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Attention-deficit/hyperactivity disorder and the explore/exploit
trade-off
Merideth A. Addicott1, John M. Pearson 2, Julia C. Schechter2, Jeffrey J. Sapyta2, Margaret D. Weiss1 and Scott H. Kollins 2

The ability to maximize rewards and minimize the costs of obtaining them is vital to making advantageous explore/exploit
decisions. Exploratory decisions are theorized to be greater among individuals with attention-deficit/hyperactivity disorder (ADHD),
potentially due to deficient catecholamine transmission. Here, we examined the effects of ADHD status and methylphenidate, a
common ADHD medication, on explore/exploit decisions using a 6-armed bandit task. We hypothesized that ADHD participants
would make more exploratory decisions than controls, and that MPH would reduce group differences. On separate study days,
adults with (n= 26) and without (n= 23) ADHD completed the bandit task at baseline, and after methylphenidate or placebo in
counter-balanced order. Explore/exploit decisions were modeled using reinforcement learning algorithms. ADHD participants made
more exploratory decisions (i.e., chose options without the highest expected reward value) and earned fewer points than controls
in all three study days, and methylphenidate did not affect these outcomes. Baseline exploratory choices were positively associated
with hyperactive ADHD symptoms across all participants. These results support several theoretical models of increased exploratory
choices in ADHD and suggest the unexplained variance in ADHD decisions may be due to less value tracking. The inability to
suppress actions with little to no reward value may be a key feature of hyperactive ADHD symptoms.
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INTRODUCTION
Attention-deficit/hyperactivity disorder (ADHD) is characterized
by symptoms of inattention, hyperactivity, and impulsivity that
negatively affect psychosocial functioning, education, and self-
esteem [1–3]. While ADHD is typically considered to be a
childhood-onset disorder that can persist into adulthood [4],
ADHD may also have an adult onset [5] and ultimately affects
~2.5% of the U.S. adult population [6]. More than 90% of adults
with ADHD report moderate to severe lifetime impairment
related to their ADHD symptoms [7].
ADHD is known to cause cognitive problems in measures of

response inhibition, vigilance, and working memory [8–10]. For
example, individuals with ADHD tend to show more reaction time
variability and make more omission errors on sustained attention
tests, suggesting impaired vigilance [9]. ADHD has also been
associated with altered motivation and reward sensitivity, such as
a preference for immediate over delayed rewards [11–14]. In
particular, reinforcement contingencies have a stronger effect on
improving attentional performance among individuals with ADHD,
suggesting low levels of intrinsic motivation and/or elevated
reward thresholds [15].
Both cognitive performance and motivated behavior have been

linked to catecholamine signaling, primarily dopamine (DA), in the
mesocorticolimbic brain pathway [16]. DA plays a role in
responding to cues that predict reward, which motivates
exploration or exploitation in search of that reward; DA also
modulates flexible cognitive control processes that are sensitive to
changes in motivation [16]. ADHD is associated with lower DA
transporter availability and lower D2/D3 receptor densities in the

mesocorticolimbic pathway [17–19]. Methylphenidate (MPH), a
common psychostimulant prescribed for ADHD, blocks the
reuptake of DA and norepinephrine (NE) [20] and improves ADHD
symptoms and cognitive deficits [21–24].
DA and NE are also believed to modulate the explore/exploit

trade-off, which is the decision between choosing a familiar
option with the highest expected reward value or choosing an
unfamiliar option with an unknown or uncertain reward value [25].
Exploration provides useful information about the environment,
but exploitation maximizes rewards, thus a flexible balance
between exploration and exploitation is needed for advantageous
performance [26–28]. This trade-off is particularly relevant to
ADHD, since several neurobiological theories of ADHD predict
alterations in explore/exploit decision making [29]. In general, they
predict that ADHD would be associated with less reward-driven
and more exploratory decisions, usually as a result of faster
reaction times and more impulsive/random selections [12, 29–32].
Explore/exploit decisions can be measured with an n-armed
bandit task. Choices on the bandit task are often modeled using
reinforcement learning, which summarizes players’ strategies in a
small number of parameters such a learning rate. Learning rates
represent how quickly expected reward value is updated, and
these rates can vary depending on environmental stability. In a
rapidly changing environment, reward values should be updated
quickly resulting in higher learning rates and more exploration.
Such models are thus useful tools for understanding mechanisms
that underlie normal and abnormal decision making.
Despite an abundance of theoretical models proposing

