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This review addresses functional interactions between the primate prefrontal cortex (PFC) and the amygdala, with emphasis on
their contributions to behavior and cognition. The interplay between these two telencephalic structures contributes to adaptive
behavior and to the evolutionary success of all primate species. In our species, dysfunction in this circuitry creates vulnerabilities to
psychopathologies. Here, we describe amygdala-PFC contributions to behaviors that have direct relevance to Darwinian fitness:
learned approach and avoidance, foraging, predator defense, and social signaling, which have in common the need for flexibility
and sensitivity to specific and rapidly changing contexts. Examples include the prediction of positive outcomes, such as food
availability, food desirability, and various social rewards, or of negative outcomes, such as threats of harm from predators or
conspecifics. To promote fitness optimally, these stimulus—outcome associations need to be rapidly updated when an associative
contingency changes or when the value of a predicted outcome changes. We review evidence from nonhuman primates
implicating the PFC, the amygdala, and their functional interactions in these processes, with links to experimental work and clinical

findings in humans where possible.

Neuropsychopharmacology (2022) 47:163-179; https://doi.org/10.1038/s41386-021-01128-w

INTRODUCTION

The amygdala comprises a group of telencephalic nuclei that are
generally believed to promote Darwinian fitness [1], and thereby
increase the likelihood of an organism transmitting its genes to
descendants. These nuclei are thought to bias behavioral outputs
in order to exploit or explore for resources (e.g., nutrients or fluids),
avoid predators, produce progeny, and learn about sensory cues
that signal resources, threats, or safety [2]. Much of the
information processing in these nuclei is influenced by innate
(i.e., genetically stored) mechanisms responsive to either external
stimuli or internal states; some of these innate mechanisms
are likely primate specializations. For example, humans and
many other primate species have a tendency to prefer foods
high in sugar and fat [3], to attend to eyes in the faces of
conspecifics [4-6], and to express defensive responses to snakes
even in the absence of experience with snakes [7-9]—all products
of natural selection [8, 10, 11].

The prefrontal cortex (PFC) is comprised of several subregions,
including both agranular regions common to all mammals and
granular regions specific to primates (see Preuss and Wise, this
issue). In contrast to the innate responses linked to the amygdala,
which while usually beneficial tend to be rigid, PFC function is
thought to enhance behavioral flexibility. PFC subregions each
make specialized contributions to cognition and behavior, based
on their distinct patterns of inputs and outputs. One way to
characterize PFC function generally is to say that it
encodes, represents, and stores knowledge about behaviors,
including the consequences of particular goals chosen and actions
made in a given context [12, 13]. The representations stored in the
primate-specific parts of the PFC are characterized by rapid,
context-sensitive learning [14, 15], which reduces errors more

effectively than the learning mechanisms common to all
mammals [13].

Among the most important connections of the amygdala,
axonal projections to and from the PFC contribute to both innate
behavior and behavioral flexibility. Behavioral flexibility benefits
from incorporating the survival-relevance of sensory inputs and
behavioral outputs; and innate behavior benefits from information
about the learned contexts in which benefits or threats are
realized. For example, a rigid, rapid fight-or-flight response is
crucial when danger looms, but may lead to opportunity costs or
overt harm when deployed in an inappropriate context [16]. Thus,
amygdala—-PFC interactions have the potential to improve
information processing in both regions. By marrying the strengths
of survival instincts to the flexibility gained by nuanced processing
of sensory inputs in a wide range of contexts, amygdala—-PFC
interactions support adaptive behaviors in dynamic and challen-
ging situations. However, as Pine et al. [17]. have emphasized,
evolutionary adaptations that provided advantages in ancestral
species can cause vulnerabilities to mental illness in the present.

Aberrant amygdala—-PFC connectivity has long been considered
a key feature of anxiety disorders [18, 19]. This is conventionally
conceived of as an imbalance, with bottom-up signaling of threat
by the amygdala insufficiently dampened by top-down PFC
control. This is an appealing account, in that anxiety disorders are
characterized by maladaptive engagement of responses such as
fear, enhanced vigilance, sympathetic arousal, and stereotyped
avoidance behaviors that are poorly tuned to the current
circumstances. While there is substantial neuroimaging evidence
implicating the PFC, the amygdala, and their interconnections in
anxiety disorders (as well as in variation in nonpathological trait
anxiety) [20], a simple account of amygdala—PFC imbalance is
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insufficient to explain many of the research findings involving this
circuitry.

In this review, we consider the role of amygdala-PFC
interactions in four broad classes of behavior, all of which are
known to depend on the integrity of the amygdala: approach-
avoidance learning, foraging, predator defense, and social
signaling. In social animals, including nonhuman primates and
humans, these behaviors constitute a sophisticated repertoire for
pursuing motivationally relevant goals (e.g., food or mates) in the
face of potential threats, such as predation or aggression from
conspecifics (see, for example, [21]). These behaviors must be
deployed in a precise context and with appropriate timing to be
adaptive, and amygdala-PFC interactions are critical to the
optimization of this repertoire of survival-relevant behaviors.
Conversely, dysfunction in these amygdala-PFC interactions may
lead to maladaptive engagement of these same behaviors, with
the potential to disrupt key aspects of decision-making, learning,
and social behavior.

An extensive body of work deals with the neural substrates of
approach-avoidance behaviors and foraging in rodents, including
the role of the amygdala-PFC interactions in these species (see
Rudebeck and Izquierdo, this issue). We deal only superficially with
rodent research here, touching on relevant findings from rodents
in the sections Amygdala-PFC interactions in foraging and
Amygdala-PFC interactions in predator avoidance. Instead, our
focus is on nonhuman primates and humans. Many specializations
emerged at various times during primate evolution, including a
dramatically enhanced reliance on vision and, in haplorhine
primates, foveal vision [22].

We devote most of our attention to direct amygdala—PFC
interactions, on the assumption that monosynaptic interactions
are crucial for understanding the role these two regions play in
behavior. Indirect, polysynaptic interactions are also important, of
course; and, in any event, many relevant studies, such as
functional connectivity analysis based on resting state fMRI,
cannot distinguish direct from indirect influences.

ANATOMY

The anatomical evidence we will review is largely from nonhuman
primates, in which experimental approaches can demonstrate
connections directly. As mentioned, connectivity evidence in
humans is most often based on temporal covariance of signals
measured with fMRI or electrophysiology. Structural MRI applying
diffusion tensor imaging also has been used in both humans and
nonhuman primates to study white matter connectivity, but given
current technical limitations, these data are best understood in
relation to anatomical tracer studies, particularly for understand-
ing connections passing through regions with crossing fiber tracts
[23], as occurs in the region of the uncinate fasciculus as it enters
the frontal lobe [24, 25].

In primates, the amygdala gives rise to widespread projections
to medial, orbital and lateral portions of the PFC, as illustrated in
Fig. 1. However, the amygdala is not directly connected to all parts
of the PFC and, within the prefrontal subregions that receive direct
amygdala projections, the terminals are not uniformly distributed.
This figure comes from anterograde tracer experiments conducted
by Aggleton et al. [26], which generally agree with other
anterograde fiber tracing studies [27, 28] and those based on
retrograde tracers [29-31]. There is one notable discrepancy in this
literature that becomes important below. Aggleton et al. (Fig. 1),
like Price and Drevets [18], concluded that the amygdala projects
only sparsely to a central part of orbital area 13, designated area
13 m by Carmichael and Price [32]. In contrast, Saleem et al. [33].
reported a robust projection from the amygdala to this area (see
also [28]). Perhaps the single case illustrated by Saleem et al. just
happened to capture a particularly dense and highly localized
amygdala termination zone.
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In macaques, PFC projections arise mainly from the basal
nucleus of the amygdala, especially its intermediate and
magnocellular parts, and terminate exclusively in the ipsilateral
hemisphere. Compared to these projections, meager PFC projec-
tions arise from the accessory basal and the lateral nuclei of the
amygdala. As noted by Aggleton et al. [26], this contrasts with the
amygdala’s connections with inferior temporal cortex (ITC), which
has dense connections with both the lateral and basal nuclei.

