is a clear need for
these complexes in ER-driven cancer cell growth.

We performed parallel proteomics experiments with the
aim of differentiating direct ER linked chromatin regulators
from secondary or ER-independent regulatory complexes.
Immunoprecipitation based mass spectrometry experiments
(RIME) of ER [20, 25] were performed and ER associated
chromatin complexes were compared with factors identified
in the siRNA screen (Fig. 1c). We found CHD4, LSD1,
MTA2 and RBBP7 to be interacting with ER and required
for sustained cell growth, as assessed in the siRNA library
screening approach. Thus, members of NuRD or coREST
complexes were identified from two independent screens to
be both essential factors for cell proliferation and compo-
nents of the ER complex (Fig. 1, Table S1 and Figure S1A).

We hypothesised that for ER to initiate both activation
and repression of transcription, sequence specific tran-
scriptional repressors may be involved in effecting this
distinction. As canonical components of the NuRD/coREST
complexes do not contain sequence specific transcription
factors, we analysed the ER RIME dataset for potential ER
interacting transcriptional repressors that could potentially
mediate the activity elicited by the NuRD/coREST com-
plex. As a result, we identified the transcription factor Tri-
chorhinophalangeal Syndrome I (TRPS1) to be a novel
interactor of ER. TRPS1 is a repressive transcription factor
possessing a GATA-like DNA-binding domain similar to
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GATA3, which has been extensively characterised as an
important ER coregulator [26, 27]. Furthermore, TRPS1
interacts with CTBP2 [28] and with HDAC1 and HDAC2
[29], suggesting that TRPS1 is part of a transcriptional
repression complex. In breast cancer, TRPS1 is expressed in
the luminal compartment of the mammary gland [30] and as
such, suggests that it may play a functional role with the ER
complex in vivo. Analysis of the METABRIC dataset (997
breast cancers) indicated that TRPS1 tends to be more
expressed in ER-positive breast cancer and in the luminal A
and B subtypes (Fig. 3d). The TRPS1 genomic region is
amplified in 575 tumours out of 2051 (28%) and this gene
amplification is significantly associated with poor survival
(log-rank test p-value: 1.923e-4). Moreover, a previous in
silico analysis combining a siRNA screen several cancer

genomics datasets predicted TRPS1 as an oncogene in
breast cancer and TRPS1 overexpression increases colony
formation in non-tumorigenic mammary gland cells
MCF10A [31].

To explore the putative functional role of TRPS1 in
breast cancer cells, we assessed whether TRPS1 is required
for cell proliferation. We performed Incucyte analysis of
cell growth in MCF7 cells after TRPS1 depletion. We found
that TRPS1 depletion slowed the growth rate of MCF7
cells, suggesting that TRPS1 is required for optimal cell
proliferation (Fig. 2a).

To explore the role of TRPS1 in breast cancer cells, we
performed TRPS1 RIME experiments to explore the inter-
actome and regulatory networks associated with this protein
[20]. We conducted TRPS1 RIME experiments in MCF7,
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T47D and ZR75-1 ER-positive breast cancer cells using a
commercial anti-TRPS1 antibody. TRPS1 was successfully
immunoprecipitated in all three cell lines, confirming the
validity of the experiment and the specificity of the TRPS1
antibody. TRPS1 was shown to interact with several com-
ponents of the NuRD and coREST complexes and this
result was consistent in all three cell lines and between
replicates. TRPS1 was found to physically interact with
CHD4, coREST, CTBP1, CTBP2, GATAD2B, HDAC2,
LSD1, MBD3, MTA1, MTA2, RBBP4, RBBP7 and
ZNF217 (Fig. 1c). We also identified transcription factors
such as COUP-TFII, FOXA1 and GATA3, which are key
ER complex components [26, 32, 33] to be TRPS1 inter-
actors. Although the interaction between TRPS1 Ikaros
domain and CTBP2 has been characterised previously [28],
we confirmed this interaction with the coREST complex by
a reciprocal RIME of the core coREST component ZNF217.
The ZNF217 RIME identified ZNF217 and several coREST
members (coREST, CTBP1, CTBP2, HDAC1, HDAC2,
LSD1), along with TRPS1, which was the second most
enriched protein after ZNF217 (Supplementary Figure 1C).