abnormal reinforcement learning as part of the etiology of ADHD
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[12, 13, 15, 30–33], relatively little empirical research has been
conducted. One study reported that adolescents with ADHD made
more exploratory choices, which was not related to differences in
learning rates or random selections [34]. Another study reported
that adults with ADHD made more novel choices (i.e., preferred
previously unseen options) and had lower learning rates than
controls, and DAergic medication improved ADHD performance and
increased their learning rates [35]. Here, we tested the DA/NE
modulation of explore/exploit decisions in relation to ADHD status.
Medication-free adults with and without ADHD completed a 6-
armed bandit task (6ABT) at baseline and after a single dose of MPH
(40mg) or placebo in counter-balanced order. We hypothesized that
ADHD participants would make more exploratory decisions than
controls, and that MPH would reduce group differences.

METHODS
Participants
Participants were recruited from the Durham, North Carolina (n=
12 ADHD, 9 control) and Little Rock, Arkansas (n= 14 ADHD, 14
control) communities via social media, flyers, and word-of-mouth.
Participants completed a phone interview and in-person screening
session to determine eligibility. Eligible participants were between
the ages of 18–45 years and were not currently taking stimulant
medications. To be eligible, ADHD participants had to have
T-scores ≥ 65 for inattentive and/or hyperactive-impulsive symp-
toms on the Conners’ Adult ADHD Rating Scale (CAARS) [36], and
were evaluated to meet criteria for a primary diagnosis of ADHD
based on the Conners’ Adult ADHD Diagnostic Interview for DSM-
IV [37]. Controls had to have CAARS T-scores < 55 for inattentive,
hyperactive-impulsive, and total symptoms.
Participants were excluded if they reported serious health

problems (e.g., uncontrolled cardiovascular disease) or neurological
problems (e.g., seizure disorder or traumatic brain injury), met criteria
for a psychiatric disorder other than ADHD (except for symptoms of
depression or anxiety co-morbid with ADHD) based on the MINI
International Neuropsychiatric Interview [38], reported drug or
alcohol dependence in the past 12 months (other than tobacco),
reported daily use of medication for ADHD in the past 6 months, had
hypertension (i.e., blood pressure > 140/90mmHg), or had contra-
indications for MPH (e.g., motor tics). Participants were also excluded
if they tested positive for drugs (iCup, Alere Toxicology Services
Portsmouth, VA), alcohol (Alco-Sensor III, Intoximeters Inc St. Louis,
MO), or pregnancy (QuickVue+, Quidel Corporation San Diego, CA).
Seventy-nine individuals were consented and screened to

participate in the study, and 28 participants were ineligible
because they did not meet ADHD/control criteria (n= 11), had
hypertension (n= 6), had a positive drug screen (n= 4) had
another Axis I diagnosis (n= 3), or withdrew before the study day
(n= 4). Of the 51 participants that met eligibility criteria and
began the study, 49 participants completed the baseline 6ABT and
were included in the data analysis. Participants provided written
informed consent and this protocol was approved by Duke
University’s and University of Arkansas for Medical Sciences’
Institutional Review Boards.

6-Armed bandit task (6ABT)
This version of the “restless bandit” task was adapted from
previous studies [39–45] and has been published previously [46].
On each trial, six bandit options were depicted on a computer
screen and participants selected one to play by pressing a
corresponding number on the keypad. Following the selection,
the number of points awarded was displayed on the screen for
500ms. The number of points paid off by each option gradually
changed from trial to trial, independently of other bandit options.
See Fig. 1. The point values were calculated as follows: bandit
options began with an initial point-value of 50 on the first trial and
subsequent values were drawn from a Gaussian distribution with a

standard deviation (σ) = 2.8 around a moving mean and rounded
to the nearest integer. Point values were randomly adjusted
according to a biased random walk,

ri;tþ1 ¼ λ ri;t � θ
� �þ θþ η; (1)