For the most part, these amygdala-to-PFC projections are
reciprocated, although the precise fields of origin in the PFC and
termination within the amygdala may differ. For example,
although both intermediate and magnocellular parts of the basal
nucleus give rise to projections to area 45, a part of the
ventrolateral PFC (VLPFC), the return projection terminates almost
exclusively in the magnocellular basal nucleus. Furthermore,
cortico-amygdala projections from area 45 terminate densely in
the dorsal part of the lateral nucleus, which reciprocate that input
weakly, if at all [34]. Unlike most other PFC subregions that receive
amygdala projections, it appears that the anterior cingulate cortex
(ACC)—areas 24, 25, and 32—sends more dense projections to the
amygdala than it receives from it [28]. The functional significance
of this relative weighting of projections is not understood, but
might be elucidated with pathway-specific manipulations in
nonhuman primates.

Another aspect of anatomy that deserves comment is the close
relationship of both the amygdala and ventral and medial regions
of the PFC to the hypothalamus [35-37], midbrain [38] and other
areas [39] that, together with the anterior insular cortex, are
implicated in interoception. These brain structures signal physio-
logical arousal as well as other state variables such as hydration
and temperature [40, 41]. Interactions with the hypothalamus
mediate at least some of the sensory influences on autonomic and
neuroendocrine systems. One intriguing idea [42] is that
visceromotor signals to the hypothalamus and related areas not
only maintain homeostasis, but also serve to predict interoceptive
signals that are expected to arise as consequences of those
allostatic  visceral changes. If so, abnormalities in
interoceptive predictions, like abnormalities in visceromotor
outputs, could lead to autonomic dysregulation, which features
prominently in mental illness. Notably, the PFC regions most
strongly implicated in the pathophysiology of depression, such as
the pregenual and subgenual ACC [18], are part of the
visceromotor circuitry.

In humans, structural connectivity measured with diffusion-
weighted MRI and probabilistic tractography, and functional
connectivity measured with fMRI at rest or during tasks agrees,
generally, with the connectivity demonstrated in macaques. There
is evidence for connectivity between amygdala and medial, lateral
(middle and inferior frontal gyrus) and orbitofrontal/ventromedial
parts of the PFC [43, 44]. Notwithstanding the challenges in
resolving nuclei within the amygdala with MRI, studies have
attempted finer-grained parcellations, most commonly distin-
guishing basolateral, centromedial, and superficial clusters of
nuclei, and have provided evidence for distinct patterns of cortical
connectivity across these subdivisions [45, 46], or distinct
relationships with resting-state networks that include PFC
subregions [47]. In addition, there is evidence for projections
between amygdala and frontopolar regions in humans for which
there are no macaque homologs [48]. While studies in humans
lack the anatomical precision of experimental neuroanatomy in
macaques, they can help to validate the clinical relevance of data
from these model species. As one example, a recent meta-analysis
of 46 fMRI studies in patients with internalizing psychopathologies
(e.g., depression, anxiety, post-traumatic stress disorder) or risk
factors for these disorders found consistent differences between
the patients and healthy controls in resting-state functional
connectivity between amygdala and two adjacent regions within
medial PFC: subgenual and pregenual ACC [49].

Neuropsychopharmacology (2022) 47:163-179
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Fig. 1 Anatomical connections of the amygdala and prefrontal cortex in macaque monkeys. Left. Schematic summary of macaque medial
(top), orbital (middle) and lateral (bottom) frontal cortex regions in receipt of direct projections from the amygdala. Summary is based on
anterograde tracers injected into the amygdala. The darker the shading, the greater the density of the terminal labeling. Numerals indicate
cytoarchitectonic subdivisions. AS arcuate sulcus, SP principal sulcus, PrCo precentral opercular areas, G gustatory cortex, la agranular insular
cortex. Adapted from [26]. Right. Coronal sections at the level of the mid-amygdala showing the typical layout of amygdala nuclei and the
close proximity to neighboring entorhinal and perirhinal cortex (top), location of cells giving rise to projections to area 45 of VLPFC (middle),
and locations of cortico-amygdala terminals received from area 45 (bottom). Adapted from Gerbella et al. [34, 234]. AB accessory basal
nucleus, Bi basal nucleus intermediate division, Bmc basal nucleus magnocellular division, Bpc basal nucleus parvocellular division, ERC
entorhinal cortex, IM intercalated masses, L lateral nucleus, PL paralaminar nucleus, PRC perirhinal cortex. Central and medial nuclei of the
amygdala are not illustrated.
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AMYGDALA-PFC INTERACTIONS IN FORAGING

Evidence suggests that the amygdala interacts with select
portions of the PFC to guide foraging for nutrients, i.e. the
process of exploring for and exploiting specific foods, fluids, and
essential vitamins and minerals. Here we review physiological and
neuropsychological evidence relating to a subset of behaviors
relevant to foraging in macaques (i.e., discovering, evaluating, and
choosing between food-predictive cues) and bring in findings
from humans when they are available. We note that research on
foraging in humans addresses a broader portfolio of behaviors
(such as temporal discounting, effort costs, and risk assessment)
than will be reviewed here.

As indicated earlier, primates depend to a considerable extent
on vision for finding and choosing among food items. The visual
regions in the ITC and adjacent perirhinal cortex (PRC), a
multimodal area dominated by vision in primates, project directly
to the VLPFC (areas 12/47) and to the granular parts of the orbital
PFC (area 11 and parts of area 13), more commonly known as the
orbitofrontal cortex (OFC) [33, 50, 51]. Thus, nonspatial visual
influences on foraging, such as information about colors, shapes,
and visual textures, are likely to be mediated by these two parts of
the PFC: VLPFC and OFC [52]. As shown in Fig. 1, these same PFC
subregions receive inputs from the basolateral amygdala,
suggesting that the amygdala—-PFC projections are in a position
to influence visual foraging. Finally, there are robust
reciprocal connections between the basolateral amygdala and
both the ITC and PRC [53-56] and evidence that projections
from these temporal visual areas overlap with OFC projections to
the amygdala, suggesting close interaction among these three
cortical regions [57]. These connections are of interest because
both the PFC [58-60] and the amygdala [61-64] have been
proposed to modulate visual attention via their projections to ITC
and PRC.

Murray et al. [65]. have suggested that the granular OFC,
which emerged in early primates or perhaps in the tree
shrew-primate common ancestor (see Preuss and Wise, this
volume), provided a specific adaptive advantage during primate
evolution: an enhanced ability to detect and to identify nutrients
in dim light, especially in the cluttered, fine-branch niche that
early primates exploited. Within the granular OFC, visual inputs
from ITC and PRC converge with gustatory, olfactory and visceral
sensations from the agranular OFC to establish cortical
representations unique to primates [66] (see [67] for review).
Together with another granular part of the PFC, the frontal eye
field, visual inputs to the granular OFC improved the ability to
search for and orient attention toward valuable items, both in
peripersonal space and at a distance. Because the specializations
of early primates were the starting point from which all modern
primates descend, the function of the granular OFC endowed
descendant species with functions that distinguished the
granular OFC from the OFC of other mammals. Based on
associative predictions that depended on vision and the control
of visual attention, their new PFC subregions empowered early
primates to forage “visually” for foods they could see only
poorly, if at all, and modern functions of the granular OFC
probably derive from that origin.