Based on the RIME data, we reasoned that the tran-
scription factor TRPS1 recruits the HDAC complexes
coREST and NuRD to the chromatin. Given that coREST
and NuRD components were essential for cell proliferation
based on the siRNA screen, the transcriptional role of
TRPS1 may be a modulator of ER activity. In order to
identify the genome-wide binding pattern of TRPS1 and to

assess potential chromatin interplay with the ER complex,
we performed chromatin immunoprecipitation (ChIP)
sequencing of TRPS1 in MCF7 and ZR75-1 cells (two
replicates for each cell line). Uniquely mapped reads were
used to call peaks using MACS2 [34]. In total, we found
23,368 TRPS1 binding sites in MCF7 cells and 56,069
binding sites in ZR751 cells. By motif analysis, we found
the GATA motif as the top motif enriched in TRPS1 peaks
(Fig. 3b and Supplementary Figure S2). This is in agree-
ment with the hypothesis that TRPS1 binds DNA through
its GATA-like DNA binding domain. Strikingly, we found
that TRPS1 co-occupies the chromatin with ER in a cell-
type-specific manner (Figs. 2b, 3a). In MCF7 cells, ER
bound 51% of TRPS1 peaks, whereas the reverse overlap
comparison found 40 % of all ER peaks were occupied by
TRPS1 (Fig. 3c).

As such, ChIP-seq analysis suggests a global functional
connection between TRPS1 and the ER complex in breast
cancer cells. To further explore the putative role of com-
ponents discovered in our RIME and siRNA screens, we
performed ChIP-seq of coREST, LSD1 and ZNF217 in
MCF7 cells. IgG control ChIP-seq were included as nega-
tive controls. We could not validate CHD4 antibodies by
RIME and therefore did not proceed with this specific factor
any further. We found binding signal of coREST, LSD1 and
ZNF217 at ER/TRPS1 binding sites and at TRPS1-only
binding sites (Fig. 2c and Supplementary Figure 3). This
result supports our hypothesis that TRPS1 is involved in the
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recruitment of transcription repressive proteins at regions
that are bound by the ER complex.

As the coREST and NuRD complexes have histone
deacetylation activity, we assessed whether TRPS1 and its
interacting chromatin regulators contribute to histone acet-
ylation. As TRPS1 is potentially facilitating the HDAC
activity of the coREST and NuRD complexes, we hypo-
thesised that inhibition of TRPS1 would result in increased
histone acetylation at the enhancer elements bound by ER,
due to impaired deacetylation. We depleted TRPS1 by

siRNA (Western blot validation is shown in Supplementary
Figure S5) and mapped TRPS1 binding and H3K27ac
enrichment by ChIP-seq in MCF7 cells, each of which was
conducted in triplicate. These data were integrated with ER
ChIP-seq analysis following TRPS1 depletion. As expected,
the depletion of TRPS1 by siRNA results in substantially
reduced TRPS1 binding (replicate 1: 11,254 peaks in
siRNA control versus 4386 peaks in siRNA TRPS1; repli-
cate 2: 36,547 peaks in siRNA control versus 583 peaks in
siRNA TRPS1; replicate 3: 26,054 peaks in siRNA control
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versus 1997 peaks in siRNA TRPS1). Importantly, we
found that upon TRPS1 depletion, 4793 ER peaks were
weaker, 25,484 ER peaks did not change and interestingly,
18,400 ER peaks were stronger (Fig. 4a). Furthermore, we
found that the stronger ER peaks following TRPS1

depletion were also TRPS1-binding sites under control
condition (i.e., in siRNA non-targeted transfected condi-
tions). At these regions where ER is stronger following
TRPS1 silencing, TRPS1 was lost as expected and
H3K27ac signal was increased (Fig. 4b, c). As such, at a
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subset of TRPS1-binding sites, the presence of TRPS1
decreases ER binding and histone acetylation. There was no
significant change in H3K27ac at the ER peaks that are
conserved in control and TRPS1 depletion conditions (Fig.
4d, e), implying that these regions are not influenced by
TRPS1. This suggests that TRPS1 functions to restrict ER
binding, as removal of TRPS1 results in an increased
number of ER-binding sites, as well as a failure to

deacetylate the H3K27ac chromatin mark at these regions.
Overall, these data support the hypothesis that the presence
of TRPS1 mediates histone deacetylation and that decreases
in TRPS1 levels relieve this repression and culminate in
increased ER binding and enhancer acetylation.