where ri,t is the reward value of the ith target on trial t, θ is the
asymptotic mean reward value (equal to 50), and λ is a central
tendency parameter that represents the tendency of r to drift back
toward θ. η is a Gaussian random variable with mean zero and
standard deviation σ. We used parameter values of λ= 0.015 and
σ= 2.8 since this yielded payouts variable enough to encourage
exploration and a low likelihood that a single option would remain
most profitable for the entire task. The number of points awarded
by option i on trial t was allowed to range between 0 and 100
(the resulting range was −4 to 105). A single version of the task
was administered to all participants, and all participants received
the same pattern of point values.
Participants were told the goal of this task was to earn as many

points as possible. Each time they played the task, participants
could earn up to an additional $5 based on the ratio of the number
of points they earned to the total number of points possible (up to
$15 total). Each task lasted approximately 15min and consisted of
900 trials. The bandit task was programmed in Matlab (MathWorks,
Inc. Natick, MA) using the Psychophysics Toolbox [47].

Procedure
After consenting and eligibility evaluation, participants completed a
baseline 6ABT. Then, participants were scheduled for 2 more study
visits. These visits occurred within 2 weeks of each other but were at
least 48 h apart. For each participant, both study visits occurred
either in the afternoon or the morning. Participants were instructed
to skip the meal prior to the study visit (i.e., either breakfast or
lunch). Participants were administered either immediate-release
methylphenidate (MPH: 40mg) or a matching placebo (PLA) under
double-blind conditions and in counter-balanced order. Drugs were
ordered and compounded through a pharmacy, and the placebo
consisted of lactose. After drug administration, participants were
given two cereal bars, a fruit cup, and 8 oz of water and rested for
1 h to allow for drug absorption. The study visit lasted for a total of
3 h, and the 6ABT was completed approximately 2 h after drug
administration. At the end of the visit, participants rated to what
extent they felt a drug effect on a scale from 1 (not at all) to 10
(extremely). The protocol included other tasks and questionnaires,
which have been described previously [48].

Modeling of the bandit task
Choices made in the bandit task were classified as exploratory or
exploitative according to model-based account of participants’
individual choices (previously described in [39, 44, 46, 49]).
Four reinforcement learning models, which each calculate the
estimated bandit option pay-offs differently, were initially fit to the
participants’ data and compared using the Bayesian Information
Criterion (BIC). The BIC is a test of the efficiency of the reinforcing
learning model for predicting the data (smaller values represent
better fit). The results from the best fitting model are reported
here; see Supplementary information for a description of the other
three models. On each trial, selection of the option with highest
expected value (based on previously seen options) was coded as
exploitative, all other choices as exploratory.
As in previous studies, the best fitting model valued the bandit

options according to a softmax rule and Kalman filter [39, 50]. The
softmax rule describes how individuals select among multiple
options, specifically, how individuals choose bandit options
probabilistically based on their expected reward values:

P ijβ;Qið Þ ¼ eβQi

P
j e

βQj
; (2)
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where P(i|β,Qi) is the probability of choosing option i, and β is a
so-called softmax decision temperature parameter. A lower value
of β typically leads to a higher percentage of explore decisions.
The Kalman filter [50] is a Bayes-optimal filtering process used to
predict the values of options available for future selection based
on the values of options previously chosen. Here, the posterior
probability estimates for the option values took the form of
normal distributions with mean and variance for all options
updated each trial according to a drift rule:

μi  1� ζð Þμi þ ζθ; (3)

σ2
i  1� ζð Þ2σ2

i þ D2; (4)

where μi and σi are the mean and standard deviation of the
previous estimate of each option’s value, ζ is a central tendency of
options to drift toward an asymptotic mean reward value, θ, and D
reflects the growing variance in an unchosen option’s value over
time due to drift. Due to random changes in the option values
over time, uncertainties of unchosen options grow each trial,
and mean values decay slowly back toward a subject-specific
asymptotic value. Note that participants did not know the true
value of the central tendency, so ζ ≠ λ in general. In addition, for
the chosen option, we calculated learning parameters as follows:

δi ¼ r � μi; (5)

αi ¼ σ2
i

σ2
i þ σ2

0
: (6)

With r the outcome on the current trial, μi the mean of
the chosen option, and σ0 the previous standard deviation of
the option. As usual, δ is the reward prediction error and α

the learning rate, used to update the chosen target value
according to

μi  μi þ αiδi ; (7)

σ2
i  1� αið Þσ2

i : (8)

As a result, each trial yields a single δ and α, along with vectors
μ and σ. The learning rate is the rate at which values of the options
are updated (i.e., the sensitivity to the most recent reward value of
each bandit option). Learning rates are higher in more variable
environments and typically positively correlate with exploration.