This idea highlights three fundamental aspects of foraging in
primates: learning about visual cues that predict nutrients and
predict the properties of hidden or poorly illuminated food items;
estimating the current value of the predicted nutrients; and
choosing among foraging options. Evidence suggests that
amygdala—PFC interactions contribute to all three.

Nutrient coding in OFC

Nutrient coding provides the foundation for learning, valuation,
and choice among foods. A wealth of data point to a role for the
OFC, a key part of the primate PFC, in representing the sensory
properties and current subjective value of nutrients that are
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immediately available in the environment. For example, when
monkeys gaze at an image on a monitor screen, neurons in OFC
are active in relation to the anticipated fluid linked to that image.
In fact, OFC neuronal activity reflects these properties not only
when monkeys anticipate rewards but also when they receive
rewards. OFC neuronal activity encodes several features of the
nutrients that have been associated with those images, including
the amount of fluid, the type of fluid (flavor), and its subjective
value [68]. Taste-responsive neurons have also been found in the
adjacent VLPFC (area 12/47), especially the orbital portion of area
12 (area 120), as have neurons responsive to fat [69]. Accordingly,
both OFC and VLPFC probably contribute to signaling the taste
and texture of nutrients. Functional MRI studies using multivariate
pattern analysis have shown that OFC activity in humans reflects
identity-specific signals, suggesting OFC encodes odor identity. In
contrast, signals reflecting the contextual (monetary) value
associated with these odors were detectable in adjacent orbital
and medial parts of the PFC (termed VMPFC) [70], as was an
identity-general value signal that was linked to amygdala-VMPFC
coupling [71]. Specific tastes are likewise represented in the
OFC [72].

Consistent with these anatomical and physiological findings,
evidence indicates that the granular OFC—the part specific to
primates—is necessary for linking arbitrary visual cues and objects
with unseen resources, typically foods, via learning. It is possible,
but not yet established experimentally, that the visual properties
of food items play an important role in these functions, in addition
to the more obvious sensory correlates of biological value, such as
gustatory, olfactory, and textural features of foods. In this way,
arbitrary visual cues may indicate the presence of specific
foodstuffs, and thereby predict them, including their visual
features. Importantly, this prediction, or expectation, includes
information not only regarding the sensory properties of nutrients,
such as their visual appearance and taste, but their current
desirability, as explained below. In keeping with this notion,
humans with focal lesions affecting OFC can visually identify
complex objects without difficulty, but show impairment in
assessing the holistic desirability (i.e, monetary value) of such
objects [73]. FMRI studies in humans have shown that patterns of
activity in medial and lateral OFC reflect the subjective value
(and nutritional composition) of foods presented as photographs
[74-76]. One study, which employed a fMRI design based on
repetition suppression, identified activations related to stimulus-
food associations in the rostral OFC and food identity in the caudal
OFC [77].

Valuation

Of the learning, valuation, and choice aspects of foraging, the
valuation aspect has been studied most. In practice, it is difficult to
isolate the neural bases of choice from the other aspects of
foraging that influence it. Accordingly, rather than discussing
choice separately, we consider choice together with each of the
other aspects.

Studies using the devaluation task have isolated a role for
amygdala-OFC interactions in updating food value and linking
that value to the visual or other stimuli that predict the availability
of that food. In this task, monkeys are allowed to choose between
pairs of objects, and each object of the pair predicts a different
food reward, something each monkey had learned well before the
main experiment. The key experimental manipulation is selective
satiation; animals are allowed to eat one type of food until they
reach satiety, i.e., the point at which the animal does not want any
more of that food, indicating that its subjective value has dropped
to zero (or perhaps below). Probe tests conducted after selective
satiation reveal the ability of monkeys to link objects with
the current, updated values of the foods. Importantly, each choice
provides access to some food—either the devalued food or the
nondevalued food.

Neuropsychopharmacology (2022) 47:163-179
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Fig. 2 Selected studies revealing the neural underpinnings of performance on devaluation tasks in macaques. a Effects of bilaterally
symmetrical or crossed surgical lesions of the OFC and amygdala on the devaluation task. “Devaluation score” reflects the extent to which
object choices on the probe tests conducted after prefeeding differ from the baseline condition (no prefeeding). Higher devaluation scores
reflect a greater proportion of adaptive choices after a change in food value. Data from [79, 81, 96]. b Effects of bilaterally symmetrical
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or after the selective satiation phase. GABA agonist infusions before satiation produced inactivation during both the satiation and object
choice phases, whereas GABA agonist infusions after satiation produced inactivation during the object choice phase only. Scores of control
groups vary across studies due to differences in methods. Data from [98, 99].

Intact monkeys spontaneously shift their choices away from the
objects overlying the devalued food, as evidenced by their robust
devaluation scores (Fig. 2a). This indicates that monkeys can
estimate the current value of the foods that will result from their
object choices. Scores are greatly reduced in monkeys with either
bilateral lesions of the amygdala [78-80] or the OFC [80-82] (Fig. 2a,
top and middle). By contrast, bilateral lesions of the VLPFC [82, 83] or
hippocampus [84] have no effect. Control conditions rule out
interpretations of these results based on motivation, basic food
preferences, visual perceptual abilities, and satiety mechanisms.
When given a direct, visual choice between sated and nonsated
foods, the monkeys with either amygdala or OFC lesions choose the
higher-value, nonsated food. Thus, the impairment caused by the
lesions appears to be specific to linking objects with current food
value or some associate of that value.

Neuropsychopharmacology (2022) 47:163-179

There is also evidence for an effect of OFC damage on the
devaluation task in humans. In one study, participants learned that
each of two complex images predicted a different food. Then, just
as in the macaque studies, participants were sated on one of the
two foods and subsequently allowed to choose between the
visual images to obtain yet more food. Reber et al. [85] found that
patients with damage to the VMPFC continued to choose the
image associated with the devalued (sated) food (Fig. 3a),
indicating a failure to shift their choices to the image linked to
the nondevalued food. In contrast, healthy control participants
made this shift consistently. These findings resemble closely those
in macaques with bilateral OFC lesions. The patients rated the
hedonic value of the foods normally, and they reported a marked
decrease in the pleasantness of the sated food, yet they failed to
reduce choices that yielded a food item they no longer deemed
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Fig. 3 Selected studies revealing the neural underpinnings of performance on devaluation tasks in humans. a Effects of damage to the
orbital and medial sectors of PFC (VMPFC) on the devaluation task in humans, relative to healthy participants (NL) and brain-damaged
controls (BDC). Devaluation score shows change from baseline (presate-postsate responses to the image predicting the sated food). Data from
[85]. b Effects on the devaluation task of continuous theta-burst magnetic stimulation (cTMS) applied to the lateral frontal cortex intended to
disrupt the orbital frontal cortex network. Lower scores of Sham group indicate reduction in choice of the cue predicting the sated food. Data
from [86]. ¢ In an fMRI version of the devaluation task, neural responses elicited by the target CS (Tgt CS + u)—the visual stimulus that had
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adjusting for CS- baselines. Data from [92].

valuable. Both macaques with OFC lesions and humans with
damage to VMPFC exhibited a disconnection between knowledge
and action, also known as goal neglect. In each case, the subjects
appeared to know the current, relative value of the two foods but
were unable to choose the images or objects that gained them
the nonsated, temporarily preferred food item.

