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Abstract

Objectives: Diabetes-specific nutritional formulas (DSNFs) are frequently used by patients with type 2 diabetes (T2D)
as part of nutrition therapy to improve glycemic control and reduce body weight. However, their effects on hunger
and satiety hormones when compared to an isocaloric standardized breakfast are not fully understood. This study aims
to evaluate the postprandial effects of two DSNFs—Glucerna (GL) and Ultra Glucose Control (UGC)—versus oatmeal
on selected satiety and hunger hormones.

Method: After an overnight fast, 22 patients with T2D (mean age 62.3 ± 6.8 years, A1C 6.8 ± 0.7%, body weight 97.4 ±
21.3 kg, and BMI 33.2 ± 5.9 kg/m²) were given 200 kcal of each meal on three separate days. Blood samples for amylin,
cholecystokinin (CCK), ghrelin, glucagon, leptin, and peptide-YY (PYY) were collected at baseline and 30, 60, 90, 120,
180, and 240 min after the start of each meal. Incremental area under the curve (iAUC0-240) for each hormone was
calculated.

Results: iAUC0-240 for glucagon and PYY were significantly higher after GL and UGC than after oatmeal (p < 0.001 for
both). No difference was observed between the three meals on postprandial amylin, CCK, ghrelin, and leptin
hormones.

Conclusions: Intake of DSNFs significantly increases secretion of PYY and glucagon, two important satiety hormones.
While subjective satiety was not directly evaluated, the increased effect on satiety hormones may partially explain the
mechanism of body weight loss associated with DSNF use.

Introduction
Nutrition therapy and increased physical activity are

first-line therapies for patients with type 2 diabetes
(T2D)1. Diabetes-specific nutritional formulas (DSNFs)
may be used as a component of medical nutrition therapy
(MNT) to help in improving glycemic control and redu-
cing body weight2,3. There is evidence that the integration

of meal replacement formulas into an MNT plan leads to
better compliance with nutrition therapy and greater
weight loss compared to patients on an isocaloric MNT
plan4. Recently, the American Diabetes Association
included DSNFs in its clinical practice recommendations
for lifestyle management5. However, the mechanisms by
which DSNFs lead to weight loss and improved blood
glucose control are not fully understood.
Regulation of appetite is a complex process that involves

intricate pathways of hormonal and neuronal signaling6,7.
We previously reported that in comparison to an iso-
caloric oatmeal breakfast, two commercially available
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DSNFs significantly increased production of postprandial
glucagon-like peptide-1 (GLP-1) hormone8. GLP-1 is an
incretin hormone which increases insulin secretion and
suppresses glucagon secretion, leading to enhanced gly-
cemic control and increased satiety as a result of DSNF
consumption9,10.
This study was conducted to explore the effects of two

commercially available DSNFs: Glucerna (GL, Abbott
Nutrition Inc., Columbus, OH, USA) and Ultra Glucose
Control (UGC, Metagenics, Inc., Aliso Viejo, CA, USA)
versus a common breakfast food, namely oatmeal (oat-
meal, Quaker Old Fashioned Oats, Quaker Oats Co.,
Chicago, IL, USA) on several other satiety and hunger
hormones in overweight and obese patients with T2D.

Subjects and methods
Study design and subjects
This cross-over, three-way, and open-label, ancillary

study was conducted in accordance with the Helsinki
Declaration and was approved by the institutional Com-
mittee on Human Studies. All participants signed a
written informed consent. The study was registered at
ClinicalTrials.gov (Identifier: NCT02691481). Eligible
subjects were patients with T2D for ≥3 months, ages 18 to
75 years, body mass index (BMI) > 25 kg/m2, and glycated
hemoglobin A1C (HbA1c) ≥ 6.5%. Patients using diabetes
or cholesterol-lowering medications had to be on stable
doses of these medications for ≥3 months. Exclusion
criteria included pregnancy or lactation, use of insulin or
GLP-1 analogs, history of bariatric surgery, gastroparesis,
and malabsorption syndrome. Twenty-five subjects were
enrolled in the study, of which 22 subjects completed all
study visits. One subject dropped out prior to the first
study visit for personal reasons. Two other subjects
dropped out after the first visit due to inconvenience of
frequent blood sampling. Data from those subjects were
excluded from statistical analysis. Mean age of the
remaining 22 subjects (±SD) was 62.3 ± 6.8 years, diabetes
duration was 9.5 ± 9.8 years, and HbA1c was 6.8 ± 0.7%.
Baseline characteristics of the study subjects are sum-
marized in Table 1.