Data analysis
Participant demographic data and CAARS T-scores were analyzed
using independent-samples t-tests and Chi-Square tests. Age
tended to negatively correlate with the percentage of exploratory
decisions (e.g., during the baseline performance r=−0.280, p=
0.051). Age was included as a covariate of no interest in all
subsequent analyses due to between-group differences.
The 6ABT consisted of 900 trials. The main dependent variable

was the percentage of trials coded as “exploratory.” Average
reaction time, within-subject reaction time variability (i.e., standard
deviation), and reward points (percentage of total points possible)
were measured. In addition, we explored two other trial-to-trial
variables to investigate qualitative differences in bandit perfor-
mance between groups, the softmax decision temperature
parameter and the learning rate.
6ABT variables were natural-log (LN) transformed to adjust for

non-normal distributions and analyzed using univariate analysis of
covariance (ANCOVA) (controlling for age) and 2 (drug) × 2 (group)
repeated-measures ANCOVA (controlling for age). Associations
between 6ABT exploratory choices and CAARS scores were

Fig. 1 The 6-Armed bandit task. a. Trial structure of the 6-armed bandit task. On each trial, six bandit options were displayed. A number pad
was used to select a single bandit and the selected bandit was outlined in white. Then, the reward value of the selected bandit on that trial
was displayed onscreen. b. The hidden reward values during the first 20 trials of the 6-armed bandit task. On the y-axis are the values of each
of the 6 bandit options per trial. Each bandit option began with an initial value of 50, and values for subsequent trials were randomly adjusted
by a biased random walk. Only when a bandit is selected by the player is the bandit’s value revealed. The selections made by a single control
participant are shown as black squares.
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performed using multiple regression, controlling for age. 6ABT
data were missing from one ADHD and one control participant
during drug administration study days. Drug effect self-report data
was missing from one non-ADHD participant. All analyses were
performed with SPSS (Chicago, IL) with alpha set to 0.05.

RESULTS
Participants
A total of 26 ADHD (14 men) and 23 controls (10 men) were
included in the analysis. Participant demographics are shown in
Table 1. Groups did not differ in sex ratio or years of education.
ADHD participants were older (independent-samples t-test t(47)=
2.2, p= 0.034). As expected, ADHD participants had greater CAARS
T-scores for inattentive symptoms (t(47)= 20.8, p < 0.001), hyper-
activity symptoms (t(47)= 14.8, p < 0.001), and DSM ADHD score
(t(47)= 21.3, p < 0.001).
There was a trend towards participants feeling a greater drug

effect after MPH (mean ± standard deviation: 4.8 ± 2.9) compared to
PLA (1.8 ± 1.5) (F(1,45)= 3.8, p= 0.057). There were no significant
group or drug × group interaction effects for self-reported drug
effect.

6ABT performance
Baseline performance. BIC values for the best fitting reinforcement
learning model were larger for ADHD (estimated marginal mean ±
standard error: 1390 ± 119) than for controls (905 ± 127), indicating
a better model fit for controls (between-group effect: F(1,46)= 7.4,
p= 0.009, partial ƞ2= 0.139) and greater unexplained variance
among ADHD.
ADHD participants made more exploratory choices than controls

across all task blocks (between-group effect: F(1,46)= 4.8, p= 0.034,
partial ƞ2= 0.094). ADHD earned fewer points (F(1,46)= 7.8, p=
0.008, partial ƞ2= 0.145) and had lower learning rates (F(1,46)= 7.8,
p= 0.008, partial ƞ2= 0.145) compared to controls. There were no
other significant differences in performance measures. See Fig. 2
for illustration, Table 2a for means and standard errors, and
Supplementary Fig. S2 for box plots of baseline 6ABT performance
data. A summary of the parameters from the best fitting softmax
rule and Kalman filter model is shown in Supplementary Table S1.