In order to characterise global transcriptional con-
sequences of TRPS1 inhibition, we performed RNA-
sequencing experiments in MCF7 cells transfected with
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siRNA against TRPS1 or a NT control siRNA for 48 h. The
cells were also co-treated with estradiol (E2) or control
(vehicle) for the last 12 h and four replicates were per-
formed. Using BETA analysis combining siNT/siTRPS1
differential gene expression (expression fold change under
0.5 or above 1.5) and TRPS1 ChIP-seq data, we could
identify 213 direct gene targets repressed by TRPS1 and 10
direct gene targets activated by TRPS1 (Supplementary
Table 3). This suggests that TRPS1 is mostly a transcrip-
tional repressor (examples of genes repressed by TRPS1 in
Supplementary Figure 9). When TRPS1 is depleted, histone
acetylation is increased at the 213 direct gene targets
repressed transcriptionaly by TRPS1 (Supplementary Fig-
ure 7). With DESeq2, we identified 779 E2 upregulated
genes and 570 E2 downregulated genes in control condition
(expression fold change under 0.5 or above 1.5; adjusted p-
value < 0.001). Among these genes, only 569 and 406 genes
were still, E2 upregulated and E2 downregulated, respec-
tively, after TRPS1 depletion (Supplementary Figure 6A).
Overall, 27% of E2 upregulated genes were not activated in
the absence of TRPS1, whereas 29% of E2 downregulated
genes were no longer repressed upon TRPS1 silencing.
Furthermore, the genes still E2 regulated upon TRPS1
depletion were also significantly less E2 activated or E2
repressed (Supplementary Figure 6B). This suggests that
TRPS1 depletion directly influences ER activity and
importantly, reorganises ER-binding events, characterised
by a substantial increase in new ER-binding sites. We then
investigated potential transcriptional activity linked to the
18,400 newly enriched ER-binding sites formed upon
TRPS1 depletion. We identified 4036 genes promoters
located at <30 kb from these gained peaks. Among these
genes, 75 are E2 regulated in control, 61 are E2 regulated
upon TRPS1 depletion and 86 are E2 regulated in both
conditions. Thus, although TRPS1 prevents ER binding at
several thousand sites, depletion of TRPS1 alone is not
sufficient to alter transcriptional activity.

The TRPS1 gene is very often amplified in breast cancer
(28% of 2051 cases in the METABRIC cohort and 20% of
963 patients in the TCGA cohort) and its amplification is
associated with worse prognosis (Fig. 3d). The TRPS1 gene
is located in the 8q arm, a chromosomal region, which is
often amplified in breast cancer. Therefore, we cannot
exclude that the worse prognosis associated with TRPS1
gene amplification is due to a more global effect of the 8q
arm amplification. In the METABRIC dataset, we found
that lower TRPS1 expression is associated with worse
prognosis in all breast cancer (p-value= 0.005; Supple-
mentary Figure 3) but this observation is not significant
when considering ER-negative and ER-positive tumours
separately. This might be because the TRPS1 gene is more
likely to be expressed in ER-positive breast cancer that are
of better prognosis than ER-negative breast cancer (Fig. 3d).

Discussion

Taken together, our data suggest that transcriptional
repressors like NuRD and coREST complexes are needed
for gene regulation by ER and for ER-mediated cell growth.
At ER-binding sites, TRPS1 might participate in maintain-
ing histone deacetylation through the recruitment of the
repressing complexes together with other transcription fac-
tors (Fig. 4f). We hypothesise that this chromatin resetting
is necessary to allow the recruitment of ER at the appro-
priate time and location within the genome [35, 36]. At
other genomic regions, TRPS1-mediated histone deacety-
lation would prevent additional ER binding and therefore
restricts the number of ER-binding regions and ER target
genes. Our mechanistic insight, along with known con-
sequences of TRPS1 genomic alterations in cancer, suggests
TRPS1 is an important factor regulating ER and breast
cancer progression.

Materials and methods

Biological material

MCF7, T47D and ZR75-1 human cell lines were obtained
from ATCC and grown in Dulbecco’s modified Eagle’s
medium (DMEM) or RPMI supplemented with 10% fetal
bovine serum (FBS) at 37 °C in 5% CO2 in a humidified
incubator. For proliferation assay, cells were seeded into 24-
well dishes at a cell density of 2 × 104 per well and growth
was monitored using the Essen Bioscience INCUCYTE
machine (Ann Arbor, MI, USA). The cell lines were
authenticated and tested negative for mycoplasma con-
tamination by the CRUK CI Biorepository Core.

siRNA screen

The siRNA screen was conducted as previously published
[21]. In total, 332 siRNAs were custom made from Ambion
and targeted factors containing HD, BROMO, CHROMO,
PWWP, tandem BRCT, TUDOR, BAH, MBT, SET
(including DOT1L), JMJC, JMJN, PRMT, HAT, HDAC,
SIRT, DNMT, MBD and SNF2 ATP-dependent
remodelers.

