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Breakthroughs and challenges for generating brain network-
based biomarkers of treatment response in depression
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Treatment outcomes widely vary for individuals diagnosed with major depressive disorder, implicating a need for deeper
understanding of the biological mechanisms conferring a greater likelihood of response to a particular treatment. Our improved
understanding of intrinsic brain networks underlying depression psychopathology via magnetic resonance imaging and other
neuroimaging modalities has helped reveal novel and potentially clinically meaningful biological markers of response. And while
we have made considerable progress in identifying such biomarkers over the last decade, particularly with larger, multisite trials,
there are significant methodological and practical obstacles that need to be overcome to translate these markers into the clinic. The
aim of this review is to review current literature on brain network structural and functional biomarkers of treatment response or
selection in depression, with a specific focus on recent large, multisite trials reporting predictive accuracy of candidate biomarkers.
Regarding pharmaco- and psychotherapy, we discuss candidate biomarkers, reporting that while we have identified candidate
biomarkers of response to a single intervention, we need more trials that distinguish biomarkers between first-line treatments.
Further, we discuss the ways prognostic neuroimaging may help to improve treatment outcomes to neuromodulation-based
therapies, such as transcranial magnetic stimulation and deep brain stimulation. Lastly, we highlight obstacles and technical
developments that may help to address the knowledge gaps in this area of research. Ultimately, integrating neuroimaging-derived
biomarkers into clinical practice holds promise for enhancing treatment outcomes and advancing precision psychiatry strategies for
depression management. By elucidating the neural predictors of treatment response and selection, we can move towards more
individualized and effective depression interventions, ultimately improving patient outcomes and quality of life.

Neuropsychopharmacology; https://doi.org/10.1038/s41386-024-01907-1

INTRODUCTION

“‘Healing,’
Papa would tell me,
‘is not a science,
but the intuitive art
of wooing Nature.”
– W.H. Auden, The Art of Healing

Published in 1969, W.H. Auden’s dedication to his physician, Dr.
David Protetch, was written on the brink of a paradigm shift for
modern psychiatry and our understanding of major depressive
disorder (MDD). Psychopharmacologist Joseph J. Schildkraut had
recently published his seminal 1965 work on the catecholamine
hypothesis of affective disorders [1], which set the stage for a
biological understanding of MDD and second-generation phar-
macotherapies over the next three decades. At nearly the same
time, psychotherapist Gordon L. Paul wrote on the challenges of
trial research in psychotherapy: “[i]n all its complexity, the
question towards which all outcome research should ultimately
be directed is the following: What treatment, by whom, is most

effective for this individual with that specific problem, and under
which set of circumstances?” [2, 3] Auden’s eulogy to his physician
and friend poignantly underscores the tension between these two
concepts: the generalizations drawn from neuropsychopharma-
cological research and the need to treat the individual. It is this
tension that contemporary precision medicine and biological
marker research in MDD seeks to resolve.
Today, MDD is diagnosed according to the DSM-5-TR when an

individual possesses five of nine symptoms, including low mood,
anhedonia, sleep and appetite disturbances, and suicidal ideation
[4]. Consequently, numerous possible symptom combinations of
MDD exist; for example, over 1000 unique symptom profiles were
identified in 3703 outpatients with MDD [5]. Furthermore, the
DSM-5-TR includes clinical specifiers, such as MDD with sleep
disturbances, and previous editions include other specifiers like
melancholic MDD [6]. Unfortunately, these specifiers do not
currently yield homogenous MDD subtypes [7] nor differentiate
antidepressant responses to many interventions, including phar-
maco- [8–12] and psychotherapies [13–15]. Unsurprisingly, two-
thirds of patients do not remit to their first course of
pharmacological treatment, and roughly one-third develop
treatment-resistance [16]. Such highly variable symptomatology
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suggests that antidepressant response for MDD is complex, and
clinical characteristics alone are insufficient to predict response to
a certain intervention or distinguish responses to different
treatments [8–15].
Functional and structural neuroimaging can help to identify

pre-treatment brain network-based characteristics of antidepres-
sant response. Recent neuroimaging studies from large, clinical
trials have advanced our understanding of biological markers—
biomarkers—in brain networks implicated in MDD pathophysiol-
ogy. Such markers may guide patients through first-line anti-
depressant treatments and for second-line treatments in a
treatment-resistant population [17]. For the purposes of this
review, we distinguish between two types of biomarkers of
antidepressant response: prognostic and prescriptive [2]. Prog-
nostic biomarkers are biological characteristics that differentiate
dichotomous response and nonresponse or correlate with change
on a continuous primary clinical outcome measure to a single
treatment. Prescriptive biomarkers are biological characteristics
that differentiate responses or improvements on a primary
outcome measure between two or more treatments. While
numerous studies report promising prognostic and, to a lesser
extent, prescriptive biomarkers, there currently is a remarkable
paucity of prospective clinical trials that are critically needed to
bring neuroimaging biomarkers into clinical practice.
Although the current literature consists of a considerable

amount of heterogeneity in the study design and analysis, thereby
yielding numerous prognostic biomarkers [17–19], our narrative
review describes recent advances in structural and functional
brain network-based biological markers of treatment response
and selection in MDD with a particular focus on reviewing
candidate neuroimaging biomarkers with the highest quality of
evidence such as large clinical trials. Therefore, we conducted a
sensitive search for peer-reviewed papers in PubMed and Web of
Science using synonyms of unipolar depression, neuroimaging/
connectivity, and treatments (e.g., antidepressants, psychother-
apy, and neuromodulation). We extensively discuss studies that
employed task- and resting-state blood-oxygenation-level-
dependent (BOLD) functional magnetic resonance imaging (fMRI),
structural MRI (sMRI), and diffusion tensor imaging. Wherever
relevant, we also discuss studies using arterial spin labeling (ASL)
perfusion MRI, positron emission tomography (PET) and electro-
encephalogram (EEG). In the final section, we examine the
obstacles hindering the clinical translation of current brain-
based biomarkers and discuss aspects of study design and
analysis worth considering for future biomarker research in
MDD. Although we focus specifically on biomarkers in unipolar
MDD, the challenges and future directions highlighted by this
review are likely applicable to biomarker research in other
psychiatric disorders. Ultimately, biomarker development efforts
are urgently needed for people diagnosed with MDD as this
disorder is characterized by overwhelming disease burden [20, 21]
and a frustrating trial-and-error approach to treatment [22].

BRAIN NETWORKS RELATED TO TREATMENT RESPONSE AND
SELECTION IN MDD
Network neuroscience is an approach to characterize complex
large-scale interactions between spatially distributed brain
regions. In humans, neuroimaging techniques are used to gain
insights into our structurally and functionally connected neuro-
biological systems. For one, fMRI captures correlated patterns of
neural activity in widely separated brain regions that occur
spontaneously or are evoked by stimuli. These interactions
between different regions of the brain can be used to delineate
several distinct large-scale intrinsic brain networks (IBN) serving
various aspects of human cognition [23–25]. IBNs can be
discerned during rest-state or while performing a cognitive task,
and notably, IBNs have been hypothesized to reflect both

monosynaptic and complex polysynaptic connections of the brain
[26, 27]. By studying IBNs, we can understand how network-like
brain organization either produces or constrains cognitive
function. Likewise, we can compare how structural and functional
brain networks are altered in psychiatric populations to elucidate
pathophysiology and disease mechanisms. Pre-treatment inter-
individual variability in IBN structure or function present in a
particular clinical population may help to identify features
predictive of response and/or inform treatment selection.
Large-scale structural networks provide an anatomical organiza-

