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Abstact
Recent molecularly targeted approach gains advance in breast cancer treatment. However, the estimated 5-year survival rate
has not met the desired expectation for improvement, especially for patients with triple-negative breast cancer (TNBC). Here
we report that the lncRNA PVT1 promotes KLF5/beta-catenin signaling to drive TNBC tumorigenesis. PVT1 is upregulated
in clinical TNBC tumors. Using genetic approaches targeting PVT1 in TNBC cells, we found that PVT1 depletion inhibited
cell proliferation, colony formation, and orthotopic xenograft tumor growth. Mechanistically, PVT1 binds with KLF5 and
increases its stability via BAP1, which upregulates beta-catenin signaling, resulting in enhanced TNBC tumorigenesis.
PVT1, KLF5, and beta-catenin were also revealed to be co-expressed in clinical TNBC samples. Our findings uncover a new
singaling pathway to mediate TNBC, and provide PVT1 as a new target for improving treatment of TNBC.

Introduction

Breast cancer is the most common malignancy in women
[1, 2]. Although recent molecularly targeted approach
advances in breast cancer treatment, the estimated 5-year
survival rate has not met the desired expectation for
improvement, especially for patients with triple-negative
breast cancer (TNBC) [3]. Therefore, there is an urgent need
to foster a major effort to discover novel therapy targets to
treat patients with these tumors. Recent long non-coding
RNAs (LncRNAs) are recognized to play critical roles in

TNBC progression [4–6]. However, the mechanisms by
which TNBC tumorigenicity is mediated are not well
known.

The plasmacytoma variant translocation 1 gene (PVT1) is
an lncRNA that has oncogenic function in multiple cancers.
PVT1 locates ~50 kb downstream of MYC and is
frequently co-amplified with MYC in colon [7], ovarian [8],
lung [9], and breast [8] cancers. PVT1 was first shown to
contribute to carcinogenesis because of its frequent trans-
locations in mouse plasmacytomas [10, 11]. Recent
PVT1 has been demonstrated to bind and stabilize Myc [12]
in breast cancer and Nop2 [13] in hepatocellular carcinoma.
PVT1 is amplified in TNBC with Rb/p53 deficiency [14].
PVT1 represses p15 and p16 expression through
physical binding with EZH2 in gastric cancer [15]. PVT1 is
also demonstrated as a direct target of HIF in clear
cell renal cell carcinoma [16]. Moreover, expression of
PVT1 is correlated with recurrence and/or survival of
patients with ovarian [8], lung [9], and colorectal [17]
cancers. However, further explorations are required to elu-
cidate the functions of PVT1 in tumor progression, includ-
ing breast cancer.

In the present study, we present evidence that PVT1
promotes proliferation and tumorigenesis in TNBC through
stabilizing KLF5 and promoting CTNNB1 expression. We
show that the PVT1–KLF5-β–catenin axis plays important
roles in TNBC cell proliferation in vitro and tumor growth
in vivo. It is also shown that PVT1 is upregulated in breast
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cancer tissues compared with that in normal breast tissues.
PVT1 levels are positively correlated with those of KLF5 or
CTNNB1 in clinical TNBC tissues. Collectively, our data
demonstrate a novel of signaling pathway to regulate TNBC
progression.

Results

LncRNA PVT1 is upregulated in clinical TNBC
samples

To assess the function of PVT1 in TNBC, we first assessed
the expression of PVT1 in clinical specimens of patients. As
shown in Fig. 1a and Supplementary Table S1, compared to
normal breast tissues, PVT1 was found to be highly
expressed in clinical TNBC tumors. To support our finding,
we downloaded the Cancer Genome Atlas (TCGA) RNA-
seq data set of 1098 clinical invasive breast cancer samples.
In this data set, 19 pairs of clinical TNBC tumors and the
peritumoral tissues were included. Compared with the
paired peritumoral tissues, the expression level of PVT1 was
significantly elevated in TNBC specimens (Fig. 1b and
Supplementary Table S2). We examined PVT1 expression

in clinical breast cancer samples only with Her2+, ER+,
PR+, or TN from the TCGA data set. As shown in Fig. 1c
and Table S3, PVT1 was expressed at the highest levels in
TNBC tumors compared with other breast cancer subtypes.
Moreover, we analyzed the copy numbers of PVT1 in
TCGA breast cancer data set from http://xena.uscs.edu/
public-hubs, and found that, compared with normal breast
tissues, 55.9% (614/1098) tumors were amplified (log2 >
0.19, tumor vs. normal; Supplementary Figure S1). These
data suggest that PVT1 is overexpressed and amplified in
TNBC tumors.