Analyzed hormones
Amylin is a satiety hormone that is co-secreted with

insulin from pancreatic β-cells11. Its secretion induces
satiety by stimulating the brainstem to slow gastric
emptying and decrease gastric secretions12,13. Cholecys-
tokinin (CCK) is a satiety hormone secreted by enter-
oendocrine cells in the duodenum and jejunum14. Its
actions include the promotion of gallbladder contraction,
inhibition of gastric acid secretion, and slowing of gastric
emptying15. Glucagon is secreted by pancreatic alpha cells
and induces satiety through the vagus nerve13. Leptin is
secreted by adipose tissue and stimulates satiety centers in

the hypothalamus16. Peptide-YY3-36 (PYY) is secreted by
enteroendocrine L-cells6 and acts as a satiety signal to the
hypothalamus while reducing gastric acid secretion and
gastrointestinal motility17. Ghrelin is a hunger hormone
secreted mainly by the stomach18. Its stimulates gastro-
intestinal motility and gastric acid secretion19.

Study procedures
Subjects were asked to come for three visits with a

washout period between visits of at least two days. All
visits were completed over three weeks. Subjects were
instructed to come for each visit after fasting overnight for
at least 8 h and were asked to withhold their diabetes and
cholesterol-lowering medications on the morning of the
visit. In random visit order, each subject was asked to
ingest one of the three tested meals (GL, UGC and oat-
meal) for breakfast. All meals were 200 kcal each. GL was
provided in a 237 mL (8 fl oz) bottle; UGC was prepared
by dissolving 200 kcal powder in 296mL (10 fl oz) of
water; and oatmeal was prepared by adding water to 56 g
of dry oats and cooking the mixture on a stove for
5–10min. No milk, sugar, or sweetener was added.
Macronutrient composition of the three breakfast meals is
shown in Table 2.
For safety, blood glucose was measured at the beginning

of each visit. If blood glucose was between 70–300mg/dL,
a venous line was inserted and a baseline blood sample
was drawn. This was followed by consumption of the test
meal within 3–5min. Blood samples were collected at 30,
60, 90, 120, 180, and 240min from the start of each meal.
Blood samples were tested for serum active amylin, CCK,
ghrelin, glucagon, leptin, and PYY. After collection of the
last sample, subjects were given a snack and were
instructed to take their regular medications.

Statistical analyses
Values for all measured variables are presented as mean

± SD or standard error of the mean (SEM). Study data

Table 1 Characteristics of study subjects

Variable

Sex

Male 12 (54.6%)

Female 10 (45.5%)

Age (years) 62.3 ± 6.8

Weight (kg) 97.4 ± 21.3

BMI (kg/m2) 33.2 ± 5.9

Diabetes duration (years) 9.5 ± 9.8

A1C (%) 6.8 ± 0.7

N= 22. Sex n (%), remaining variables are mean ± standard deviation
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were analyzed using SAS statistical software (SAS Insti-
tute Inc., Cary, NC, USA). Analysis was performed using
linear mixed effects models to model the covariance
structure arising from the repeated measures design.
Where overall F-tests were significant, pairwise differ-
ences of the treatment means were tested with t-tests
using Tukey’s p-value adjustments. Outcomes were
defined as area under the curve between 0 and 240 min
for measured variables over time (AUC0–240) calculated
using the trapezoidal formula20. Incremental AUC
between 0 and 240 min (iAUC0–240) was calculated using
the same formula but representing the area above the
fasting level.

Results
Mean fasting serum glucagon for oatmeal, GL, and

UGC were similar (35.8 ± 4.4, 41.9 ± 4.7, and 34.5 ± 4.6 pg/
mL respectively). Glucagon iAUC0-240 was significantly
higher after GL and UGC compared to oatmeal (p <
0.0001 for both); however, there was no difference in
glucagon iAUC0–240 between GL and UGC (Fig. 1).
Mean fasting serum PYY for oatmeal, GL, and UGC

were similar (72.2 ± 7.2, 76.5 ± 7.8, and 68.7 ± 8.3 pg/mL
respectively). PYY iAUC0–240 was significantly higher after
GL and UGC compared to oatmeal (p < 0.0001 for both);
however, there was no difference in PYY iAUC0–240

between GL and UGC (Fig. 1).
Mean fasting serum active amylin for oatmeal, GL, and

UGC were similar (10.5 ± 1.6, 9.9 ± 1.4, and 8.9 ± 1.3 pg/
mL respectively). Active amylin iAUC0-240 showed no
significant differences between meals (p= 0.076) (Fig. 2).

Mean fasting serum CCK for oatmeal, GL, and UGC
were similar (38.8 ± 18.7, 33.8 ± 18.2, and 37.8 ± 16.0 pg/
mL respectively). CCK iAUC0–240 showed no significant
differences between meals (p= 0.85) (Fig. 2).
Mean fasting serum ghrelin for oatmeal, GL, and UGC

were similar (9.1 ± 1.6, 10.0 ± 1.6, and 10.3 ± 2.1 pg/mL
respectively). Ghrelin iAUC0–240 showed no significant
differences between meals (p= 0.82) (Fig. 2).
Mean fasting serum leptin for oatmeal, GL, and UGC

were similar (25224.9 ± 4273.6, 23649.5 ± 3820.1, and
24790.2 ± 4012.4 pg/mL respectively). Leptin iAUC0–240

showed no significant differences between meals (p=
0.87) (Fig. 2).