tion of the brain that underlies cognition. Briefly, brain areas or
“nodes” are determined using anatomical parcellation techniques.
For instance, a participant could undergo an sMRI scan, and the
structural imaging data could be parcellated into different regions
using standardized atlas (for review, see ref. [28]). We can
characterize the morphological relationships between nodes using
structural covariance, which uses measures like cortical thickness
and gray matter volume to identify spatially distributed but
morphologically similar nodes [29]. These nodes are structurally
connected by the axons in the white matter. We can call these
fiber tracts connecting each node as “edges”. Edges are identified
in vivo using diffusion tensor [30, 31] and diffusion spectrum
imaging [32, 33].
Our understanding of the structural organization of the brain

helps to infer possible functional interactions within and across
structural networks [23, 26, 34]. In other words, interconnected
brain areas that work together for a particular set of cognitive
functions are a functional network. The nodes of the functional
network for a particular function are typically inferred by
concurrent activation or deactivation [28]. The functional edges
between each node represent the statistical relationship between
brain regions’ activity using the time series data from fMRI,
electroencephalography, and magnetoencephalography. The
quantified statistical relationships between nodes can be undir-
ected (e.g., correlation-based metrics, such as seed-to-voxel-based
functional connectivity [35]) or directed/causal (e.g., Granger
causality analysis [36] and dynamic causal modeling [37]).
On the other hand, large-scale functional networks can be

discerned either during task-related or resting-state functional
neuroimaging. Task-based paradigms measure how the brain
responds to the cognitive processes in question while the resting-
state paradigms measure the spontaneous activity of the brain in
a task-free environment. Using functional neuroimaging para-
digms, IBNs have been identified via hypothesis-driven and data-
driven approaches. For instance, seed-based functional connec-
tivity analysis extracts the time series of an a priori region of
interest (ROI), which is then correlated with the activity in other
brain regions to identify which areas might be functionally related
to the seed region. A more data-driven approach like independent
component analysis decomposes the fMRI signal into a set of
statistically independent components, each representing a net-
work of distinct patterns of brain activity [38].
Given the fundamental role of IBNs in cognition and its close

relation to structural and task-based functional networks, under-
standing interactions within and between intrinsic networks is key
to elucidating the pathophysiology of psychiatric disorders and
searching for network-based biomarkers based on mechanistic
understanding of treatment response [17, 39]. While a recent
study yielded inconclusive results regarding the identification of
neuroimaging biomarkers [40], networks including but not limited
to the default mode network (DMN), salience network (SN), central
executive network (CEN), and ventromedial limbic/affective net-
work (VMN) have emerged as focal points for potential biomarker
discovery in the context of major depressive disorder [39, 41]
(Fig. 1). We summarize key nodes within each IBN and their
hypothesized functions in Table 1. Dysfunctional interactions
within and between IBNs have been associated with various
depressive symptoms such as increased negative emotional and
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cognitive bias [39, 42], rumination [43–45], impaired emotional
regulation [46, 47], cognitive deficits [48], and anhedonia [49]
(Box 1). Based on the current evidence, distinct connectivity
patterns, notably within the salience and DMNs, might underlie
multiple phenotypic expressions [50] rather than one-to-one
relationships between brain networks and symptoms as pre-
viously hypothesized [51].

PROGNOSTIC BIOMARKERS OF MDD TREATMENT RESPONSE
We will first consider prognostic biomarkers from major clinical
trials for first-line antidepressant treatments, followed by trials for

second-line treatments. Given that the psychopathology of
heterogeneous MDD involves complex perturbations of large-
scale brain networks, patients with the same MDD diagnosis may
have varying aberrant structural and functional connectivity. This
heterogeneity implies that patients with certain structural or
functional networks might be more suitable for a particular
treatment compared to other patients. As we summarize break-
throughs in using pre-treatment brain networks or early changes
in the brain as prognostic biomarkers, we note that different
factors such as types of study design, analysis methods, validation
techniques, and sample size will influence the robustness and
clinical translatability of the biomarker. For instance, studies that
prospectively validated their biomarkers in large clinical trials and
an independent dataset within the same report (i.e., using the
same computational pipeline) will likely yield a reliable biomarker.
While most current neuroimaging biomarkers have not yet
undergone a successful prospective validation, we have made
substantial progress in the past decade. Some prognostic
biomarkers particularly for pharmacotherapy and neuromodula-
tion have been validated in an independent dataset within the
same study or at least replicated across different large clinical
trials, while there are relatively less neuroimaging biomarkers
predictive of psychotherapy response.

Pharmacotherapy
Since two-thirds of patients do not respond to their first
antidepressant medication [16], many trials aim to improve
prognostic biomarkers for commonly prescribed drugs like
selective serotonin reuptake inhibitors (SSRIs; e.g., escitalopram
and sertraline), and serotonin and norepinephrine reuptake
inhibitors (SNRIs; e.g., venlafaxine). Early clinical studies identified
promising neuroimaging biomarkers, which classified responders
from non-responders above 80% [52, 53]. However, studies had a
modest sample size (<30), which posed substantial challenges in
applying these markers prospectively in a heterogeneous MDD
population. Recognizing the need for robust biomarkers, we are
making rapid progress in finding more reliable biomarkers using
larger, multisite datasets. Very large clinical trials are the most
common in pharmacotherapy studies. For instance, antidepres-
sant drug trials with neuroimaging and N > 70 include Interna-
tional Study to Predict Optimized Treatment for Depression
clinical trial (iSPOT-D) [54], Canadian Biomarker Integration Net-
work in Depression (CAN-BIND) [55, 56], and Establishing
Moderators and Biosignatures of Antidepressant Response for
Clinical Care for Depression (EMBARC) [57]. The details of major
clinical trials are summarized in Table 2.
Resting-state functional connectivity (rsFC) of the DMN has

been frequently reported as candidate biomarkers to first-line
antidepressants [58–66] across wide-ranging clinical trial settings,
types of drugs, and analysis methodologies (e.g., seeds-based vs
connectomic approach). For example, increased DMN intra-
connectivity was found to be associated with responders or
remitters in different clinical trials [58–62] such as iSPOT-D [58, 61]
and EMBARC [60]. One example of strong evidence supporting
increased pre-treatment DMN intra-connectivity as prognostic
biomarker is by ref. [58]. In this study, they randomized 75 MDD
participants to escitalopram, sertraline, or venlafaxine, and found
that rsFC between the posterior cingulate cortex (PCC) and rostral
anterior cingulate cortex (rACC)/medial prefrontal cortex (mPFC)
predicted remission with greater than 75% accuracy [58].
Remitters had relatively intact PCC-rACC/mPFC rsFC that closely
resembles that of healthy controls. While [58] used ROI-based
analysis, ref. [61] used network-based statistics and similarly found
that greater baseline functional connectivity within the DMN
predicted treatment remission regardless of the type of medica-
tion [62]. However, this within-DMN rsFC is likely a treatment non-
specific biomarker as it did not differentially predict remission by