Then, we assessed the relationship of PVT1 expression
and TNBC patient survival by Kaplan–Meier survival
analysis using the TCGA data set. As shown in
Fig. 1d, patients with high PVT1 expression (>median
level) in the TCGA data set have a statistically
significant worse prognosis compared with those
with low expression (Fig. 1d and Supplementary
Table S4), suggesting that PVT1 is important for TNBC
progression. We also evaluated the clinical relevance of
PVT1 expression with TNBC patient’s age, tumor stage,
node stage, distant metastasis, and BRCA1 mutations
(Supplementary Table 5). However, no significant relation
was found.
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Fig. 1 lncRNA PVT1 is
upregulated in clinical TNBC. a
Expression levels of PVT1
mRNA are significantly higher
in clinical TNBC samples
compared with normal breast
tissues. b PVT1 mRNA levels
are significantly higher in
clinical TNBC specimens
compared with the paired
peritumoral breast tissues.
Expression data of PVT1 mRNA
were downloaded from the
Cancer Genome Atlas (TCGA).
c Expression level of PVT1 in
breast cancers with Her2+, ER+,
PR+, and TN (triple-negative)
from the TCGA data set. d
Kaplan–Meier analysis of
patients with high PVT1-
expressing TNBC tumors vs.
low PVT1-expressing tumors
from the TCGA data set.
Statistical analysis was
performed by log-rank test in a
GraphPad Prism version 5.0 for
Windows. Median survival (in
days): low, undefined; high,
2965. Black bars, censored data.
Error bars ± SD. **P < 0.01.
***P < 0.001. P values were
calculated using two-tailed
Student’s t-tests (a, b) and one-
way ANOVA (c)
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Fig. 2 Knockdown of PVT1 inhibits TNBC cell proliferation and
tumorigenesis. a qRT-PCR analysis of PVT1 mRNA expression in
breast normal and cancer cells. ACTB was used as a control. b
Knockdown of PVT1 using two different shRNAs (shPVT1-1 and
shPVT1-2) or a control shRNA (shC) in MDA-MB-231 and MDA-
MB-468 TNBC cells. c, d Effects of PVT1 knockdown on breast
cancer cell proliferation (c) and colony formation in agar (d). e
Quantification of colony formation in (d). f Representative

bioluminescence images of shC- or shPVT1-infected MDA-MB-231
or MDA-MB-468 cells transduced when injected into nude mouse
gland fat pads. Mice were imaged at 3–4 weeks after implantation.
Data were from two independent experiments with five mice per
group. g Quantification of the bioluminescence activity in (f). Scale bar
in (d), 4 mm. Error bars ± SD. *P < 0.05; **P < 0.01. Data are
representative from two independent experiments
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Depletion of lncRNA PVT1 inhibits TNBC cell
proliferation and tumor growth

To further demonstrate the roles of PVT1 in TNBC, we
examined PVT1 expression in a normal mammary epithelial
cell line and several breast cancer cell lines. As PVT1-203
(NR_003367) in the 25 splice variants of PVT1 (Supple-
mentary Figure S2) had been well identified to function in
cervical [18], gastric [19], ovarian [8], and hepatocellular
[13] cancers, we focused on this variant and designed
specific qRT-PCR primers (Supplementary Table S6).
Compared with the normal MCF10A cells, the expression
level of PVT1 was significantly high in all breast cancer
cells tested (Fig. 2a). Compared with BT549, MCF7, and
T47D cell lines, PVT1 was expressed at relatively higher
levels in two TNBC cell lines, MDA-MB-231 and MDA-
MB-468.