Methylphenidate versus placebo. Across the two study days, ADHD
made more exploratory choices than controls across both drug
conditions (between-group effect: F(1,44)= 4.8, p= 0.034, partial
ƞ2= 0.098). See Fig. 2 and Table 2b. There were no significant drug
or interaction effects on exploratory choices.
Reaction times were faster after MPH than PLA (drug effect:

F(1,44)= 4.8, p= 0.034, partial ƞ2= 0.098) and showed a drug ×
group interaction (F(1,44)= 4.2, p= 0.046, partial ƞ2= 0.087).
Follow-up analyses showed a trend towards controls having slower

reaction times after MPH (drug effect: F(1,20)= 3.8, p= 0.064), but
no significant effect among ADHD. There was no significant
between-group effect on reaction time.
Across both study days, ADHD had greater reaction time

variability compared to controls (between-group effect: F(1,44) =
4.7, p= 0.036, partial ƞ2= 0.097). ADHD also earned fewer points
compared to controls (between-group effect: F(1,44)= 8.6, p=
0.005, partial ƞ2= 0.163). There were no other significant differ-
ences in performance measures.

Associations between ADHD symptoms and 6ABT performance
In a multiple regression model including CAARS hyperactive T-
scores, inattentive T-scores, and age as predictor variables,
baseline 6ABT percent exploratory choices (LN transformed data)
positively associated with hyperactive T-scores from both ADHD
and control participants (β= 0.031, standard error= 0.013, p=
0.019). The association between 6ABT percent exploratory
choices and inattentive T-scores was not significant (β=
−0.015, standard error= 0.011, p > 0.1), see Fig. 3. Within each
group, the beta coefficients between exploratory choices and
hyperactive T-scores were relatively greater than with inattentive
T-scores, although associations were not significant within the
smaller samples (ADHD hyperactive T-scores β= 0.030, standard
error= 0.016, p= 0.074, inattentive T-scores β=−0.015, stan-
dard error = 0.018, p > 0.4; control hyperactive T-scores β=
0.048, standard error= 0.031, p > 0.1, inattentive T-scores β=
−0.031, standard error= 0.029, p > 0.2).

DISCUSSION
In summary, non-medicated adults with and without ADHD
completed the 6ABT, a computerized measure of explore/exploit
decision making, at baseline and then after methylphenidate
(MPH, 40 mg) and PLA on separate occasions. In support of our
first hypothesis, ADHD participants made more exploratory
choices and earned fewer points. Across all participants, the
number of exploratory choices positively associated with hyper-
activity symptoms. These results are consistent with theoretical
models of increased exploratory decisions in ADHD [12, 29–33].
Contrary to our second hypothesis, MPH did not affect exploratory
choices. ADHD participants continued to make more exploratory
choices and earned fewer points than controls in both drug
administration sessions. The results of the present study show that
individuals with ADHD consistently explore low-value options at
the expense of maximizing their rewards. The inability to suppress
actions with little to no reward value may be a key feature of

Table 1. Participant demographics for ADHD and control groups,
mean ± standard deviation.

ADHD
(n= 26)

Control
(n= 23)