a   Default mode network

x = 0 y = –54 z = +26 r = 0.4

r = 1.0

b   Central executive network

x = +36 y = +18 z = +46 r = 0.2

r = 1.0

c   Salience network

x = +4 y = +12 z = +28 r = 0.2

r = 1.0

d   Ventromedial affect network

x = +6 y = +32 z = –16 r = 0.2

r = 1.0

Fig. 1 Four Intrinsic Brain Networks Implicated in MDD. Resting-
state functional connectivity (rsFC) map of default mode network
(a), central executive network (b), salience network (c), and
ventromedial affect network (d), generated using NeuroSynth
[281]. Colormap displays brain regions that are correlated with the
seed voxel indicated with crosshairs (MNI coordinates). Red and
yellow represent the minimum and maximum Pearson correlations
(r) respectively. The seeds are nodes of each network: posterior
cingulate cortex (a), right dorsolateral prefrontal cortex (b), dorsal
anterior cingulate cortex (c), and subgenual anterior cingulate
cortex (d). The coordinates of the seed voxel were obtained from
[282] and confirmed using the term-to-coordinate mapping in
NeuroSynth [281].
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medication [58]. Consistent with the above findings, an early
decrease in DMN intra-connectivity also predicted better sertraline
response in the EMBARC study [67].
In addition to DMN intra-connectivity, between-network con-

nectivity of the DMN could differentiate remission. Using a larger,
multi-site sample [55, 56] of CAN-BIND-1 participants treated with
open-label escitalopram (N= 129), ref. [65] found greater baseline
SN anterior cingulate cortex (ACC)-DMN PCC rsFC among early
remitters relative to non-remitters [65]. Furthermore, greater
insular connectivity with anterior and posterior DMN nodes could
differentiate early from late remitters. Remitters also had weaker
intra-connectivity within the SN (left-right insula), and DMN (PCC-
right superior temporal gyrus) [65]. Extending these findings, the
connectomic approach uncovers potential brain connectivity
beyond the canonical brain networks. For instance, remitters in
the iSPOT-D study had greater inter-connectivity among DMN,
somatomotor networks, attention networks, somatomotor net-
works, and fronto-parietal networks. Adding the neuroimaging
connectome biomarkers to clinical variables significantly
improved their cross-validated model accuracy from 61.5% to
68.8% [62]. High baseline connectivity between the DMN and
other nodes, and low connectivity between the executive network
and the rest of the brain predicted general treatment response to
sertraline and placebo for 200 MDD patients who completed the

EMBARC study [66]. Overall, there is strong evidence that
increased DMN intra-connectivity and the inter-connectivity
involving nodes of DMN could be potential prognostic biomarkers
of pharmacotherapy response. However, it remains a challenge to
resolve different inter-connectivity biomarkers found across
different study designs and analysis pipelines. The need to
address the heterogeneity across studies and subsequently
prospectively validate these biomarkers will be the recurring
theme throughout.
Nucleus accumbens (NAc) connectivity, an important area for

reward neurocircuitry, has also been identified as a candidate
biomarker given that SSRIs and augmentation therapies act on
dopaminergic systems. One CAN-BIND report found that baseline
NAc rsFC with nodes of the SN (ACC) and DMN (precuneus, PCC)
correlated with anhedonia improvement for escitalopram non-
responders who received adjunct aripiprazole, a dopamine D2
receptor agonist [68]. However, another study (N= 128 MDD) did
not find any difference in the baseline NAc rsFC between
responders and non-responders, but an increase in right NAc-
right dorsal ACC (dACC) rsFC from pre- to post-treatment was able
to differentiate responders from non-responders, regardless of
antidepressant type [69]. So far, our understanding of the neural
mechanism by which different drugs decrease anhedonia remains
limited. Based on the current evidence, anhedonia improvement
in MDD may have unique prognostic biomarkers that integrate
the striatal regions related to reward processing with the DMN
and SN.
Furthermore, baseline structural connectivity measures such as

fractional anisotropy of predefined white matter tracts yield
promising biomarkers [70–72]. For instance, the cingulum
connects important nodes of DMN and SN within the cingulate
cortex (e.g., PCC, dACC, and rACC) [73] while stria terminalis
subserves the limbic/affective network (e.g., amygdala and
hypothalamus) [74]. Their dysfunctional structural connectivity
has been implicated in MDD [75–77] and treatment response [70].
Fractional anisotropy of the cingulum and stria terminalis could
predict antidepressant treatment response up to 74% when
combined with sociodemographic variables like age [70].
Combining structural and functional data may also improve

prediction accuracies. Tian et al. [78] combined structural and
functional data (N= 106) from an open-label escitalopram trial
and found whole-brain biomarkers that predicted 69–72%
accuracy [78]. Recently, multi-modal connectomes trained on
184 MDD patients in a naturalistic antidepressant monotherapy
setting (SSRI or SNRI) could predict post-treatment depression

Table 1. Intrinsic brain networks: associated brain areas and cognitive function.

Intrinsic brain networks List of brain areas Associated function

Default Mode Network (DMN) Midline/core network: medial prefrontal cortex (mPFC) and
posterior cingulate cortex (PCC)

Internally-directed cognition, integration of
other DMN subsystems, introspection [2]

Dorsal network: dorsomedial prefrontal cortex (DMPFC),
rostral anterior cingulate cortex (rACC)

Self-referential or affective processes, effortful
emotion regulation [272, 273]

Temporoparietal network: bilateral inferior parietal cortex
(IPL), medial/lateral temporal cortices, temporoparietal
junction, precuneus.

Autobiographical memory retrieval and scene
reconstruction [2]

Frontoparietal Central
Executive Network (CEN)

Dorsolateral prefrontal cortex (DLPFC), frontal eye fields,
and superior parietal cortex

Cognitive control/flexibility, action planning,
sustaining attention, working memory [274, 275]

Salience Network (SN) Dorsal anterior cingulate cortex (dACC) and anterior insula Detection/integration of salient stimuli and
autonomic/emotional information. [276]

Ventromedial Affect and
Reward Networks (VMN)

Subgenual anterior cingulate cortex (sgACC), nucleus
accumbens (NAc), medial OFC (mOFC), and ventromedial
prefrontal cortex (VMPFC)

Reward learning and valuation, affect
processing [49, 277]

Limbic and Autonomic
Circuitry

Amygdala, hippocampus, hypothalamus Emotional memory, fear conditioning, anxiety,
autonomic/endocrine response to emotion
[278–280]

Box 1. Intrinsic brain networks implicated in biomarkers of
antidepressant response

Dysfunctional intra- and inter-connectivity among IBNs have been associated with
symptoms of depression. In brief, DMN (Fig. 1A, Table 1) is a network of brain
regions that are active when an individual is at rest or engaged in internally
focused tasks such as self-reflection, mind wandering, and autobiographical
memory retrieval [283, 284]. Hyperconnectivity within the DMN is associated with
excessive rumination and negative self-referential processing, which are hallmark
features of depression [43–45]. However, several studies did not find rumination to
be predictive of DMN hyperconnectivity [50, 285]. CEN (Fig. 1B) is involved in
higher-order cognitive processes such as working memory, cognitive control, and
decision-making [274, 275]. Hypoconnectivity within CEN and decreased inter-
connectivity between CEN and VMN/limbic network are related to deficits in
cognitive control [48] and impaired emotional regulation observed in MDD
participants [46, 47] respectively. SN (Fig. 1C) initiates a switch from DMN (self-
referential processing) to CEN (externally-oriented cognition) in response to a
salient stimulus [286]. Thus, impaired interactions between SN and DMN/CEN in
MDD, and the inability to disengage with DMN, result in increased negative
emotional and cognitive bias and rumination [49, 279]. Furthermore, impaired
functioning of VWN (Fig. 1D), SN, and limbic system has been associated with
heightened emotional reactivity to negative stimuli, impaired reward processing,
and anhedonia in MDD [49, 287].
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severity of the external validation dataset (N= 26 MDD) at
76.92% accuracy, as compared to using structural connectome
(73.1%) and functional connectome (65.38%) alone [79]. Newer
ways are being developed to quantify combined structural and
functional connectome (e.g., anatomically weighted functional
connectivity [80]), which may bolster prediction accuracy.
Neuroimaging data has also been incorporated into a multi-
modal dataset that combined clinical, behavioral, and molecular
biomarkers [81], but its predictive value in this study was limited
(accuracy: 57%).