Next, we used lentivirus-mediated short hairpin RNAs
(shRNAs) targeting PVT1 (shPVT1-1 and shPVT1-2) or a

non-silencing control to deplete PVT1 in MDA-MB-231
and MDA-MB-468 TNBC cells. As shown, shPVT1-1 and
shPVT1-2 both targeted PVT1-203 and PVT1-206 variants,
and PVT1-206 was an intrasplice variant of PVT1-203
(Supplementary Figure S2). Expression of PVT1-203 and
PVT1-206 variants was impaired by both PVT1 shRNAs
(Fig. 2b and Supplementary Figure S3A). Knockdown of
endogenous PVT1 markedly inhibited cell proliferation in
MDA-MB-231 and MDA-MB-468 TNBC cells compared
with the controls (Fig. 2b, c). PVT1 knockdown also
impaired colony formation in both TNBC cell lines (Fig. 2d,
e). Then, we expressed shRNA-resistant PVT1-203* or
PVT1-206* variant in shRNA-knockdown cells, and found
that PVT1-203* but not PVT1-206* rescued colony for-
mation in both TNBC cells (Supplementary Figures S3B
and S3C). These data suggest that PVT1-203 variant is
critical for TNBC cell proliferation.

To further demonstrate whether PVT1 is critical for
TNBC tumorigenicity, we employed an orthotopic breast
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cancer model. MDA-MB-231 or MDA-MB-468 cells
transduced with shPVT1-1, shPVT1-2, or shControl
(shC) were separately implanted into the mammary gland
fat pads of immunocompromised mice. The effects
of PVT1 depletion on TNBC tumorigenesis were then
assessed. Compared with the control xenograft
models, knockdown of PVT1 significantly inhibited TNBC
tumor growth (Fig. 2f, g). These data support that
PVT1 is critical for cell proliferation and tumor growth in
TNBC.

PVT1 interacts with KLF5 in TNBC cells

LncRNAs function mainly as sponges to bind functional
proteins and regulate their downstream gene expression
[19–21]. We hypothesized that PVT1-regulated tumor
growth depends on its binding proteins. We first performed
in silico analysis through the open-assess database of tran-
scription factor-binding profiles [22], and identified that

KLF5 is the most potential one in several PVT1-binding
transcription factors. As shown in Fig. 3a, it is predicted that
KLF5 may bind with PVT1 at both 1711–1720 and
1814–1823 sites. To assess whether KLF5 binds with PVT1
in TNBC cells, we performed RNA-binding protein
immunoprecipitation (RIP)-real-time PCR (qPCR) using
anti-KLF5 antibody in MDA-MB-231 and MDA-MB-468
TNBC cells. As shown in Fig. 3b, we detected the enrich-
ment of PVT1 with the anti-KLF5 antibody compared with
the control.

Next, to support the finding that PVT1 binds with KLF5,
we constructed PVT1 vectors with mutations at the putative
PVT1-KLF5-binding site 1 (Mut1), site 2 (Mut2), or both
sites (Mut1/2). As shown in Fig. 3c, d, re-expression of
shRNA-resistant PVT1 WT rescued the binding of PVT1
and KLF5, whereas re-expression of shRNA-resistant
PVT1-KLF5-binding Mut1, Mut2, or Mut1/2 did not, sug-
gesting that both the sites are important for PVT1-KLF5
binding.
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Finally, to further validate that PVT1 binds with KLF5,
we carried out RNA pull-down analysis using the Flag-
MS2bp-MS2bs system, in which the FLAG-tagged MS2-

binding protein (MS2BP) specifically binds RNAs that
contain MS2-binding sequences (Fig. 3e). As shown in Fig.
3f, using FLAG-MS2bp-MS2bs system to pull down
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proteins associated with PVT1, we detected that KLF5
bound with PVT1 wild type but not the mutant in MDA-
MD-231 cells. Taken together, these data suggest that KLF5
binds with PVT1 in TNBC cells.