p value

Sex (M/F) 14/12 10/13 p > 0.4

Age (years) 32.4 ± 8.3 27.7 ± 6.6 p= 0.034

Years of education 16.1 ± 3.0 15.8 ± 2.8 p > 0.7

Race (White/Black/other) 20/2/4 12/7/4 p= 0.051

CAARS DSM Inattentive
T-score

83.2 ± 8.0 41.8 ± 5.4 p < 0.001

CAARS DSM Hyperactivity
T-score

72.2 ± 9.2 39.6 ± 5.4 p < 0.001

CAARS DSM ADHD T-score 82.7 ± 7.9 39.6 ± 5.9 p < 0.001 Fig. 2 Overall percent exploratory choices (estimated marginal
means) for ADHD and controls across baseline, placebo (PLA) and
methylphenidate (MPH) administration. At baseline and across the
two drug administration conditions, ADHD made more exploratory
choices than controls (p’s < 0.05). Error bars are standard error of
the mean.
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hyperactive ADHD symptoms. The lack of an MPH effect is
consistent with other studies showing no effects of MPH on
some higher-order cognitive processes [51, 52]. For example, MPH
reliably improves task performance on measures of eye move-
ment control, attention/vigilance, and inhibitory control, but MPH
is less effective on measures of working memory/divided
attention, potentially because multiple cognitive processes are
engaged and MPH-modulation of DA/NE signaling has less direct
influence over these processes [51].
While many theoretical models have proposed increased

exploratory decisions in ADHD, potential explanations have varied.
These results challenge some straightforward explanations. For
example, ADHD participants may make faster, more impulsive
decisions and have more lapses in attention, resulting in shorter
reaction times and more reaction time variability [53, 54]. Ultimately,
this can manifest as less reward-driven/more exploratory decisions
[12, 29, 31]. However, we report similar reaction times and reaction
time variability between groups at baseline, in spite of differences in
exploratory choices. This suggests that cognitive processing times
and attentional performance were similar between groups and did
not contribute to differences in explore/exploit decisions.
The advantage of reinforcement learning models is that they

can provide insight into decision-making sub-functions and reveal
impairments not always evident in gross behavioral measures,
such as reaction time. The reinforcement learning model used
here consists of two complementary components, a Kalman filter
that describes how the expected values of bandit options are
updated based on the experienced reward history, and a softmax
rule that describes how options are selected. The equations for
these components provide sub-function values that can inform
how differences in explore/exploit decision making may occur.
The learning rate is a sub-function of the Kalman filter and is the

rate at which values of the bandit options are updated. Higher
learning rates result in fast learning from recent experience, but
also fast forgetting. Lower learning rates lead to slow adaptation,
but also less influence from random variations in feedback.
According to Ziegler et al., several neurobiological models of ADHD
predict lower learning rates for rewards [29–31]. At baseline, ADHD
participants had significantly lower learning rates, which is surprising
since higher learning rates tend to associate with more exploratory
decisions. However, if exploration occurs in a way that does not
track value, the learning rate will be lower and the model will
perform more smoothing of the variability in option selection. These
group differences in learning rate disappeared in the subsequent
drug administration sessions. Previous computational studies have
shown mixed effects of ADHD status on learning rate. Sethi et al.

recently reported that, in a placebo session, adults with ADHD had
lower learning rates, earned fewer points, and made more novel
selections on a 3-armed bandit task compared to controls [35].
Conversely, Hauser et al. reported no differences in learning rate,
although adolescents with ADHD were more exploratory during a
probabilistic reversal learning task [34]. Similar learning rates indicate
that ADHD participants learned the reward contingencies and
provides more evidence that increased exploratory decisions is not
simply more random selections [34]. Altogether, this suggests that
differences in learning rates may not have caused the differences in
explore/exploit decisions.
The decision temperature parameter is a sub-function of the

softmax rule that influences whether a choice will be coded as
explore or exploit. In the model used here, lower temperature
values are expected to correspond with more exploratory
decisions. Many neurobiological models predict different tem-
perature values and more exploratory decisions among individuals
with ADHD [12, 29–32]. Unexpectedly, we report similar tempera-
ture values at baseline, and nonsignificantly lower values during
the drug administration sessions among ADHD. Similarly, Sethi
et al. reported that ADHD participants on placebo had non-
significantly lower temperature values [35]. In contrast, Hauser
et al. reported that differences in the decision temperature
parameter accounted for more exploratory decisions among
adolescents with ADHD [34].
It is unclear why the expected relationships between reinforce-