So far, neuroimaging studies have reported prognostic
biomarkers either by using group-level statistics to measure
the differences between responders and non-responders or by
evaluating predictive accuracy of their machine learning models
or classifiers. Particularly for those studies evaluating predictive
accuracy, different choices of preprocessing steps, first-level
statistical modeling, and machine learning methodologies could
yield drastically different prediction accuracies. For example,
there are different approaches to performing anatomical
parcellations, quantifying functional connectivity, identifying
the most predictive connectomic features, and classifying
responders and non-responders. Using CAN-BIND data, ref. [82]
tested the performance of 240 different models using either the
baseline or the post-treatment resting-state connectome
(N= 144 MDD) and none were capable of predicting response
above chance [82]. Comparing different machine learning
classifiers on a pre-treatment sMRI dataset for an open-label
escitalopram trial (N= 79 MDD), ref. [83] found cross-validated
accuracies for predicting treatment response ranging from 0.46
(support vector machine) to 0.62 (random forest) [83]. However,
the classifiers trained on their dataset were not generalizable to
an independent dataset, albeit for a different SSRI (sertraline).
These findings contradict smaller single-site studies reporting
>80% accuracy [52, 53] as well as the single-site iSPOT-D study
[58, 61]. Interestingly, ref. [82] reported that the change in
functional connectivity from baseline to week 2 showed a
predicted accuracy of up to 69.6% for the best-performing
model [82]. This aligns with quantitative electroencephalography
studies indicating that early changes predict antidepressant
response at >70% accuracy [84, 85]. Collecting neuroimaging
data at baseline and early on during the treatment may have
some clinical utility, as it may capture early changes in the brain
that might be predictive of a delayed symptomatic change [86].

Thus far, we have made substantial progress in finding
baseline intrinsic functional connectivity as prognostic network-
based biomarkers for treatment response to antidepressant
pharmacotherapy. Interactions within DMN and inter-
connectivity between DMN and the rest of the brain appeared
to be biomarkers that emerged from both seeds-based and
connectomic approaches, while the reward neurocircuitry might
play a role in predicting anhedonia response. Recent studies
have shown that combining structural and functional connec-
tomes, and novel computational techniques could improve the
predictive value of neuroimaging biomarkers. However, it is not
clear which of these biomarkers is truly suitable for real-world
prediction of antidepressant response. Future studies should
rigorously validate the accuracy of our current biomarkers using
a larger independent dataset to capture the heterogeneity
of MDD.

Psychotherapy
Psychotherapy is a first-line psychological treatment for MDD
with comparable efficacy to pharmacotherapy [87–89], and
includes cognitive behavioral therapy (CBT) and interpersonal
therapy. Like pharmacotherapy, 45% of MDD patients do not
respond to CBT [89, 90]. Yet, there is relatively less research on
prognostic biomarkers of psychotherapy treatment response
compared to that of pharmacotherapy [91].Ta
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Prognostic studies for psychotherapy in MDD have predomi-
nantly involved task-based fMRI during emotional processing or
reward learning. The rationale for these tasks stems from the
hypothesized mechanistic action of psychotherapy. For instance,
the development of cognitive-based therapies for depression is
geared towards identifying and correcting dysfunctional thinking
patterns implicated in processing negative emotional information
and reward-based learning [92–94]. From a brain network
perspective, these cognitive processes relate to the dual-process
model of emotional regulation: prefrontal emotional regulation
regions inhibit limbic nodes implicated in emotional reactivity
[91, 95, 96]. Specifically, nodes of the CEN (e.g., dorsolateral
prefrontal cortex or DLPFC) inhibit limbic/affective regions
(amygdala) via the SN (dACC), and via VMN and DMN nodes
implicated in emotional appraisal/evaluation like the orbitofrontal
prefrontal cortex (OFC), subgenual ACC (sgACC), and rACC
[97–100]. Thus, for MDD participants, limbic areas such as the
amygdala are hyperactivated in response to negative stimuli
[101–104] likely due to decreased top-down control from dorsal
prefrontal regions [105, 106].
Based on this model, it is believed that pharmacotherapy and

psychotherapy have distinct mechanistic actions. Antidepressant
drugs act via decreasing amygdala hyperactivity directly while
psychotherapy increases PFC hypoactivity, which has a top-down
effect on normalizing amygdala dysfunction [107]. Thus, we would
expect amygdala hyperactivity to be a prognostic marker for
response to both psychotherapy and pharmacotherapy because
both treatments ultimately normalize amygdala activity. While
converging evidence suggests amygdala hyperactivation during
negative emotional reactivity to be a prognostic biomarker of
pharmacotherapy response [108, 109], such trends are mixed for
psychotherapy. Two studies have reported baseline amygdala
hyperactivity during negative emotional processing [110] or reward
learning [111] as predictive of response to CBT. However, most task-
based studies report nonsignificant amygdala findings [112–115]
including a follow-up study [116] of Siegle et al. [110].
Alternatively, we would expect areas related to emotion

regulation and evaluation to be a possible biomarker for
psychotherapy. A few fMRI studies found that baseline hypoactiv-
ity in sgACC [110, 116] and dACC [112] during emotional
processing tasks predicted psychotherapy response. Similarly, a
PET study found that baseline sgACC hyperactivity sgACC at rest
predicted non-response to CBT [117]. However, a recent CBT task-
fMRI study (N= 32 MDD) did not find any baseline emotion
regulation or emotional reactivity-related brain activity signifi-
cantly associated with depression improvement [115]. Although it
could be that more research with a larger sample size is needed to
resolve the conflicting literature, newer models [118, 119] have
moved beyond a simplistic binary interaction between the
prefrontal cortex and limbic regions to better account for
treatment mechanisms and biomarkers.
To date, there is relatively less research on rsFC predictors of

psychotherapy treatment response. Investigating four canonical
resting-state networks (DMN, SN, dorsal attention network, CEN),
ref. [120] found that increased baseline right insula (SN)–middle
temporal gyrus (MTG/DMN) rsFC was predictive of improvements
in anhedonia following behavioral activation treatment, which is a
psychotherapy aimed at improving engagement with rewarding
stimuli [120]. However, this biomarker did not predict improve-
ments in overall depression severity. Interestingly, this rsFC was
hypoconnected in all MDD participants relative to controls, but
individuals with relatively normalized right insula–MTG connec-
tivity had worse baseline anhedonia and better response to
treatment [120]. Although this study used resting-state fMRI, MDD
participants excessively recruit MTG during the generation of
negative affect as a compensatory mechanism for inefficient
activation of dACC and supplementary motor area during the
down-regulation of emotions [121]. Increased insula-MTG rsFC

may reflect maladaptive functional compensation. Thus, these
findings suggest that those who exhibit compensatory mechan-
ism might best respond to psychotherapy. These findings also
support the notion that certain treatments may be best suited to
address subgroups of patients exhibiting similar symptomatotic
and rsFC profiles (i.e., behavioral activation treatment for
individuals presenting with high anhedonia and normalized
MTG rsFC).
Other psychotherapy biomarkers are consistent with the idea

that psychotherapy addresses maladaptive rumination and top-
down emotional regulation. Straub et al. [122] found that higher
baseline amygdala-left DLPFC, amygdala/left anterior insula, and
right sgACC-right DLPFC rsFC predicted greater CBT improvement
[122]. Thus far, current literature suggests a few potential
prognostic biomarkers for psychotherapy response possibly
involving (i) increased rsFC between SN (insula) and DMN (MTG),
(ii) insula hypermetabolism at rest, (iii) hyperactivity in sgACC and
dACC (emotional regulation system) in response to negative
emotional processing. However, future research should explore
data-driven and connectomic approaches using a larger sample
size to uncover depressive brain states that are responsive to
psychotherapy. Particularly with resting-state studies, it is unclear
if early brain changes can be used as prognostic biomarkers for
psychotherapy. It is also unknown whether these neuroimaging
biomarkers are general to every psychotherapy or simply
cognitive/behavioral therapy, or with improvements in specific
symptoms. Lastly, since psychotherapy may reduce the risk of
relapse or recurrence [123, 124], future research should address
whether these biomarkers can predict long-term remission and
relapses.