PVT1 regulates KLF5 protein stability

To demonstrate the role of KLF5 in PVT1-regulated TNBC
tumor growth, we first assessed KLF5 protein and mRNA
expression in PVT1 knockdown TNBC cells. As shown in
Fig. 4a, compared with the controls, knockdown of PVT1
markedly decreased KLF5 protein expression in MDA-MB-
231 and MDA-MB-468 cells. However, PVT1 depletion
had no effect on KLF5 mRNA expression (Fig. 4b). These
data suggest that PVT1 may mediate KLF5 protein stability.

To demonstrate whether PVT1 regulates KLF5 protein
stability, MDA-MB-231 and MDA-MB-468 cells were
treated with cycloheximide (CHX), an inhibitor of de novo

protein synthesis, at indicated time points (Fig. 4c, d).
Compared with the untreated controls, KLF5 protein levels
were significantly decreased by CHX treatment at 12 h in
both cell lines (Fig. 4c, d). Knockdown of PVT1 markedly
increased KLF5 degradation compared with the control
(Fig. 4c, d). Furthermore, re-expression of shRNA-resistant
PVT1 WT restored PVT1 depletion-inhibited
KLF5 stability, whereas re-expression of shRNA-resistant
mutant of the KLF5 binding had no effects (Fig. 4e). These
results show that PVT1 regulates KLF5 stability in TNBC
cells.

PVT1 regulates CTNNB1 transcription through KLF5

Since β-catenin is an important downstream effectors of
KLF5 in cancer [23, 24], we assess whether PVT1 mediates
β-catenin expression in TNBC cells. As shown in Fig. 5a,
depletion of PVT1 inhibited expression of β-catenin in
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MDA-MB-231 and MDA-MB-468 cells. However, over-
expression of KLF5 markedly restored PVT1 knockdown-
inhibited β-catenin expression (Fig. 5b). These data suggest
that PVT1 mediates KLF5 stability to regulate β-catenin
expression.

To demonstrate whether KLF5 regulates β-catenin
expression, we performed in silico analysis of the putative
transcription factors binding to the promoter of CTNNB1
(encoding β-catenin protein; http://jaspar.genereg.net/).
Two putative KLF5-binding sites were found in the pro-
moter of CTNNB1 at −991 to −982 and −62 to −52 sites
(Fig. 5c). To reveal whether KLF5 binds with the promoter
of CTNNB1 at these sites, we performed chromatin immu-
noprecipitation (ChIP)-qPCR assays in MDA-MB-231
using primers that flank a 221-bp region (containing
KLF5-binding site 1) or a 252-bp region (containing KLF5-
binding site 2) of the CTNNB1 promoter. As shown in Fig.
5d, endogenous KLF5 protein bound with site 1 region but
not site 2 region. To further validate this finding that KLF5
binds with the promoter of CTNNB1, we performed

promoter luciferase assays. KLF5 overexpression sig-
nificantly promoted CTNNB1 promoter activity compared
with the empty vector (EV), whereas mutation of site
1 significantly decreased CTNNB1 promoter activity acti-
vated by KLF5 overexpression (Fig. 5e). These data suggest
that PVT1-regulated KLF5 functions as a transcription
factor to mediate β-catenin expression.

To determine the functions of the PVT1/KLF5/β-catenin
signal pathway in TNBC, we overexpressed KLF5 and
CTNNB1 in PVT1-knockdown MDA-MB-231 and MDA-
MB-468 cells (Fig. 5f). Overexpression of KLF5 restored
PVT1 knockdown-inhibited β-catenin expression (Fig. 5f),
cell proliferation (Fig. 5g), and colony formation (Fig. 5h,
i). Overexpression of β-catenin rescued PVT1 knockdown-
inhibited cell proliferation (Fig. 5g) and colony formation
(Fig. 5h, i), whereas it did not affect PVT1 depletion-
impaired KLF5 protein expression (Fig. 5f). These data
further suggest that PVT1 regulates tumor growth through
mediating KLF5 stability and promoting β-catenin
expression.
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PVT1-regulated KLF5 stability depends on BAP1