Another recent study using a different method provides
evidence that it is specifically OFC (rather than the broader
VMPFC region) that is important in devaluation task performance
in humans, as in macaques. This study made use of continuous
theta-burst stimulation (cTBS) applied to lateral PFC to disrupt
indirectly the functional connectivity of the OFC network. Using a
version of a devaluation task in which visual images predicted
odors of sweet and savory foods, it was found that participants
who underwent cTBS, unlike controls, continued to choose cues
that predicted devalued odors, failing to shift to the item that, for
the time being, had the higher value (Fig. 3b). Importantly, their
ratings for the value of each food odor were unaffected by the
stimulation. This study points to OFC, possibly in combination with
lateral PFC, as an essential part of the circuitry mediating
devaluation effects in humans [86].

In addition, fMRI studies in humans implicate the OFC and
VMPFC in the subjective valuation of outcomes associated with
visual stimuli, such as money, food, and odors [71, 87, 88]. Related
experiments with satiety manipulations have shown a reduction in
the BOLD signal in the OFC in concert with a drop in subjective
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pleasure or value due to satiation [89-91]. Likewise, after selective
satiety had been established, BOLD signals related to visual cues
predicting sated food odors were reduced in both the amygdala
and OFC (Fig. 3¢) [92].

In keeping with the lesion findings, physiological studies in
macaques have revealed that the activity of single neurons in
VLPFC (area 120) and OFC (areas 11, 13, and 14) reflects satiety
states [93, 94]. Although early work placed an emphasis on the
reduction in firing rate that accompanied satiety [93], one study
found that roughly equal numbers of neurons showed increases
and decreases in firing rate [94].

Given the results from amygdala and OFC lesions, it seems likely
that their functional interaction is essential to dynamic revalua-
tions, as well. To test this possibility directly, monkeys received
crossed-disconnection lesions of the amygdala and OFC (i.e,
removal of the amygdala in one hemisphere and of the OFC in the
other), which prevents their intrahemispheric interaction. Monkeys
with these lesions, like those with bilaterally symmetrical lesions of
the amygdala or OFC, were impaired on the devaluation task
[95, 96]. In addition, a separate study replicated the crossed-
disconnection lesion effect using a task in which actions, rather
than objects, were linked to foods [97]. These studies demonstrate
that the amygdala must functionally interact with the OFC within a
hemisphere to guide adaptive choices (Fig. 2a, bottom).

Although the lesion method establishes that the amygdala and
OFC must functionally interact to mediate the devaluation effects,

Neuropsychopharmacology (2022) 47:163-179



this work does not show how the devaluation effects occur. There
are at least two explanations of how performance on the
devaluation task could be disrupted by the crossed-
disconnection lesions. First, if value is represented in the OFC,
perhaps the amygdala-OFC interaction mediates a value-updating
function during selective satiation. A failure to register the change
in food value would ultimately lead to the impairment observed
on the devaluation task. Alternatively, perhaps the value-updating
process remains intact, but there is an inability to retrieve the
updated value at the time of object choice, based on the visual
properties of the object associated with that food. These two
possibilities—an updating impairment versus a retrieval impair-
ment—have been evaluated by performing pharmacological
manipulations at different time points during the devaluation
task. Temporary inactivation of either the OFC or amygdala during
the selective satiation procedure probes the ability to update
value; whereas during the choice phase, which occurs after
selective satiation, inactivation probes retrieval.

These studies have produced three findings:

1. Inactivation of the basolateral amygdala during the selective
satiation phase, but not later during the choice test phase,
disrupts performance on the devaluation task (Fig. 2b, top)
[98]. Thus, the amygdala must be active during selective
satiation to register the change in food value. Once the
amygdala has participated in this value-updating function, it
is no longer required for making the best choice.

2. Reversible inactivation of granular OFC area 13—the caudal
part of OFC—yields an identical pattern of results [99],
suggesting that the amygdala and area 13 work together to
perform the value updating (Fig. 2b, bottom). This finding
explains why the discrepancy in anatomical findings, noted
above, is important. The experiment just cited centered the
inactivation on area 13 m, and the finding by Saleem et al.
[33]. of a robust amygdala—cortical projection to area 13 m is
more consistent with these findings.

3. Inactivation of granular OFC area 11—the rostral part of OFC
—has its effect not during the selective satiation phase but
during the choice phase instead (Fig. 2b, bottom) [99]. It
appears that if area 11 was active during value updating, it is
necessary for linking objects with updated value at the time
of choice, i.e., value retrieval rather than value updating.
Thus, OFC area 11 is necessary for goal selection, which
requires identifying which of two choice objects is linked to
the higher value food.

Related information regarding amygdala interaction with the
OFC comes from a neurophysiological recording study in
macaques in which neurons in OFC were recorded both before
and after bilateral excitotoxic lesions of the amygdala [100]. This
study confirmed previous findings that a substantial proportion of
OFC neurons encode the expected magnitude of the reward.
Removing amygdala inputs to the OFC significantly reduced, but
did not abolish, the encoding of reward value in the OFC during
the evaluation phase, while monkeys viewed the images available
for choice, and around the time of reward delivery. These findings
suggest a role for the amygdala in the active maintenance of the
neural representations of learned associations between visual
stimuli and current valuations. Importantly, amygdala lesions have
this effect in OFC but not in the medial PFC.

Learning

Selective satiety is one factor influencing foraging behavior,
thereby driving dietary diversity. As more of a food is consumed,
the drop in reward value makes it more likely that an individual
will select other food options. Although studies using selective
satiation have identified a role for amygdala—PFC interactions in
foraging choices based on familiar stimulus-reward associations
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and multiple food outcomes, they do not address the underlying
stimulus-reward learning.

Work in rodents, much of it based on Pavlovian conditioning,
has identified roles for agranular OFC and basolateral amygdala in
learning from reward and punishment [101-104]. A detailed
discussion of this work is beyond the scope of this review, but we
highlight some selected points that inform our main themes (for
review see [105]). Work in appetitive conditioning in rodents is
addressed later in this section, whereas some key work in aversive
conditioning in rodents is discussed in the next section.

In appetitive conditioning, the central nucleus of the amygdala
(Ce) is important for processing the general motivational value of
stimuli, whereas the basolateral group of amygdala nuclei (BLA) is
important for processing specific-sensory properties of the
unconditioned stimulus, which is often a food item [106]. A
stimulus that predicts food will elicit learned approach to a food
source (also known as goal tracking), along with behaviors
favorable to ingesting that food (e.g., chewing, biting, salivation).
Furthermore, depending on the setting, animals will approach to
the conditioned stimulus itself (also known as autoshaping and
sign tracking). In sum, together, the BLA and agranular OFC
acquire stimulus-outcome (S-0) associations. The nature of this
learning is that the behavior elicited by the conditioned stimulus
is obligatory. The specific roles of the BLA and OFC are a matter of
debate, but many authorities have suggested that the amygdala is
important for acquiring reward representations, whereas the OFC
is more important for using this information to generate
expectations that guide foraging choices [104, 107-110]. These
findings extend the conclusions from primates reviewed above.
Both the granular OFC of primates and the agranular OFC of
rodents appear to represent the sensory properties of foods and
link these representations to stimuli that predict these properties.