Neuromodulation and second-line treatments
Treatment-resistant depression is typically defined as non-
response to two or more trials of pharmaco- or psychotherapies
[125, 126], and affects 35% of people diagnosed with MDD [127].
Neuromodulation therapies are indicated for those who do not
respond to or cannot tolerate first-line treatments. These
treatments modulate brain activity using the delivery of a stimulus
such as electrical currents in electroconvulsive therapy (ECT),
magnetic pulses in repetitive transcranial magnetic stimulation
(rTMS) targeting the DLPFC [128], or electrical stimuli via
implanted electrode leads in deep brain stimulation (DBS). The
neuromodulatory effects of these treatments can locally affect the
stimulation site and further propagate to other remote areas,
targeting specific IBN implicated in MDD psychopathology [129].
Treatment responses to neuromodulation-based treatments vary
greatly across individuals [130]. Searching for neuroimaging
biomarkers, particularly for neuromodulation-based treatments,
will guide the development of neuromodulation techniques that
optimally engage with brain regions or circuits implicated in MDD
based on identified biomarkers, and generate individualized care.
This targeted and personalized approach increases the likelihood
of therapeutic efficacy while minimizing potential side effects.
Pre-treatment sgACC connectivity is implicated in responses to

numerous neuromodulation-based treatments. For DLPFC-rTMS,
baseline hyperconnectivity between the sgACC and DMN at rest,
but not between DMN and CEN, predicted response 10Hz-rTMS
over the left DLPFC [131, 132]. Of recent interest, greater
anticorrelation between the DLPFC stimulation site and sgACC is
associated with better outcomes to treatment [133–135]. How-
ever, one study reported that stronger baseline sgACC and right
DLPFC connectivity predicted non-response to high-frequency
rTMS over the left DLPFC [136]. Other groups have indicated that
this biomarker may be sensitive to modeling choices and
may have a relatively modest effect size [137]. Future studies
are suggesting that symptom-specific manipulations of brain
activity via rTMS may yield more robust and personalized care
using this intervention [138, 139].
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Similarly implicating the sgACC, DBS for MDD targets this
region, which alters blood flow locally at the stimulation site, but
also in other remote areas within the limbic and prefrontal
networks that are functionally connected to sgACC [140–142]. This
normalization of sgACC activity in TRD is associated with a
reduction in depressive symptoms [140, 141]. Given this proposed
mechanism, DBS response is associated with the white matter
tracts and structural connectivity of the stimulation site [143].
Individuals with DBS leads implanted near white matter tracts
connecting the sgACC to the mPFC, rACC, dACC, and subcortical
nuclei responded best to treatment. In a prospective, open-label,
follow-up study, ref. [143] used this knowledge to select the
optimal stimulation site using tractography, finding that 82% of
patients responded one year post-surgery [143]. This response
rate is higher than previous trials from the same group [144],
demonstrating the potential of this marker in personalizing care
for this population.
Despite the stimulation non-specificity of ECT, this treatment

also implicates sgACC structure and function. Greater baseline
sgACC volume predicts improved outcomes to ECT [145]. At rest,
greater variability in sgACC activity is correlated with ECT response,
which decreased after treatment [146]. Another study found that
sequential changes in sgACC, DLPFC, and amygdala rsFC correlated
with ECT improvement [147]. Furthermore, a classifier trained on a
multimodal dataset with features from sMRI, BOLD rs-fMRI, and
arterial spin-labeled fMRI predicted ECT response with a balanced
accuracy of 68% [148]. Although the sample size in this study was
modest (N= 46), the classification models consistently highlighted
left DLPFC and sgACC, as well as the connectivity between motor
and temporal networks around electrodes used in electroconvul-
sive therapy (ECT), as predictive features.
In addition to sgACC, connectivity within and between different

IBNs, such as DMN and CEN, has been implicated in non-invasive
brain stimulation response [149–154]. For instance, within-DMN
hypoconnectivity and connectivity between the DMN and CEN are
associated with ECT response [151]. Van Waarde et al. [152] used a
classifier trained on either resting-state fMRI or sMRI to predict ECT
remission in TRD [152]. Their approach identified two functional
networks that predicted remission at >80%: one network involving
the mPFC, DLPFC, OFC, and PCC, and another centered on the
dACC, DLPFC, sensorimotor cortex, parahippocampal gyrus, and
midbrain. Notably, structural data was not significant predictors,
contradicting other studies that found structural biomarkers such
as hippocampal subfields [155], striatum [156], and sgACC [145] to
be predictive of ECT outcomes.
One limitation to identifying biomarkers of treatment response

is that MDD is a symptomatically heterogeneous condition.
Therefore, the connectomic signatures of MDD widely vary across
individuals, making it potentially advantageous to incorporate
biological subtypes of depression with the predictive connectomic
biomarkers into classifiers for predicting response. Using this
approach, ref. [157] found that classifiers based on both resting-
state connective features and biotype diagnosis can accurately
predict MDD responders to rTMS over the mPFC (90%), which
significantly outperformed classifiers based on the connectomic
features (79%) or clinical features (64%) alone [157]. They found
that areas across DMN (PCC, mPFC), CEN (left DLPFC), and limbic/
reward system (amygdala, OFC) had the strongest discriminant
effects [157]. These methods were recently updated to address
limitations related to overfitting, feature selection, and multisite
variability in a sample of MDD patients. We found that symptom-
RSFC and subtypes were not only stable and generalizable in
unseen data using an updated approach, but also stratified
individuals treated with rTMS targeting the DLPFC by response
[158]. Another approach is to cluster symptom-response maps and
use individual depression symptoms since most studies used total
depression scores [133–135, 159]. The symptom-response maps
are the correlations between the symptom changes and the

expected rsFC map for each patient’s stimulation site. The
connectivity of each stimulation site is usually derived from a
large functional connectome dataset of healthy participants
[160, 161] to improve the reliability of the connectomic
biomarkers [159]. Preliminary evidence in retrospective datasets
suggests that a connectomic approach to defining regions
functionally related to stimulation sites may help identify distinct
targets for different clusters of depressive symptoms [162].