Since the deubiquitinase (DUB) BAP1 had been reported to
mediate KLF5 stability in breast cancer cells [25], we
assessed whether PVT1-regulated KLF5 stability depends
on BAP1. As shown in Fig. 6a, overexpression of PVT1
increased KLF5 binding with BAP1 and β-catenin expres-
sion in both TNBC cells. In contrast, knockdown of PVT1
inhibited KLF5-BAP1 binding and β-catenin expression
(Fig. 6b). Moreover, BAP1 overexpression attenuated PVT1
shRNA-enhanced KLF5 degradation (Fig. 6c, d). Con-
sistent with previous report [25], overexpression of KLF5
increased its binding with BAP1 and β-catenin expression
in MDA-MB-231 control cells (Fig. 6e). Overexpression of
KLF5 markedly rescued BAP1 association and β-catenin
expression inhibited by PVT1 depletion (Fig. 6e). These
data support that PVT1 depends on BAP1 to mediate
KLF5 stability in TNBC cells.

Co-expression of PVT1, KLF5, and β-catenin in
clinical TNBC samples

To assess the clinical relevance of our findings in this study,
we determined expression levels of PVT1, KLF5, and β-
catenin in clinical TNBC samples. We collected 25 clinical
snap-frozen TNBC samples, and performed qRT-PCR
analyses. As shown in Fig. 7a, b, based on quantification
of the mRNA expression, PVT1 was revealed to sig-
nificantly correlate with KLF5 and CTNNB1 using Spear-
man’s rank correlation analysis. We also performed
immunohistochemical (IHC) staining for the expression of
KLF5 and β-catenin in a separate cohort of 30 paraffin-
embedded clinical TNBC specimens, and found that the
protein or mRNA level of KLF5 markedly co-expressed
with that of β-catenin protein or CTNNB1 mRNA (Fig. 7c,
e). Taken together, these data support that PVT1/KLF5/β-
catenin signaling plays a critical role in tumor progression
in human TNBC.

Discussion

In this study, we demonstrate that lncRNA PVT1 is critical
for TNBC cell proliferation and tumor growth through
regulating KLF5/β-catenin signaling. PVT1 is amplified and
overexpressed in clinical TNBC samples compared with
normal breast or paired peritumoral tissues, and patients
with high PVT1-expressing TNBC have a worse prognosis.
PVT1 binds and stabilizes KLF5 via BAP1, which promotes
β-catenin expression, resulting in enhanced tumorigenesis.

Our data demonstrate that lncRNA PVT1 regulates
TNBC. Increasing evidence indicates that abnormal
expression of lncRNAs is critical for the development of the

malignant phenotype of breast cancer [5, 6, 21]. PVT1
encodes an lncRNA, which was found to be frequently co-
amplified with MYC in several cancers [7–9], including
breast cancer [8]. Recent PVT1 was shown to be amplified
in TNBC with Rb/p53 deficiency [14]. Here we report that
PVT1 is amplified and upregulated in clinical TNBC, and a
higher level of PVT1 is inversely correlated with prognosis
of TNBC patients. Depletion of PVT1 inhibited TNBC cell
proliferation, colony formation, and tumor growth. These
results support that PVT1 is critical for TNBC.

We also demonstrate that lncRNA PVT1 mediates TNBC
through KLF5. KLF5 has been revealed to have a critical
role in breast cancer cell proliferation and metastasis [25–
27]. PVT1 plays as a molecular sponge to regulate miR-203
[28] and miR-195 [29]. PVT1 was also demonstrated to
regulate breast and hepatocellular carcinoma through
binding and stabilizing Myc [12] and Nop2 [13], respec-
tively. In this study, we reveal that PVT1 binds with KLF5
and regulates its stability via BAP1. We identified that
PVT1 binds with KLF5 at two sites. Knockdown of PVT1
inhibited the binding of BAP1 and KLF5, and enhanced
KLF5 degradation. In contrast, PVT1 overexpression
enhanced their binding and inhibited KLF5 degradation.
Overexpression of KLF5 restored PVT1 depletion-impaired
BAP1-KLF5 binding, cell proliferation, and colony forma-
tion. Moreover, PVT1 and KLF5 are co-expressed in clin-
ical TNBC samples. These findings show that PVT1
regulates KLF5 stability to mediate TNBC.