ment learning model sub-functions and explore/exploit decisions
did not occur across groups. It may be that decision rules based
on typical goal-directed decisions do not fully explain the atypical
decisions shown in ADHD. ADHD participants had more unex-
plained variance in their choices, which potentially decreased the
signal-to-noise ratio resulting in a lower learning rate. This may be
why the ADHD participants had a significantly larger BIC,
indicating the model did not fit their data as well as the control
participants. One potential explanation for the unexplained
variance in ADHD choices is that ADHD is akin to being in a low
gain state [34, 55, 56]. Gain refers to the degree to which the
salience of specific information in the environment can be
enhanced and acted on immediately or be suppressed and acted
on later. In a low gain state, no single bit of information dominates
and less important information is monitored and acted on, which
can lead to more variable, exploratory decisions. This is a
recognized phenomenon in ADHD, and the CAARS queries this
as “Sometimes my attention narrows so much that I’m oblivious to
everything else; other times it’s so broad that everything distracts
me” [36]. Anecdotally, individuals with ADHD are less able to
allocate their attention appropriately and may be hyper focused
on one activity and struggle to maintain attention on another
activity. Not being able to suppress the salience of less valuable,
alternate bandit options while exploiting the most valuable option
may be a reasonable explanation for increased exploratory
decisions. This may also explain the significant association
between exploratory choices and hyperactive ADHD symptoms.
We had hypothesized that MPH would reduce group differences

in exploratory choices based on extensive preclinical and clinical
evidence that DA and NE modulate explore/exploit decisions and
reinforcement learning sub-functions (reviewed in [57]). For
example, elevated tonic DA levels in DA-transporter knock-down
mice are associated with smaller decision temperature values,
indicating more exploratory decisions [58], and reduced DA
transmission in Parkinson’s disease has been associated with lower
learning rates, which are increased by DAergic medications [59].
However, very few human-subject studies have tested the
catecholaminergic modulation of explore/exploit decisions. A recent
study administered a 4-armed bandit task to healthy men after
L-dopa (a DA precursor), haloperidol (a DA antagonist), and placebo
[60]. Compared to placebo, L-dopa reduced uncertainty-based
exploration (i.e., trials where the option with the highest exploration

Fig. 3 Scatterplot between CAARS hyperactive T-score (raw data
values) and baseline 6ABT percent exploratory choices (LN
transformed data). Multiple regression analysis indicated a sig-
nificant association between hyperactive T-scores and exploratory
choices, controlling for age and inattentive T-scores (β= 0.031,
standard error= 0.013, p= 0.019).
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bonus was chosen); whereas haloperidol had no effect [60]. Another
study administered a 3-armed bandit task with a novelty manipula-
tion to adults with and without ADHD [35]. DAergic medication
increased points earned and learning rates in ADHD compared to
controls, but there was no group or drug effect on decision
temperature values [35]. The NE system has also been implicated in
explore/exploit decision making [49], however, administration of a
NE reuptake inhibitor did not increase exploratory decisions as
hypothesized [45]. More research is needed to understand these
inconsistencies in the context of phasic versus tonic catecholamine
signaling, and striatal versus prefrontal regulation of explore/exploit
decisions.
The strengths of this study include a placebo-controlled,

counterbalanced design. Several limitations include the group
differences in age and the lack of a validated measure of real-
world exploratory decisions or personality traits. We used a dose
of MPH that our team has administered previously to adults with
and without ADHD, and which has shown to produce behavioral
effects [61–63]. However, 40 mg MPH is a relatively large dose
among treatment-naïve individuals. MPH has different effects on
behavior at small, medium and large doses and future studies
should compare the effects across doses. Lastly, given the racial
disparities in ADHD diagnosis and treatment, future studies should
pay special attention to the recruitment of minorities.
In support of several theoretical models of ADHD [12, 29–32],

these results indicate that adults with ADHD make more exploratory
decisions at the expense of maximizing rewards. Future studies
could investigate whether this increased exploratory decision
making is related to striatal or prefrontal function using neuroima-
ging. These results have clinical implications. Reinforcement learning
models can help elucidate higher-order cognitive impairments and
provide a more nuanced explanation of symptoms. In particular, the
processes that underlie exploratory decisions on the 6ABT may be
driving hyperactive symptoms, and a better understanding of such
processes could help guide therapy. For instance, clinicians may
want to be especially attuned to the decision-making capabilities of
their patients with greater levels of hyperactivity. In addition, new
therapeutic methods that emphasize top-down regulation of
attention and conflict detection could be useful in reducing this
particular impairment [64].
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