PRESCRIPTIVE BIOMARKERS OF MDD TREATMENT SELECTION
Much progress has been made in finding prognostic biomarkers
that predict treatment response or remission in MDD. Many of
those studies, however, have used reported prognostic biomar-
kers based on a single intervention prescribed open-label or
relative to a placebo [65, 82, 163, 164]. While such prognostic
biomarkers lay the foundation for understanding responsive
depressive brain states specific to those treatments, they are
limited in their clinical utility of guiding whether such biomarkers
can differentially predict response better than other treatments.
Relatively few neuroimaging studies compared more than two
differing treatment options to search for prescriptive biomarkers
that can predict the optimal type of intervention. However, many
of those comparative studies were only able to find treatment
non-specific, prognostic biomarkers, rather than prescriptive
biomarkers, for the treatment options in question. We summarize
below advances toward finding prescriptive neuroimaging bio-
markers for MDD.
Earlier studies involving modest sample sizes found baseline

neuroimaging predictors between two different classes of
antidepressant medication [165, 166]. For instance, ref. [166]
found that bupropion responders (n= 6) showed cerebellar
hypermetabolism, whereas venlafaxine responders (n= 7) exhib-
ited bilateral temporal and basal ganglia hypometabolism.
However, these findings have been challenging to replicate. Even
among larger randomized controlled trials for pharmacotherapy,
prescriptive biomarkers have been difficult to identify. For
example, studies from the iSPOT-D trial sought to identify whether
rsFC can be used as prescriptive biomarkers for optimizing
treatment selection to escitalopram, sertraline, or venlafaxine-XR
[58, 69]. Both seed-based [58] and connectomic [61] approaches
did not yield any prescriptive biomarkers. Given the mechanism of
antidepressant drugs is to modulate monoaminergic neurotrans-
mission [167], identifying neuroimaging biomarkers with sufficient
predictive value and specificity to individual classes of antide-
pressant medications remains a significant challenge.
On the other hand, the EMBARC study yielded fMRI and EEG

biomarkers that differentially predicted sertraline and placebo.
Using the seed-based functional connectivity analysis, Chin Fatt
et al. [60] found that higher DMN-ECN interconnectivity predicted
better sertraline and worse placebo response [60]. Higher
interconnectivity of hippocampus with VMN/ECN/attention net-
work, and limbic network with SN and somatomotor network
predicted better placebo and worse sertraline response. The ASL
perfusion study did not find opposite-direction predictions but
found several regions in the DMN, SN, VWN, and limbic network
similar to the rsFC study that predicted treatment-specific
responses [168]. And while we would expect that early changes
in perfusion patterns might yield potential biomarkers similar to
that of rsFCs [82] since cerebral blood flow has a higher signal-to-
noise ratio than resting-state fMRI, a recent perfusion study did
not find any perfusion patterns predictive of sertraline response
[169]. However, ASL may emerge as an important modality when
considered with other neuroimaging biomarkers since ASL data
contributed the most to the recent multimodal MRI biomarker
predicting sertraline-specific response [170].
Furthermore, an initial attempt to find connectomic prescriptive

biomarkers using the same EMBARC dataset did not succeed [66].
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However, ref. [171] used individual-specific rsFC from the EMBARC
dataset and successfully found connectomic signatures that were
specific to either sertraline (e.g., DMN-somatomotor network
connectivity) or the placebo arm (e.g., somatomotor network and
visual network connectivity) [171]. In other words, models trained
on the sertraline arm did not predict placebo treatment outcome
(r= 0.00, p= 0.97) and vice-versa (r= 0.08, p= 0.55). Furthermore,
in comparison to using the raw rsFC data, the individualization of
FCs improved the prediction power and changed connectivity
weights of important nodes of DMN (middle/inferior temporal
cortex) and SN (insula) in sertraline; the left superior temporal
cortex and right middle cingulate cortex in the placebo [171].
These regions were also the most predictive of sertraline and
placebo response respectively, suggesting that individualized
precision functional mapping might be more sensitive to subtle
differences in varying connectomic features that might contain
critical information for predicting treatment selection. Addition-
ally, EEG represents a more accessible modality that could
potentially inform treatment selection. Similar to fMRI, most EEG
studies could not find reproducible, prescriptive biomarkers
[172–174] partly because EEG faces the challenge of signal
smearing [175], the risk of overfitting high-dimensional EEG [176],
and optimizing feature identification [177]. However, a recent
EMBARC study developed a novel rs-EEG computational model
and found the latent signatures from alpha frequency range rs-
EEG data that were specific to either sertraline or placebo [178].
Similarly, the CAN-BIND group was able to classify open-label
escitalopram response using baseline and treatment week 2 EEG
recordings with roughly 80% accuracy [179]; this finding is
currently being prospectively validated (NCT05017311). Lastly,
EEG-based biomarkers have been prospectively replicated in
patients treated with agomelatine/ALTO-300 [180]. These results
point to EEG as an accessible, and potentially effective tool to
identifying and validating biomarkers of existing and novel
treatments.
Another potential avenue for treatment selection is to compare

two different interventions with highly divergent hypothesized
mechanisms: pharmacotherapy and psychotherapy. The most
compelling biomarkers thus far come from the PReDICT study,
where participants were randomized to either CBT or pharma-
cotherapy [181]. Dunlop et al. [182] found baseline sgACC rsFC
with the left frontal operculum, left ventromedial prefrontal
cortex, and dorsal midbrain as prescriptive biomarkers for CBT and
pharmacotherapy treatment selection [182]. They then summed
up the mean functional connectivity between SCC and each of the
three regions. Positively summed rsFC accurately predicted CBT
remission (78%) and pharmacotherapy non-remission (75%) while
negatively summed rsFC accurately predicted CBT non-remission
(89%) and pharmacotherapy remission (72%) [182]. These findings
suggest that baseline sgACC rsFC could potentially be used to
recommend CBT or pharmacotherapy, but more replication and
prospective validation must be done before implementing this
biomarker in real-world psychiatric care.
In addition to the rsFC, resting-state metabolic activity

measured using PET has also been explored. In a randomized
controlled trial of CBT and escitalopram (n= 38), ref. [183] found
six regions in the SN (right anterior insula), DMN (right inferior
temporal cortex and precuneus), limbic network (left amygdala),
and somatomotor network (left premotor cortex and right motor
cortex) as potential prescriptive biomarkers [183]. Of note, the
right anterior insula showed the highest discriminative ability, with
insula hypermetabolism being associated with escitalopram
remission and CBT non-remission, and insula hypometabolism
being associated with CBT remission and escitalopram non-
remission [183]. This finding, along with studies showing
heterogenous insula metabolism profiles among MDD participants
[184, 185], led to the hypothesis that anterior insula metabolism
might be a viable treatment selection biomarker [119] due to its

role in initiating network switching between DMN and CEN [39].
However, when the clinical utility of the prescriptive biomarker
was prospectively tested by using the anterior insula metabolism
to assign MDD participants to either CBT or escitalopram, ref. [186]
did not find anterior insula beneficial in predicting remission rates
(38%) [186]. The findings emphasize the importance of prospec-
tively validating current biomarkers and integrating our under-
standing of large-scale brain networks in depression into the
development of novel network-based biomarkers.
Despite the extensive body of research dedicated to under-

standing the etiology, pathophysiology, and treatment mechan-
ism of MDD, the identification of neuroimaging biomarkers
capable of guiding personalized treatment approaches is yet to
be successful. Based on the current literature, potential prescrip-
tive biomarkers for predicting different classes of pharmacother-
apy, or between pharmacotherapy and psychotherapy could be
based on interactions among DMN (e.g., lateral temporal cortex,
precuneus), SN (anterior insula), and VMN (e.g., sgACC). However,
many of the biomarkers identified for the same intervention but in
different clinical trials consist of many overlapping brain regions
within the well-known IBN implicated in MDD, likely reflecting the
need to account for heterogeneity in the MDD participants, study
design, eligibility criteria, operationalization of treatment out-
comes, and computational methodologies in analyzing the data
and calculating the predictive utility of biomarkers. These
challenges are extensively discussed in the next section below.