In other studies carried out in rodents, Wassum et al. have
found that the interaction between the agranular OFC and BLA is
essential during both the encoding and retrieval of reward value,
and the interaction during retrieval is only necessary when the
reward is unobservable, i.e.,, when a representation of the reward
needs to guide behavior. Corticofugal connections and inputs to
the OFC play different roles. Whereas projections from BLA to OFC
are essential for a stimulus to elicit specific reward expectations
[111], the reciprocal, corticofugal projections, from OFC to BLA, are
essential for encoding positive changes in the value of food
associated with a tone, and for retrieving value representations to
support bar presses that produce the same reward [112]. These
effects in BLA are mediated by NMDA receptor-dependent
synaptic plasticity [113], and are doubly dissociable, with
projections from lateral OFC to BLA being important for encoding,
and projections from medial OFC to BLA being important for
retrieval [112]. Furthermore, optogenetic stimulation of OFC-to-
BLA projections induced positive value changes, and this
stimulation was sufficient to yield behavioral changes that
otherwise would not have occurred [112]. These results have
implications for amygdala—PFC interactions in primates. Because
the agranular parts of OFC are thought to be homologous with
those in primates, it will be important to establish whether the
agranular OFC in primates plays a similar role as in rodents, with a
related distinction between corticofugal and amygdala—cortical
projections. Future research could also explore whether granular
PFC areas implicated in valuation in primates, such as the VLPFC
and granular OFC, interact with the amygdala in the ways
suggested by the rodent studies of agranular OFC.

In primates, stimulus-reward learning with single outcomes has
been studied extensively using associative learning tasks. The
amygdala, OFC, and VLPFC have been shown to be important for
aspects of such learning in monkeys and humans. There are two
important factors to consider. First, although there is a sizeable
literature in nonhuman primates addressing the neural bases for
stimulus-reward learning, it is now clear that studies using
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excitotoxic lesions provide a dramatically different picture of the
functions of these parts of the PFC, and of the amygdala,
compared to studies using aspiration lesions [81, 114]. This is
because aspiration lesions, unlike excitotoxic lesions, disrupt fibers
of passage, a problem exacerbated by the complex white matter
tracts passing nearby the amygdala and caudal OFC [115].
Accordingly, we focus on findings from studies using excitotoxic
lesions and other, similarly selective manipulations, where
available. Human lesion studies are unavoidably much less
selective, and thus are best interpreted in the context of the
more selective lesions possible in nonhuman primates [116-118]
and clues about localization from fMRI studies. Second, the nature
of what is learned in stimulus-reward learning likely differs in
rodents and primates. Both encompass S-O learning related to the
sensory properties of the predicted food outcomes, but additional
representations might be specific to primates, such as those for
the visual properties of a food reward independent of its
motivational value (i.e., reward-free representations of what food
items look like).

In primates, reward learning involves both the OFC and VLPFC
(area 12/47). To our knowledge, there are no studies that directly
test the idea that the amygdala must functionally interact with the
PFC in stimulus-reward learning. However, there is evidence that
the PFC [83, 119, 120] and amygdala [121, 122] each make a
critical contribution to such learning in nonhuman primates and
humans. A substantial lesion literature shows that damage to
VLPFC impairs flexible stimulus-reward learning, i.e., when the
reward is only probabilistically related to the stimulus, or when
contingencies change, such as in reversal learning, or in so-called
“bandit” tasks in which the probability of reward assigned to
different images fluctuates over time. Such tasks require the
linkage of a given reward outcome with a specific stimulus
occurring in a stream of temporally adjacent stimulus-outcome
events, referred to as the credit-assignment problem [123].
Computational modeling shows that the influence of a given
instance of rewarding feedback “blurs” its influence, and so affects
the likelihood not only of choosing the specific stimulus that
preceded that feedback (trial n), but also the stimuli presented in
temporally adjacent trials (n-1, n+1, n-2, n+2,...). Macaque,
marmoset, and human lesion studies implicate the ventral frontal
lobe, and specifically VLPFC, in credit assignment (macaques:
[83, 124] marmosets: [125] humans: [126]). A part of VLPFC, area
120, is a key region in probabilistic stimulus-reward learning; [127]
BOLD signals in this region predict adaptive behavioral adjust-
ments consistent with contingent learning (i.e., optimal credit
assignment) [128]. The latter study also reported greater
connectivity between the amygdala and VLPFC when reward
was more informative. Neurons in more lateral portions of the
macaque VLPFC encode valuable objects—images associated with
a large magnitude of reward—in long-term memory [129], and
long-term value-related fMRI signals were found in the VLPFC as
well as in other anatomically connected regions such as the ITC
and the amygdala [130]. Finally, monoamine levels in the VLPFC
are also related to learning rates [131].

In humans, damage to ventromedial frontal regions, including
medial OFC and VMPFC (as well as fibers of passage) disrupts
deterministic and probabilistic stimulus-reward reversal learning
[132-134]. This may not be due to impaired learning (i.e., credit
assignment), but rather to a deficit in comparing option values
under challenging, dynamic conditions [126], although more
definitive evidence is needed to support this claim in humans.

BLA damage in both humans and nonhuman primates affects
reversal learning as well, as it does in rodents, but this literature is
more difficult to summarize. One synthesis argues that the BLA
tracks past outcomes and compares that history to the current
outcome, flagging unexpected deviations that signal a need to
change behavior [135]. This idea has obvious relevance to
adjusting to dynamic shifts in reward contingencies during
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associative learning, and it accords with the observation that
animals with amygdala lesions sometimes learn reversals faster
than intact control subjects, especially early in learning. This
finding has been attributed to overall weaker learning, which
makes animals more likely to choose the newly-rewarded option
because the reward association with the previously best choice is
weaker initially [136].

In sum, there is abundant evidence that both amygdala and PFC
contribute to learning the value of visual objects through reward
feedback, especially in dynamic or probabilistic settings, and some
evidence that these regions interact to support such learning.
VLPFC (perhaps area 120 specifically) may be especially important
for foraging choices in the face of multiple competing visual cues
or irrelevant feedback [137-139] or when generalizing prior
experience to novel objects [140], a capacity related to analogical
reasoning. In contrast, OFC is more important when the value of
nutrient outcomes changes. In each case, the PFC-amygdala
interactions allow recently learned information to modulate
amygdala output, achieving the level of motivation appropriate
for the new situation.

AMYGDALA-PFC INTERACTIONS IN PREDATOR AVOIDANCE
Like foraging, engaging in adaptive responses under threat is
another crucial aspect of Darwinian fitness. Maladaptive responses
present as either underresponding to immediate threat, leading to
vulnerability to predation, or overresponding, leading to a
reduced ability to engage in essential activities. Because excessive
attention to threat characterizes individuals with anxiety disorders
[141, 142], identifying the brain areas involved in regulating
responses to threat holds some clinical relevance [17, 143]. Some
aspects of predator avoidance are innate. For example, rats raised
in a laboratory that are naive to predator odors display avoidance
and defensive behaviors when first exposed to the urine of
predators (e.g., canids and felids), but not when exposed to the
urine of nonpredators (e.g., ungulates) or conspecifics [144].
Similarly, snake-naive macaques raised in the laboratory show a
range of defensive and withdrawal responses when confronted
with a snake, but not when confronted with novel, neutral objects
[7]. These behaviors rely mainly on subcortical circuits that include
the amygdala. For example, studies using assays that involve
exposure of rodents to predator urine, predator body odor, or TMT
—a compound found in fox feces—have revealed a circuit
comprised of the medial nucleus of the amygdala, ventromedial
hypothalamus, the premammillary nucleus, and the periaqueduc-
tal gray (PAG). In addition, parts of the BLA are active when visual
or auditory predator cues are presented. Anatomically, it appears
there are parallel circuits running through these structures that
mediate defensive responses to learned stimuli, predators, and
conspecifics, at least in rodents [145, 146]. These findings have
implications for treatment of social anxiety disorders and small-
animal phobias, where selective manipulation of anatomical
pathways could prove beneficial.