Our data also reveal that lncRNA PVT1 regulates TNBC
through KLF5-upregulating β-catenin. Cytosolic/nuclear
expression of β-catenin or overexpression of its target cyclin
D1 was demonstrated to be related with a poor prognosis in
patients with breast cancer [30]. Cytosolic/nuclear locali-
zation of β-catenin was more often observed in basal-like
breast cancers [31]. KLF5 was reported to regulate β-cate-
nin-TCF4 (T-cell factor 4) interaction in response to lyso-
phosphatidic acid (LPA) in colon cancer [24]. Knockdown
of KLF5 inhibited β-catenin activation stimulated by LPA
[24]. Deletion of KLF5 also completely suppressed β-
catenin oncogenic mutant-induced intestinal carcinomas
[32]. However, the relationship of KLF5 and β-catenin in
breast cancer remains little studied. Here, we reveal that
KLF5 binds the promoter of CTNNB1, and regulates its
transcription. We identified that KLF5 binds with the
CTNNB1 promoter at the site −991 to −982. PVT1
knockdown inhibited KLF5 protein stability and β-catenin
expression. Consistent with this, overexpression of KLF5
restored PVT1 knockdown-inhibited β-catenin expression,
cell proliferation, colony formation, and the promoter
activity of CTNNB1 wild-type but not the mutation of KLF5
binding. Moreover, PVT1 and CTNNB1, and KLF5 protein
and β-catenin protein are co-expressed in human clinical
TNBC specimens. These lines of evidence suggest that
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PVT1 promotes TNBC by binding and stabilizing KLF5,
which results in β-catenin upregulation.

Taken together, our results demonstrate that lncRNA
PVT1 acts as a critical regulator of TNBC through med-
iating KLF5/β-catenin signaling. The findings of this study
have significant implications regarding our understanding of
TNBC. Our study also indicates PVT1 as a new effective
target for improving treatment of TNBC.

Materials and Methods

Cell lines

BT549, MCF7, T47D, MDA-MB-231, MDA-MB-453,
MDA-MB-468, MCF10A, and ZR-7530 cells were from
ATCC (Manassas, VA, USA), and were cultured in 10%
fetal bovine serum/Dulbecco’s modified Eagle’s medium
(Invitrogen, Carlsbad, CA). MCF10A cells were cultured in
DMEM/F12 (Invitrogen) supplemented with 20 ng/ml epi-
dermal growth factor, 5% horse serum, 0.5 μg/ml hydro-
cortisone, 10 μg/ml insulin, 100 ng/ml cholera toxin, and
100 μg/ml penicillin–streptomycin. All cell lines in this
study were authenticated using STR DNA fingerprinting by
Shanghai Biowing Applied Biotechnology Co., Ltd
(Shanghai, China) in January 2017, and mycoplasma
infection was detected using PCR Detection kit (Sigma-
Aldrich).

Plasmids

KLF5, BAP1, CTNNB1, LncRNA PVT1-203, and PVT1-206
variant cDNAs were amplified by PCR from normal breast
tissues, sequenced, and then subcloned into a pcDNA3.1
vector (Invitrogen). LncRNA PVT1-203 and PVT1-206
variant cDNAs were also subcloned into a lentivirus
pLVX-Puro vector (Clontech). CTNNB1 promoter was
subcloned into a pGL3 vector (Promega). PVT1 shRNAs
were designed to target PVT1-203 (shPVT1 target
sequence: 5′-GCCATCATGATGGTACTTTAA-3′;
shPVT1 target sequence: 5′-GCCAGGACACTGA-
GATTTGGA-3′) following the method described in http://
rnaidesigner.invitrogen.com/rnaiexpress (Supplementary
Figure S2). PVT1 point mutations were constructed using a
QuikChange Site-Directed Mutagenesis Kit (Stratagene)
according to a protocol provided by the manufacturer.