FUTURE DIRECTIONS AND CLINICAL IMPLICATIONS
The reviewed studies demonstrate that significant strides have
been made over the last decade toward unraveling the complex
underpinnings of antidepressant response, with the strong
potential of informing personalized treatment strategies. However,
challenges remain on the path to clinical translation. For example,
the therapeutic window defining treatment response can vary
considerably from one biomarker study to the next (discussed in
[17]). Response and remission rates also differ slightly depending
on the therapeutic window considered, with longer trials having
higher rates [187]. Therefore, it is unsurprising that biomarkers of
response qualitatively and substantially differ when investigating
6-week or 12-week outcomes [17]. Another area of concern is
publication bias, which further limits our ability to independently
validate and prospectively use biomarkers. Open data, and pre-
registered, freely-available method will be paramount to further-
ing our confidence in efforts to translate findings from the scanner
into the clinic [188, 189].
In this section, we highlight considerations on study design,

methodological, and implementation that, if addressed in future
work, will improve our understanding of and aid in implementing
biomarkers of treatment response and selection.

Clinical trial design
Study design can significantly influence response and remission
rates to antidepressants. For example, response and remission rates
are higher in open-label relative to placebo-controlled trials [187],
likely due to expectancy effects [190]. Furthermore, the choice of
intervention impacts willingness to participate in research and
therefore may bias participant selection, as individuals are willing to
participate in head-to-head or placebo-controlled studies using
psychotherapy over head-to-head drug trials [191]. It is therefore
likely that these aspects of study design could impact the
identification and validation of biomarkers of response.
Researchers have used a variety of different study designs in an

effort to identify biomarkers of antidepressant response. For studies
whose primary aim was to evaluate biological modulators of
response, some groups, such as EMBARC [57], used a placebo-
controlled study of a single SSRI, while others, like PReDICT [181] and
iSPOT-D [54], randomized participants into one of three active
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treatment arms. Others, including EMBARC and CAN-BIND-1 [55],
have used a staged (mono- and adjunctive therapy) approach,
which more closely mirrors the trial-and-error approach to
antidepressant treatment and other studies evaluating efficacy
[22]. Heterogeneity in study design could negatively impact our
ability to pool studies for meta-analysis [192], potentially limiting the
generalizability of findings. Reassuringly and in contradiction to this
notion, recent efforts pooling CAN-BIND, PReDICT, EMBARC, and
other trial data have identified sMRI dimensions of MDD that
stratified response to SSRIs and placebo [193]. Regardless,
idiosyncrasies in study design will need to be carefully considered
in upcoming efforts to pool studies in larger consortia including the
Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA)
Consortium [194, 195] and the COORDINATE-MDD Consortium [196].
Moving forward, research is needed to clarify the impact of trial

design on biological markers of treatment response, and different
study designs may be better equipped to answer specific questions
on the robustness or utility of candidate biomarkers. For one, the
goal of placebo-controlled trials is to unravel the treatment-specific
biomarkers, while controlling for psychophysiological factors con-
tributing to the placebo response [197]. These comparisons between
biomarkers of active and placebo are helpful both from a
mechanistic and prognostic perspective. That said, placebo
responses are high but variable across a variety of different
interventions [198], and will be present in prospective, real-world
translation efforts. Some have argued that the placebo response
could be harnessed to bolster treatment efficacy or refine treatment
options, which would be particularly relevant to biomarkers research
[197]. Indeed, both biomarkers of antidepressant and analgesic
placebos are associated with networks pertinent to MDD, including
the SN and DMN [171, 199], so more research is needed to
understand the clinical utility of these markers.
Another area needing more investigation is research comparing

two or more active treatments to better understand predictors of
specific interventions and aid in treatment selection. While this
has shown helpful in disentangling biomarkers of psycho- vs.
pharmacotherapy [117, 182, 183] and has ethical benefits by
randomizing patients to receive at least one efficacious treatment,
there are relatively few direct comparisons of predictors to specific
drugs. Furthermore, studies investigating active interventions
have randomized participants into arms irrespective of patient
preference. This line of research suggests that patient preference
does not influence overall treatment efficacy but does impact
dropout rates [200, 201], and we do not yet know whether or how
patient preference impacts biomarkers of response/selection.
Partially randomized patient preference trials could improve the
internal and external validity of biomarkers by assigning patients
their preferred treatment, which would emulate real-world
treatments while retaining response and remission rates.

Study population
Another factor to consider is study population. To date, most large
biomarker trials recruit adults diagnosed with unipolar MDD
[54–57], with fewer biomarker trials occurring in adolescence and
in later life. Studies within the unipolar space vary considerably on
inclusion/exclusion criteria, particularly on factors like antidepres-
sant treatment history, comorbid mental illness, and a depression
severity cutoff [202, 203]. Nearly all studies exclude individuals
with a high suicide risk, but the methods to determine risk differ
(e.g., clinician judgement, score on scales acquired during
screening). While these criteria help to ensure a homogenous
sample/population, comorbid mental illnesses are common
[204, 205] and, therefore, limit the external validity of biomarkers.
Given that individuals suffering from comorbid mental illness
experience more MDD recurrence, greater treatment resistance,
and slower recovery than those without [206, 207], future studies
should “lean in” than “shy away” from this aspect of clinical
heterogeneity to maximize external validity.

Furthermore, more inclusive study criteria may help converge
our biomarker study efforts across mental illnesses, especially for
therapies that are indicated for multiple disorders other than
unipolar MDD. For example, researchers have reported convergent
mechanisms and predictors of psychotherapy and pharmacother-
apy response in mood and anxiety disorders despite strong
between-study heterogeneity [91, 208]. Future research should
consider convergent and divergent biomarkers of treatment
response considering the high comorbidity of mental illness and
the transdiagnostic indications of many psychotropic
interventions.

Defining treatment response
Defining treatment response, the dependent variable, is not trivial.
Studies frequently acquire a clinician-rated or self-reported
depression severity scale, like the Hamilton Rating Scale for
Depression [209] or Beck Depression Inventory [210], pre-
treatment, at regular intervals during treatment, and post-
treatment to track improvement. Selecting which scale and how
to assess response (i.e., as a continuous or dichotomous variable),
as previously discussed [17], varies considerably across trials,
limiting our ability to generalize findings.
Further complicating this issue, these scales often evaluate

multiple symptom dimensions [211]. This likely negatively impacts
our ability to detect biomarkers of response and distinct
biomarkers of specific treatments, when evaluating the change
in total score on these scales due to heterogenous baseline
symptom profiles and symptom-specific change. Confirming this
notion, specific pre-treatment symptom clusters are associated
with differential response to both first- and second-line treatments
[158, 212]. Furthermore, researchers have shown that different
interventions yield distinct patterns of symptom-specific response
[213–215]. For example, ref. [216] found that individuals treated
with escitalopram or duloxetine experienced greater improve-
ments in melancholic symptoms relative to those treated with
psychotherapy [216]. Second-line treatments for MDD may also
impact specific symptom dimensions, including ketamine [217]
and rTMS [162]. Given that specific symptom domains have
distinct underlying biology [157, 158, 218], it is possible that
change in these domains are a fruitful way forward to identifying
treatment-specific and robust biomarkers.
How else might we characterize response? Incorporating

multiple scales may be one path forward, particularly if they
assess symptoms not fully realized in one scale (e.g., anhedonia in
the Hamilton Depression Rating Scale [209]). Alternatively, quality
of life and functional impairment scales are commonly acquired in
biomarkers studies but typically considered a secondary outcome
measure. Scales such as the Sheehan Disability Scale [219] could
also yield important biomarkers of clinically meaningful improve-
ment, especially if aggregated across many trials. Early improve-
ments in functional impairment predict later depressive response
[220, 221], and structural and functional connectivity related to
functional impairment in MDD implicates nodes of depression-
related networks [222, 223]. Another consideration is identifying
biomarkers predicting distinct trajectories of treatment response,
which will consider all available timepoints. Linear growth mixture
modeling is one method that stratifies subgroups of participants
by trajectory, which has shown high prediction accuracy for
response to psychotherapy in late-life depression [224] and has
been used to characterize response to psychotherapy and
pharmacotherapy in adults [225, 226]. Early work incorporating
trajectories with neuroimaging is promising [227, 228].