Neuroimaging studies in humans and neuropsychological
studies in monkeys implicate similar sets of brain regions in the
adaptive response to predator threat, including the amygdala,
hippocampus, bed nucleus of the stria terminalis, and the PAG
[147-151]. Many of the amygdala outputs are to subcortical
structures that mediate defensive responses [152]. Human studies,
which use photos of threatening stimuli, have sometimes been
criticized for a lack of ecological validity. However, an fMRI
experiment in which human participants believed a real tarantula
was nearer or farther from their foot while they lay in the scanner
showed increased activity in the amygdala and also dorsal ACC in
addition to many of the threat-sensitive regions listed above, in
proportion to the proximity of the spider [153].

One assay for predator avoidance in macaques is the snake test.
Approaches to obtain a piece of food are pitted against defensive
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responses engendered by either a fake or real snake or, on other
trials, a fake spider. The dependent measure is food-retrieval
latency. Many investigators have reported that selective, excito-
toxic lesions of the amygdala markedly reduce monkey’s reactions
to snakes and spiders [154-158]. Whereas monkeys with complete
excitotoxic lesions of OFC areas 11, 13, and 14 were no different
from controls [81], monkeys with subtotal lesions of OFC showed
heightened defensive and reduced approach responses in the
presence of the threatening stimuli, accompanied by longer
latencies to retrieve a food reward [159]. In addition, monkeys
with medial OFC lesions displayed a greater tendency to express
defensive responses in the absence of threat. Overall, the data
indicate that, when intact and functional, both the medial and
lateral OFC contribute to the attenuation of defensive responses.
Notably, these findings, obtained with selective, excitotoxic lesions
of OFC, agree with work in marmosets showing that excitotoxic
lesions of anterior lateral OFC (primarily area 11) and VLPFC (area
12) resulted in heightened defensive responses to a fake snake
[160]. The overall pattern of results suggests a critical role for the
OFC, and perhaps also the VLPFC, in adaptively attenuating
defensive behaviors over repeated presentations of a threat
stimulus in the absence of overt negative outcomes. These
observations raise the possibility that dysfunction in one or more
these PFC subregions could be the basis of the enhanced threat
responses characteristic of anxiety disorders, such as phobias
or PTSD.

Some models posit that a top-down inhibitory role of PFC on
limbic and midbrain areas mediates this attenuation [161, 162].
The finding of heightened defensive responses following selec-
tive, excitotoxic OFC damage in macaques is consistent with these
models. However, the idea that the PFC predominantly inhibits
amygdala output is contradicted by neuroanatomical evidence
from both rodents and macaques. Cortical projections to the
amygdala, which are excitatory, terminate on both excitatory and
inhibitory interneurons [163-165]. Thus, cortical input can both
suppress and enhance amygdala outputs. A better understanding
of this interplay will be crucial if the promise of so-called precision
psychiatry in treating anxiety symptomatology is to be fulfilled.

Yet another way to achieve modulation of threat responses is
via opposing influences from the PFC. For example, studies
examining the neural substrates of aversive conditioning have
found that rodent infralimbic cortex (ILC, homologous to the
subgenual ACC in primates) is essential for suppressing threat
responses and enhancing threat extinction. In contrast, rodent
prelimbic cortex (PLC, homologous to the pregenual ACC in
primates) is essential for enhancing threat behaviors. Both threat
suppression and enhancement involve the amygdala [166, 1671.
Thus, ILC and PLC, through interaction with the amygdala, permit
bidirectional control of responses to threat (see [117] for related
work in nonhuman primates). Intriguingly, ILC also exerts a similar
influence on behavior in appetitive settings [168], suggesting an
overarching role for PLC and ILC in biasing one type of association
over another when competing or contradictory associations vie for
control of behavior [65]. (A treatment of findings integrating PFC,
amygdala, and hippocampal contributions to responding to threat
is beyond the scope of this article; for review see Anderson and
Floresco, 2020 and Kredlow et al., 2022 in this volume.)

Some studies in humans suggest functional specializations of
the lateral and medial OFC in processing predator information. For
example, a comparison of the neural responses of spider-phobic
and nonphobic subjects to spider stimuli revealed decreased
activation in the lateral OFC, which was normalized by cognitive
behavioral therapy [169]. In the experiment mentioned above
involving a real tarantula, the medial OFC exhibited greater
activation as the tarantula became more distant, perhaps
reflecting a regulatory effect [153].

Defensive responses to snake stimuli but not neutral stimuli can
be conditioned through observational learning, indicating that
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defensive responses to snakes in macaques, although innate, are
capable of being modified through experience [170-172]. The
exact mechanisms by which the macaque OFC might contribute
to learning about safety remain unknown. One possibility is that
information about the absence of negative outcomes following
their expectation may be integrated in brain areas such as the
amygdala, PAG, etc. to downregulate behavioral and physiological
responses to stimuli. This body of work may be relevant to
optimizing the trade-off between exploring for potential reward
opportunities and avoiding potential threats. For example,
foraging games where humans seek monetary rewards but risk
large losses also engage threat-response regions, including the
amygdala and dorsal ACC [173, 174]. Consistent with a role for the
amygdala in prioritizing threat, patients with selective amygdala
damage show altered return to safety in an approach-avoidance
conflict task [21].

AMYGDALA-PFC INTERACTIONS IN SOCIAL COMMUNICATION
In primates, foraging for food involves identifying visual cues that
predict reward, often in rapidly changing contexts. Likewise, social
communication involves a wealth of visual cues. In humans and
nonhuman primates, both the amygdala and OFC play a role in
the visual processing of faces and facial expressions of emotion, as
well as processing emotionally significant stimuli more generally
[175, 176]. Other PFC regions, including frontopolar regions that
lack homologs in macaques, have also been implicated in the
social regulation of human behavior via emotion-laden visual
signals, potentially through interaction with the amygdala [48].

Faces
The amygdala may have a general role in attending to faces and
detecting their emotional signals [176, 177]. Functional MRI
studies have revealed multiple “face patches” in the ITC in
nonhuman primates and humans [178-180]: regions of cortex in
which activations are greater for faces relative to objects. Patients
with damage to the amygdala are deficient in identifying facial
expressions of emotion [181], specifically fear expressions, and
have altered viewing patterns of faces, spending less time than
controls in looking at the eye region when seeking information
about fear. Valuable insights have been acquired from the study of
patients with Urbach-Wiethe disease, a rare developmental
disorder characterized by selective bilateral damage to the
amygdala. When one such patient was instructed to look at the
eye region, her ability to identify fearful facial expressions was
reinstated [182]. Thus, the amygdala may be important for
directing gaze to informative regions of the face, such as the
eyes, perhaps specifically for fear recognition. The amygdala has
also been implicated in the rapid detection and attentional
prioritizing of emotionally-relevant visual information more
generally, although the evidence in support of this idea is mixed
[64]. For example, emotional stimuli can reduce the attentional
blink in rapid serial visual presentation paradigms, arguing that
emotion boosts early attentional prioritization. Likewise, visual
search tasks show some prioritization of emotional compared to
neutral faces [183]. Amygdala lesion studies in humans have
reported mixed results with such tasks, with some investigators
reporting a loss of the emotional-attentional prioritization after
such damage e.g., [64, 184], and others finding normal perfor-
mance [185]. Variations in tasks, lesion laterality, acuity and extent
may explain these discrepancies [176]. Finally, the amygdala also
has a role in assessing the emotional content of other socially-
specific sensory inputs, such as voice signals [186]. For example,
acute amygdala damage following stroke is associated with
specific deficits in detecting fear (but not other emotions) from
language prosody [187].