RNA extraction and quantitative RT-PCR

Total RNA was isolated using Trizol reagent (Invitrogen).
First-strand cDNA was generated using the PrimeScript 1st

Strand cDNA Synthesis Kit (TaKaRa, Dalian, China). Real-
time PCR was performed in the StepOne Real-Time PCR

System (Applied Biosystems, Foster City, USA). ACTB was
used as a control. Primers were listed in Supplementary
Table S6.

Cell proliferation and colony formation in soft agar

Cell proliferation assay was performed using a WST-1
Assay Kit (Roche). Briefly, cells were seeded in triplicate in
a 96-well plate, and incubated at 37 °C. Cell proliferation
was measured using a WST-1 assay kit. For colony for-
mation assay in soft agar, cells were seeded in a 0.4% top
agar layer with a bottom 0.8% layer in triplicate in a 12-well
plate. Colonies were fixed and stained with 1% crystal
violet solution after 2–3 weeks. The visible colony numbers
scored and data were analyzed.

RIP and RNA pull-down assays

RIP analysis was performed using an EZ-Magna RIP Kit
(Millipore) according to the manufacturer's protocol.
Briefly, 5 μg of anti-KLF5 antibody (ab24331, Abcam) was
used to pull down RNAs. Then, the RNAs were extracted
and assessed by qPCR. Primers are listed in Supplementary
Table S6. RNA pull-down assay was performed using the
Flag-MS2bp-MS2bs system.

ChIP-qPCR assay

A Chromatin Immunoprecipitation Kit (Millipore-Upstate)
was used to immunoprecipitate DNAs according to the
manufacturer’s instructions, and then purified DNAs were
measured using qPCR. Primers are listed in Supplementary
Table S6.

Luciferase promoter assay

For the luciferase promoter assay, pGL3-CTNNB1 promoter
wild-type or mutant of the KLF5 binding was co-transfected
with or without KLF5 into MDA-MB-231 cells with a
PVT1 or control shRNA using the Lipofectamine 2000
transfection reagent (Thermo Fisher Scientific). pRL-TK
Renilla plasmid (Promega) was used as a control. A Dual-
Luciferase Reporter Assay Kit (Promega) was used to
measure Luciferase and Renilla signals.

Western blot assay

Western blot was carried out against KLF5 (ab24331,
1:1000, Abcam), β-catenin (D10A8, 1:1000, Cell
Signaling Technology), β-actin (ab8229, 1:1000, Abcam),
BAP1 (ab199396, 1:500, Abcam), and Flag (MS2,
1:1000, Sigma-Aldrich) antibodies, as we previously
described [33].
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shRNA knockdown and transfection

Lentivirus production was carried out in HEK293T cells as
previously described [33]. Cells were infected, and then
exogenous protein expression was validated.

Tumorigenesis studies

Six-week-old female athymic (Ncr nu/nu) mice from SLAC
(Shanghai, China) were randomly divided into five per
group, and cells (2 × 106) were injected into mouse mam-
mary fat pads. All animal experiments were approved by
Shanghai Jiao Tong University Institutional Animal Care
and Use Committee. Bioluminescence imaging was per-
formed using the IVIS Lumina imaging station (Caliper Life
Sciences). Two investigators independently performed ani-
mal group allocation, surgery, and assessing the outcome.

IHC staining

IHC assay was performed on paraffin sections of 30 clinical
breast cancers as previously described [33] using a
primary antibody against KLF5 (1:50, Abcam) and β-cate-
nin (1:100, Cell Signaling Technology). All the work rela-
ted to human tissues was approved at Shanghai Jiao Tong
University, according to the Declaration of Helsinki, and the
investigators obtained informed written consent from the
subjects. IHC staining was scored as 0–7 according to the
percentage of positive cells and staining intensity. The
slides were examined and scored by two separate
individuals.

Statistical analysis

All statistical analyses were carried out using a GraphPad
Prism version 5.0 for Windows (GraphPad Software Inc.,
San Diego, CA, USA). The significance of the data between
experimental groups was determined by one-way analysis
of variance with Newman–Keuls post test and unpaired
two-tailed Student’s t-test. Correlations between study
variables were calculated by Spearman’s rank correlation
coefficients. A P value < 0.05 was considered statistically
significant.
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