Neuroimaging and modeling considerations
Another nontrivial consideration is selecting the neuroimaging
paradigm and acquisition parameters. First, there is considerable
variability in biomarker modality across studies (e.g., sMRI, resting-
state and/or task-based fMRI), again limiting our ability to
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generalize findings. Resting-state and sMRI are popular options, as
they are relatively simple to acquire and do not rely on task
compliance or performance. However, interpreting functional
connectivity unconstrained by a task is complicated by the fact
that individuals may experience the resting-state scan differently,
and this variability is inadequately accounted for [229]. Further,
task-based fMRI may be better suited to characterizing inter-
individual differences in behavior over resting-state. In a
nondepressed sample, task-based functional connectivity is
superior at characterizing variability in a number of cognitive
domains, including reading comprehension [230], attention [231],
behavioral inhibition [232], and fluid intelligence [233, 234]. In
MDD, tasks that have been used to distinguish antidepressant
response have included tasks related to emotional reactivity and
social cognition [109, 112], appetitive and avoidance behaviors
[111, 235–237], emotion regulation [115, 238, 239], and working
memory/cognitive control [240–242]. Another untapped area is
passive movie watching, which outperforms resting-state fMRI in
predicting individual differences in cognition and emotional traits
[243] without risking omitting data due to task performance.
Lastly, alternative modalities, such as ASL or EEG, may yield robust
or scalable biomarkers of treatment response or selection. It is
therefore possible that such modalities or using task-based or
naturalistic viewing (movie watching) may be preferred functional
methods in future biomarker efforts.
Due to the inherently low signal-to-noise ratio of fMRI data

[244], it also remains a challenge to use individual data rather than
the averaged group-level imaging data to create individual-
specific functional connectomes for a personalized targeting
approach. Newer scan acquisition parameters, such as multi-echo
fMRI, may also yield novel insights. Multi-echo fMRI acquires
multiple echoes, imaging readouts, per volume, which help
distinguish blood oxygen-level dependent signal from nonneur-
onal noise [245–247]. Optimally combining and denoising these
multiple echoes [248] has been shown to improve the signal-to-
noise ratio and reliability of findings [249–251], and improve the
interpretability of task-based fMRI results [252, 253]. Multi-echo
may also improve test-retest reliability of precision functional
mapping [254, 255], a method modeling individualized rsFC maps
that can provide clinically meaningful variation in cognition and
behavior [256–258]. Further, machine learning approaches should
carefully consider individual cases where the model fails. Greene
and colleagues [259] recently demonstrated, in healthy samples,
that misclassification in models predicting individual heterogene-
ity in behavior using fMRI is non-random, related to specific
phenotypic profiles and generalizable across datasets [259]. Future
biomarker studies should similarly assess model misclassification
cases to better understand the robustness and refine predictive
models. Other considerations include a larger sample size,
evaluating biomarkers using an independent cohort, and validat-
ing the predictive accuracy across different models (e.g., parcella-
tions) and algorithms.
Another important factor is how to model brain-based

measures. There is substantial variation across studies in
preprocessing methods, and statistical analyses, and these
modeling decisions should be carefully considered. Systematically
testing these factors is one employed solution, particularly for
specific resting-state preprocessing steps (e.g., global signal
regression) and parcellation selection [135, 260]. Large, whole-
brain univariate correlations have been criticized due to limita-
tions in statistical power, multiple comparisons, and reproduci-
bility [261]. Multivariate whole-brain associations might be one
way forward to developing predictive models without requiring
tens of thousands of individuals in the sample [262], and we
recently modeled the impact of sample size on the robustness of
multivariate methods in a depressed sample [158]. Another
proposed approach is to identify biomarker regions exhibiting
atypical structure or function relative to nondepressed controls

using normative modeling [263]. The rationale for this approach
lies in the notion that patient heterogeneity should be linked to
biological dysfunction [50, 51]. However, it is possible brain-based
features correlated with symptom heterogeneity and antidepres-
sant response need not be atypical relative to controls
[120, 158, 264]. Alternative methods to characterize structure or
function in a patient sample relative to controls, such as brain
aging [265] or approaches that exploit larger control databases
[162], may also help to distinguish prescriptive markers of
response.

CONCLUSION
To conclude, significant progress has been made over the last
decade to identify biologically based predictors of antidepressant
treatments. That said, inability to replicate candidate biomarkers
and considerable variability in model performance by study
design, preprocessing, and analysis remains a significant challenge
in this field [81, 82, 186]. Studies optimally designed to compare
treatment-specific biomarkers, with pre-registered methods, will
be paramount to uncovering rigorous prescriptive markers of
response.
Even once replicable and robust markers are found, scalability

and equitable access to care are significant impediments to
translating any neuroimaging biomarker on a large scale [266]. For
example, Canada has one of the lowest MRI scanners per capita
and longest wait times amongst high income countries [267, 268].
In the United States, delays in acquiring an MRI are associated with
individuals with public insurance, who identify as female, or live in
a low socio-economic neighborhood [268]. It will be imperative to
advocate for equitable access to care as neuroimaging biomarkers
are integrating into clinical practice. Further, identifying analogue
and more accessible markers of response, perhaps using
molecular, genetic or ecological momentary assessment measures
[81, 269] may help improve the scalability of markers of response
to first-line interventions. It could be that MRI-based biomarkers in
psychiatry, at least at first, are reserved for second-line treatments
like DBS where pre-surgical tractography can be used to
individualize care.
Despite these challenges, there are exciting prospective studies

currently recruiting. For example, Optimized Predictive Treatment
In Medications for Unipolar Major Depression (OPTIMUM-D;
NCT05017311) is a follow-up to CAN-BIND, and seeks to test a
previously identified prescriptive biomarker [270]. In the study,
participants will be assigned to one of two arms. The active,
personalized arm will receive open-label escitalopram and
placebo-controlled brexpiprazole; active brexpiprazole or placebo
will be assigned using a predictive algorithm. The placebo arm will
be randomized to receive escitalopram/placebo or escitalopram/
brexpiprazole. Using a similar trial design, Biomarker-guided rTMS
for Treatment Resistant Depression (BioTMS; NCT04041479) will
assign different rTMS targets (DLPFC or mPFC) based on rsFC-
based subtype assignment in treatment-resistant depression
[271]. These studies, if successful, will be monumental to reducing
the frustration of treatment, by either enabling patients to bypass
monotherapy trial-and-error and proceed with adjunctive treat-
ment, or personalizing stimulation sites based on co-occurring
symptoms and rsFC. Time will tell if these studies are indeed
successful, but they are certainly on the right track to integrating
neuroimaging data to help inform the “intuitive art of wooing
Nature” in the context of treating MDD.
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