Like humans, macaques presented with images of faces
preferentially view the eye region [188]. Relative to intact
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monkeys, those with amygdala lesions spend less time viewing
the eye region and more time viewing the mouth region [189]. A
recent study found, in addition, that when monkeys with
amygdala lesions were simultaneously presented with images of
faces and objects, they made fewer first-looks to faces and spent
less time viewing faces than did intact monkeys. Instead of
directing eye movements toward socially relevant features,
monkeys with amygdala lesions were biased toward features
with increased low-level salience [190]. Likewise, physiological
studies have identified neurons in the amygdala that signal face
identity, facial expressions of emotion [191, 192], and the gaze of
conspecifics [6]. Intracranial amygdala recordings in humans
confirm many of these findings (reviewed in [193]).

The role of the PFC in these functions remains largely unknown.
Electrophysiological recording studies in macaques viewing
images of conspecifics report neurons sensitive to faces in both
OFC and VLPFC [194, 195], findings mirrored by fMRI studies
[196, 197]. Importantly, many of the face-sensitive neurons in PFC
encode individual identity. In addition, some neurons in macaque
OFC encode particular facial expressions (e.g., threat) and social
categories (e.g., juveniles, females) [195]. Neurons in VLPFC are
sensitive to whether visually perceived facial movements and
vocalizations in video clips of vocalizing macaques “match”,
suggesting a role for these neurons in integrating visual and
auditory cues used in social communication [198]. Recent work
examining ITC face patches has found a similar modulation of
face-sensitive neurons by auditory cues to that observed in VLPFC
[199]. Notably, this modulation was robust in face patch AF,
located in the cortex along the banks and fundus of the superior
temporal sulcus, but not patch AM, which is located more
anteriorly and laterally within ITC. This finding suggests a possible
segregation of function of these two face processing regions.
Although there are robust direct projections from the amygdala to
the rostral face patches (AM, AL), there appear to be weak
projections from OFC and VLPFC to them [200]. Study of the
connections of physiologically identified face patches is in the
early stages, however, and the connections of only a subset of all
face patches have been studied. More work investigating both
PFC and amygdala connections with ITC face patches will no
doubt be informative.

Patients with OFC lesions have at least a mild impairment in
recognizing negative emotions [201], with some showing more
severe deficits [202]. However, they direct their gaze to the
relevant facial features in patterns similar to healthy people [203].
Thus, although the amygdala and OFC both seem to be critical for
the recognition of emotion from visual face cues, the available
evidence suggests they make different contributions.

Beyond faces

More generally, neuropsychological research in humans points to
a causal role for the amygdala and the medial PFC, especially the
ACC, in social cognition [204, 205]. Patients with Urbach-Wiethe
disease are profoundly impaired in their ability to learn from social
information [206]. Similarly, patients with lesions that compromise
substantial portions of both orbital and medial PFC are impaired in
several aspects of social cognition [202, 207-213]. Deficits include
contextually inappropriate social behavior, poor insight into social
behavior, altered judgments about moral transgressions, altered
recognition of voice and facial expressions of emotion, diminished
empathy, and impaired mentalizing.

Research in nonhuman primates also provides evidence on the
role of the amygdala and ACC in social cognition. Mirroring the
findings in humans, monkeys with amygdala lesions are able to
express social and emotional behaviors, but often do so in a
context-inappropriate manner [214]. Amygdala neurons encode
several features relevant to social interactions, many of which are
described below. Importantly, single neurons in the amygdala can
encode both social and nonsocial information [215, 216],
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suggesting that individual neurons, and the ensembles of which
they are a part, provide yet another avenue for behavioral
flexibility [175]. We discuss three areas of investigation: observa-
tional learning, prosocial tendencies as revealed by a reward-
allocation task, and social interest and/or valuation.

For observational learning, investigators have devised tasks that
require the interaction of two or more conspecifics [217, 218] or
one macaque and one human [219]. These tasks require that the
monkey observes the choices of the other agent (conspecific or
human) while they take turns performing a task. In these studies,
neurons in the dorsomedial [217] and lateral PFC [220] selectively
encode which agent is performing the task, in addition to
encoding other features such as the spatial position of the target
and the conjunction of agent and target. (Cells in the dorsal
premotor cortex have similar properties [219]). The distinction
between self and other is thought to be essential for cooperative
social interactions.

Another task evaluates the prosocial tendencies of macaques by
measuring the amount of reward obtained by conspecifics [221].
In the social reward-allocation task (also known as the vicarious
reinforcement task), two monkeys—an actor and a recipient—
view cues presented on a video monitor. The actor monkey
chooses between visual cues that signal delivery of juice to self, a
conspecific other, both, or neither [221]. Importantly, the actor’s
choices have no effect on his or her chance of obtaining a reward.
For example, on some trials actors are offered a choice between
cues signaling reward to the conspecific alone (Other), or to
neither monkey (Neither). Under these conditions, monkeys show
a prosocial tendency, making more Other than Neither choices. As
a crucial control, monkeys do not make this choice if juice is
delivered to a nonsocial entity, such as graduated cylinder. A
series of studies using variations of this task have revealed that
activity of neurons in the amygdala, OFC, and medial PFC
(specifically the ACC) encode aspects of task performance
[222, 223].

During the performance of these tasks, amygdala neurons
encoded reward magnitude on social decision trials, but did not
carry information about the agent that received the reward [223].
OFC neurons signaled primarily reward to self. In contrast, the ACC
contained three separate populations of neurons that signaled
social outcomes: one that signaled rewards to self, another for
rewards to a conspecific, and a third one with shared signaling of
reward to self and the conspecific [222]. The ACC also contained
neurons signaling reward to no one. Within the ACC, it
appeared that the anterior cingulate gyrus, or pregenual cortex,
was the region that could signal shared reward experience
(Fig. 4a). Consistent with these findings, lesions of ACC that
include the pregenual cortex disrupt macaques’ prosocial
tendencies in this task (Fig. 4b) [224]. Whether the lesions disrupt
the rewarding aspects of giving juice to conspecifics or,
alternatively, the mapping of the visual cues to the different
reward conditions, remains an open question. Nevertheless,
taken together, the findings strongly implicate the ACC in learning
about and representing other agents and their ability to
obtain necessary resources. The fact that anthropoids such as
macaques typically forage in groups is probably relevant to these
findings.