For siRNA transfections, 22 million cells were harvested
and resuspended in 1.98 mL of buffer SF (Amaxa nucleo-
fection kit). In all, 165 μL of this was aliquoted into round
bottom 96-well plates along with 2 μL of siRNA at 10 mM
concentration. The mixture was then electroporated (Amaxa
96-well plate electroporater) and 180 μL of warm media
was added to each well. To another round bottom 96-well
plate contaning 190 μL of media, 60 μL of the electro-
porated mixture was added. In total, 10 μL of this was then
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transferred to flat bottom 96-well plates with an additional
100 μL of media. A final of 2400 cells were seeded in each
well. Medium was changed the day after transfection for all
wells and every alternate day thereafter for a total of 6 days.
Cells were then analysed using a cell viability assay
(CellTitre-glo, Promega).

Four replicates of each experiment were performed and
data obtained from the assay was initially screened for
consistency between replicates. A Grubbs’ test was per-
formed to identify and subsequently remove outliers among
the four replicates.

siRNA assay for ChIP-seq and RNA-seq

Cells were transfected with siRNA using Lipofecta-
mine2000 (Invitrogen). TRPS1 was silenced using a siRNA
pool ON-TargetplusSMARTpool purchased from Dharma-
con (catalogue number M-009644-01-0005). AllStars
Negative Control siRNA (Qiagen) was used as a negative
control.

ChIP-seq library preparation

The antibodies used for the ChIP-seq were anti-coREST
(Abcam, ab32631), anti-ER (Santa-Cruz, ref. sc-543), anti-
H3K27ac (Abcam, ref. ab4729), anti-LSD1 (Abcam,
ab17721), anti-TRPS1 (R&D Systems, ref. AF4838), anti-
ZNF217 (Santa-Cruz, sc-55351) and rabbit serum (sc-
2027). ChIP were performed as previously described in
Schmidt et al. [37], using 10 μg of antibody and 60 million
cells. The ChIP-seq and the input libraries were prepared
using the TruSeq ChIP Sample Prep Kit (Illumina, ref. IP-
202-1012).

RNA-seq library preparation

For hormonal deprivation, MCF7 cells were cultured in
phenol-red free DMEM supplemented with 5% charcoal-
treated FBS. After 24 h, the cells were transfected with
siRNA against TRPS1 or a control siRNA for 48 h. The
cells were also co-treated with 100 nM estradiol or vehicle
for the last 12 h. Four biological replicates were performed.

Western blots

Western blots were processed as previously described in
Ross-Innes et al [38]. The antibodies used were anti-TRPS1
(R&D Systems, ref. AF4838) and anti-histone H3 (ab1791).

Rapid IP-mass spectrometry of endogenous protein

Rapid immunoprecipitation mass spectrometry experiments
were performed as previously described [20]. The

antibodies used were anti-TRPS1 (R&D Systems, ref.
AF4838) and anti-ZNF217 (Abcam, ab48133). MS data
were submitted to PRIDE Archive (Project PXD009863).

Bioinformatics

For ChIP-seq libraries, reads were mapped with Bowtie2 to
the indexed reference genome UCSC hg19 downloaded
from Bowtie2 website. Sam files were then sorted and
converted in bam files with Samtools. Sorted bam files were
then used for peak calling using MACS2 [34] with default
parameters. Common peaks between two replicates were
used for the Venn diagrams. Sequencing depth normalised
heatmaps were generated as described previously [7]. For
screen-shots, normalised bgr files were made, thanks to
MACS2 with the command spmr (fragment pileup per
million reads) and visualised on Integrative Genomics
Viewer. Motif analysis was performed using the Cistrome
SeqPos motif tool (version 1.0.0). The de novo motif search
and the scan the TRANSFAC motifs was done on the
2000 strongest TRPS1 peaks in MCF7 cells in terms of
MACS2 fold enrichment, 200 bp around the summits.
RNA-seq libraries were made in four biological replicates.
Reads were mapped with Tophat and processed with
DESeq2. Significant differentially expressed genes were
filtered with adjusted p-value <0.001 and fold change >1.5
or <0.5. To predict the direct gene targets of TRPS1, a
BETA analysis was performed using the siNT/siTRPS1
differential gene expression and the TRPS1 ChIP-seq peaks
(Wang et al. [39]). Sequencing data were submitted to
European Nucleotide Archive (Project number
PRJEB26463).
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