Discussion
In the Look AHEAD (Action for Health in Diabetes)

study3 and other shorter studies4,21, use of DSNFs as part
of a hypocaloric nutrition therapy was associated with
weight reduction that was clearly associated with their
frequency of use to replace calories or smaller meals. This
study provides a mechanistic explanation of that effect,
where two of the commercially available DSNFs showed
significant increase in two essential weight-modulating
hormones that contribute to satiety and increased energy
expenditure. Both tested DSNFs increased PYY in com-
parison to isocaloric oatmeal. This study also showed that
both DSNFs significantly stimulate glucagon secretion in
comparison to isocaloric oatmeal. Glucagon affects gly-
cemia and satiety. Despite its stimulatory effect on hepatic
glucose production, glucagon hormone increases glucose
metabolism, and energy expenditure22,23. In addition,

Table 2 Nutrition information of the three breakfast meals

Oatmeal Glucerna Ultra Glucose Control

Amount % DV Amount % DV Amount % DV

Serving size 53.3 (g) NA 237 (mL) NA 56 (g) NA

Energy (kcal) 200 10 200 10 200 10

Total fat (g) 4 6.7 7 11 7 11

% Energy 18 – 32 – 32 –

Saturated fat (g) 0 0 0.5 3 1 5

Monounsaturated fat (g) 1.3 – 5.2 – 4.5 –

Total carbohydrates (g) 36 12 26 9 27 9

% Energy 72 – 52 – 54 –

Dietary fiber (g) 5.3 20 3 12 3 12

Protein (g) 6.7 13.4 10 20 15 30

% Energy 13 – 20 – 30 –

%DV: percentage daily values were calculated based on a 2000 kcal diet. Oatmeal (Quaker Oats Co., Chicago, IL, USA); Glucerna (Abbott Nutrition Inc., Columbus, OH,
USA); Ultra Glucose Control (Metagenics Inc., Aliso Viejo, CA, USA)
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glucagon indirectly stimulates satiety through an afferent
signal from the hepatic branch of the vagus nerve24. These
observations complement our previous observation that
both DSNFs stimulate GLP-1 hormone production,
another strong satiety hormone, in comparison to iso-
caloric oatmeal8.
Despite previous claims that all calories are created

equal in their effect on body weight25, this study shows
that different macronutrients have different effects on key
satiety and weight-modulating hormones since all tested
meals were of equal caloric content. The two studied
DSNFs are higher in their protein and fat content and
lower in their carbohydrate content than oatmeal (Table
2). It has been debated which macronutrient(s) elicit the
highest postprandial PYY response. An earlier study
favored fat in producing the highest PYY response26.
However, more recent studies showed that protein indu-
ces the highest PYY response27 and carbohydrates induce
the smallest effect28. Our results are also in line with
previous studies that showed meals higher in both protein
and fat content induce higher glucagon response com-
pared to a carbohydrate-rich meal24,29.
Although both tested DSNFs stimulate two opposing

weight-modulating hormones, GLP-18 and glucagon, our

findings suggest that the stimulatory effect of protein and
fat within DSNFs is stronger on glucagon secretion than
the inhibitory effect of GLP-1 on glucagon production.
Postprandial amylin levels were marginally higher fol-
lowing ingestion of UGC compared to GL and oatmeal,
but this difference was not statistically significant (p=
0.076). Furthermore, there were no differences in the
postprandial effects of DSNFs on CCK, ghrelin, and leptin
hormones. While these changes in satiety hormones
provide an attractive potential explanation for the repor-
ted success of DSNFs in supporting weight loss, it is also
possible that these changes in the satiety hormones, while
statistically significant, may not be of sufficient magnitude
to explain an effect on satiety that is large enough to
interpret their role in improved weight loss.
The present study had several limitations which include

the difference in texture between oatmeal and DSNFs. A
previous study reported difference in satiety between solid
and liquid meal replacements30. This study was powered
to detect differences in glucose AUC0–240 rather than
differences in the analyzed hunger and satiety hormones.
Background diets of the study subjects were not con-
trolled and their effect on the study outcomes is
unknown. We aimed to minimize that effect by asking
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Fig. 1 Adjusted serum concentrations of glucagon and peptide YY (PYY) in 22 subjects with type 2 diabetes after intake of 200kcal of
oatmeal, Glucerna, and Ultra Glucose Control (UGC). Values are mean ± SEM. *p < 0.0001
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subjects to fast for at least 8 h before each visit. In addi-
tion, subjects completed all study visits within a three-
week window.
In conclusion, this study shows that DSNFs significantly

increase secretion of two satiety hormones; PYY and
glucagon. This effect may be related to their specific
macronutrient composition. While the effect of the three
different meals on subjective satiety was not directly
evaluated, results from this study may partially explain the
mechanism of body weight reduction associated with
DSNFs use.
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