The physiological recording studies mentioned above also
investigated amygdala interactions with ACC during social
decision making. This was done by analyzing spike-field coher-
ence while monkeys performed a variant of the reward-allocation
task. Spiking activity of individual cells in each area was related to
the local field potential (LFP) oscillations in the other area [225].
The main finding was that there was enhanced neural synchrony
between the amygdala and ACC during prosocial decision making
(Fig. 4d). The timing of the coherence indicated it was unlikely to
be responsible for generating the decision; instead, the authors
suggested that the enhanced coherence might serve as a
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Fig. 4 Selected studies illustrating the contributions of the ACC and amygdala to social other-regarding behaviors in macaques. a Neural
correlates of choice during the reward allocation task in macaques. Plots show peri-stimulus time histograms and spike rasters for different
conditions. Data are aligned to choice. Some neurons in the ACC gyrus encode reward to Other (blue) and others encode reward to Self (red
and purple) as well as Other (blue). Data from [222]. b Effects of ACC (gyrus and sulcus) excitotoxic lesions on a social reward allocation task.
Monkeys were given the opportunity to give rewards to Self, a conspecific (Other) or to no one (Neither). Prosocial tendencies are evidenced
by the greater proportion of trials in which monkeys gave reward to Other relative to Neither. Data from [224]. ¢ Effects of ACC (gyrus)
aspiration lesions on a test of social interest. Macaques watched brief videos with social or nonsocial content. Dependent measure was the
latency to retrieve food while videos were on display. Data are from the “Staring monkey” condition of [228]. d Left. Effects of crossed lesions
of the amygdala and ACC on a test of social interest. Compare and contrast with (c). Data from [96]. Right. Oscillatory neuronal interactions
between the basolateral amygdala and the ACC gyrus while monkeys expressed positive or negative other-regarding preference (ORP) in the
social reward allocation task. Differences in spike-field coherence between the positive ORP (choosing Other over Neither) and the negative
ORP (choosing Self over Both) exhibited frequency specific coordination as a function of the area that contributed spikes in the pair.
Synchronization between the two nodes was enhanced for a positive ORP but suppressed for a negative ORP. Left panel: Differences in
BLApike~ACCheiq cOherence values between a positive ORP and a negative ORP over time. Frequency is aligned to the time of free-choice
decision. Right panel: Difference in ACCpe—BLAgeiq cOherence values between a positive ORP and a negative ORP over time and frequency.
Data from [225].

the neural bases of “social interest” or social valuation in this
context. In one type of social valuation task, monkeys are allowed

feedback mechanism that could be used to adjust future prosocial
decisions.

As indicated earlier, macaques prefer to view images of
conspecific faces over objects. Macaques also forego juice rewards
to view images of female perinea, a secondary sexual character-
istic of many anthropoid species, and the faces of dominant male
monkeys [226, 227]. These findings suggest that social cues have
intrinsic value, and neuropsychological studies investigated

Neuropsychopharmacology (2022) 47:163-179

to obtain a piece of food from a tray while videos with social or
nonsocial content play on a monitor located immediately behind
the food. The dependent measure is food-retrieval latency. In this
setting, unoperated control monkeys are, on average, slower to
reach for food rewards when presented with videos with social
compared to neutral, nonsocial content [228]. By contrast,
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monkeys with ACC lesions are quick to retrieve the food on trials
with social videos, suggesting diminished value of social informa-
tion (Fig. 4¢).

More recently, functional amygdala-PFC interaction was investi-
gated in the social-interest paradigm, and results were compared
with those from the devaluation task, discussed earlier. One group of
monkeys received crossed-disconnection lesions of the ACC and
amygdala, and the other received crossed-disconnection lesions of
the OFC and amygdala. Like monkeys with bilateral lesions of ACC,
monkeys with crossed ACC-amygdala lesions showed significantly
reduced food-retrieval latencies in the presence of videos of
conspecifics, indicating reduced social valuation and/or interest
relative to controls (Fig. 4d) [96]. Monkeys with crossed
OFC-amygdala lesions did not differ from the controls on this task.
The converse pattern of results was obtained on the devaluation
task: monkeys with crossed OFC-amygdala, but not those with
crossed ACC-amygdala lesions, displayed deficits on object choices
following changes in food value. These findings indicate that both
the ACC and OFC interact with the amygdala, but for different
reasons: ACC-amygdala for social valuations and OFC-amygdala for
nonsocial, foraging valuations [96]. They also show that separable
amygdala-PFC pathways perform social versus nonsocial functions
(Fig. 5). Still, there is hardly a complete separation of ACC and OFC
contributions to social and nonsocial processing, respectively. For
example, OFC contributes to social behavior (e.g., ref [195]) and ACC
contributes to object valuation and choice (eg., ref [140, 229]); future
studies will need to understand the nature of the social and
nonsocial contributions made by each area.

Emerging work has used social group size as a summary
indicator of social behaviors. In both humans and nonhuman
primates, social group size is positively correlated with estimates
of gray matter volume in the amygdala and in cortex in the
banks of the superior temporal sulcus (STS) [230, 231]. There is
some evidence that functional and structural connectivity
between ACC and anterior temporal lobe (including amygdala)
varies with social group size in humans [232]. In addition,
there is increased functional connectivity between cortex in the
STS and ACC in macaques viewing video clips of social interactions
that are ambiguous (as opposed to affiliative or aggressive) [233].
These findings suggest a close interaction among the amygdala,
cortex in the banks of the STS, and ACC in social communication
like that described earlier among amygdala, ITC/PRC and OFC for
foraging.

Il ACC x Amygdala
OFC x Amygdala
1.0 1
o
<}
5 %]
N
-1.0 1

T
Social
valuation

T
Object
valuation

Fig. 5 Double dissociation of function between groups with
crossed lesions of the amygdala and either OFC or ACC. Monkeys
with a surgical disconnection of the OFC and amygdala were
impaired in object valuation but not social valuation. Monkeys with
disconnection of the ACC and amygdala showed the converse
result. The y-axis displays normalized z-scores, with error bars
displaying the SEM. Data from [96].
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SUMMARY AND CONCLUSION

Amygdala-PFC interactions are relevant to a range of survival-
relevant behaviors in primates, including humans. The amygdala
contributes a valuation element to representations of biological
importance, updated in accord with current needs. The specifics of
this influence depend on what an amygdala-connected area
represents: objects or actions associated with specific outcomes;
threats posed by predators or irritants; or social signals sent by
conspecifics. Damage to the amygdala removes or impairs these
influences, so behavior tends to lack its special relationship with
the most biologically significant stimuli and their value at any
given moment.

In the natural habitat of many extant primates, and probably
ancestral primates as well, optimal foraging under risky conditions
requires sensitivity to the current value of available resources
predicted by visual information, along with estimates of moment-
to-moment predation threats. Because anthropoid social systems
provide protection from predators, especially during foraging
expeditions, learning from the experience of conspecifics and
making choices that enhance the foraging success of conspecifics
both provide benefits to individuals in terms of inclusive fitness.
Evidence shows that amygdala—-PFC interactions contribute to all
these behaviors.

More specifically, the PFC represents recently acquired informa-
tion regarding the current desirability of nutrient outcomes (OFC)
and the current availability of outcomes (VLPFC) that are linked to
visual objects and other visual features, as well as to the current
status of conspecifics (ACC) with respect to their dominance and
social valuations. By representing features of the environment
(e.g., of objects, contexts, or conspecifics) and their relationship to
behavior, together with their up-to-date valuations, PFC regions—
via their projections to the amygdala—make essential contribu-
tions to many aspects of motivated behavior. Specifically,
PFC-amygdala projections promote emotions and motivations
appropriate to the current situation. Applying this idea to the
clinic requires surmounting the limitations of simple ideas limited
to top-down control of “fear” responses. The more sophisticated
concepts that promise to promote future progress will incorporate
the many ways in which positively and negatively valenced
outcomes influence the myriad emotions and motivations that
characterize the affective life of primates.

FUTURE RESEARCH DIRECTIONS

An extensive literature on the neural basis of internalizing
psychopathologies suggests that aberrant amygdala-PFC interac-
tions play a role in depression, anxiety, post-traumatic stress disorder,
and phobias. Increasingly, neuroscience is providing tools to alter
circuit function, whether through cognitive behavioral therapy or
direct manipulation of neuronal activity. The findings reviewed here
provide a foundation for a rational, evidence-based application of
such tools. However, more work is needed to fully understand
amygdala-PFC interactions, including the functional specializations
among each PFC subregion in primates, the functional distinctions
between amygdala-to-cortex influences and cortex-to-amygdala
influences, and the relationship of these functions to the specific
symptoms targeted by such treatments.
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