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Biotyping in psychosis: using multiple computational
approaches with one data set
Carol A. Tamminga1, Brett A. Clementz2, Godfrey Pearlson3,4, Macheri Keshavan5, Elliot S. Gershon 6, Elena I. Ivleva1,
Jennifer McDowell2, Shashwath A. Meda3,4, Sarah Keedy6, Vince D. Calhoun 7, Paulo Lizano5, Jeffrey R. Bishop8,9,
Matthew Hudgens-Haney1, Ney Alliey-Rodriguez6, Huma Asif6 and Robert Gibbons6,10

Focusing on biomarker identification and using biomarkers individually or in clusters to define biological subgroups in psychiatry
requires a re-orientation from behavioral phenomenology to quantifying brain features, requiring big data approaches for data
integration. Much still needs to be accomplished, not only to refine but also to build support for the application and customization
of such an analytical phenotypic approach. In this review, we present some of what Bipolar-Schizophrenia Network for Intermediate
Phenotypes (B-SNIP) has learned so far to guide future applications of multivariate phenotyping and their analyses to
understanding psychosis. This paper describes several B-SNIP projects that use phenotype data and big data computations to
generate novel outcomes and glimpse what phenotypes contribute to disease understanding and, with aspiration, to treatment.
The source of the phenotypes varies from genetic data, structural neuroanatomic localization, immune markers, brain physiology,
and cognition. We aim to see guiding principles emerge and areas of commonality revealed. And, we will need to demonstrate not
only data stability but also the usefulness of biomarker information for subgroup identification enhancing target identification and
treatment development.
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INTRODUCTION
The Bipolar-Schizophrenia Network for Intermediate Phenotypes
(B-SNIP) is a consortium of PIs and associate investigators who
focus on understanding the biology of psychosis using phenotypic
data from a single large data set. B-SNIP originally formed to seek
biomarkers for conventional psychosis diagnoses, so that clin-
icians could give conventional psychosis diagnoses to individuals
more easily, precisely, and consistently. B-SNIP organized its
phenotyping across the dimension of psychosis and selected
clinical and demographic data as well as candidate biomarkers
previously and theoretically informative for psychosis; this
included biomarkers derived from cognition, brain imaging, ocular
motor recordings, electrophysiology, and genetics, each in
addition to in-depth clinical assessment (Table 1) [1]. This initial
goal was unfulfilled when it became apparent that no biomarker
feature or set of features identified any of the conventional
diagnoses, using nearly a thousand individuals, with sufficient
statistical power. The conventional DSM-derived diagnoses that
we used, schizophrenia (SZ), schizoaffective disorder (SAD), and
bipolar disorder with psychosis (BDP), have been established over
many years, driven by a need to understand the unexpected
clinical phenomena characterizing psychosis, and to communicate
about the conditions and manage practical aspects of clinical care.

The performance of these categories for leading us to common
biological entities, neural mechanisms, or genetic insights has
always lacked specificity according to many scientists, who have
astutely pointed out that our diagnostic categories are not likely to
define pathophysiological entities [2].
Having failed to identify biomarkers to support conventional

psychosis diagnoses, B-SNIP set another course: using the
biomarker data (Table 1) to identify groups with common
neurobiological characteristics, thus clustering psychosis indivi-
duals with similar biological profiles [3]. To achieve this, the
psychosis cases were pooled (data from 711 probands, 883
relatives, and 278 controls; reserving two biomarkers as external
validators), then examined with principal component analysis to
reduce the biomarkers to independent “bio-factors”. This was
followed by k-means clustering, using nine distinct “bio-factors” to
define the most biologically homogenous clusters of psychosis
cases. This strategy generated what we called psychosis Biotypes
(Fig. 1). There were several factors essential to this process: (i) large
numbers of psychosis individuals to ensure we captured
biomarker variance across psychosis; (ii) each individual having
large numbers of biomarkers; (iii) extensive quantification within
and across biomarker paradigms; and (iv) cutting-edge computa-
tional approaches supporting numerical taxonomy. Each Biotype
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contained individuals with all three conventional DSM psychosis
diagnoses.
Once we defined psychosis Biotypes, other measures, not part

of Biotypes creation, were used as external validators to further
illustrate distinct and meaningful group characteristics across the
Biotypes. The structural brain volume showed that Biotype-1 (the

most clinically severe group) had pervasively reduced cortical
volume compared with the healthy controls throughout the whole
neocortex. Biotype-2, with a better but still severe clinical and
cognitive profile, showed regional reductions in cortical volume
from healthy over fronto-temporal regions. And Biotype-3, the
least affected psychosis group, showed reduced cortical volume
restricted to the core limbic system [4]. Figure 2 shows this
pattern. In terms of psychosocial function, each of the three
Biotype groups (−1, −2, and −3) showed a step-wise decrement
from healthy in psychosocial performance; curiously, their family
members showed this as well, albeit, within relatives, all within the
normal range.
The next characteristic B-SNIP needed to demonstrate was the

replication of Biotypes, all the more compelling because non-
replication in the field has become increasingly problematic. B-
SNIP2 was born, and B-SNIP1 was repeated five years later,
collecting the same biomarkers in similar settings, and increasing
the N of the psychosis probands in order to make the genetic
analyses more informative. We are working on these analyses
now. The early indication is that we will successfully replicate
psychosis Biotypes (data too preliminary to include). It is a
particularly important outcome, considering that B-SNIP2 is an
entirely new sample of psychosis and healthy individuals,
separated from B-SNIP1 recruitment by 5–9 years. After replica-
tion, this biological approach will demonstrate its value when the
usefulness of these biomarkers and Biotypes is demonstrated to
be etiologically informative and clinically advantageous.
Along this path, many B-SNIP investigator groups mounted “big

data” efforts with sophisticated computational methods to
examine key features of the data. We describe several of these
analyses here to demonstrate the value of applying contemporary
computational methods to a common database to develop a
unique perspective on one of the field’s most important question:
what are the neural and biological mechanisms of psychosis?
The task of using biomarker data to understand psychosis, even

recognizing the limitations of any kind of brain tests for drawing
precise molecular, cellular, and systems conclusions is still
daunting because the extent of our knowledge of brain function
in psychosis is severely limited. Our mechanistic models remain
hypothetical. We are still working without fundamental data, still
building up/organizing data from individuals and from animal
models of various theories to build psychosis knowledge. We have
pulled together a wealth of biomarkers on a large number of
individuals within the dimension of psychosis. So, we ask, what

Table 1. B-SNIP assessments and tests.

Clinical assessments

Demographic data

Psychiatric, medical, and family history

Structured clinical interview for DSM-IV

Medication, current, and history

Hollingshead SE scale

PANSS; MADRS; YMRS

Lifetime dimension of psychosis scale (LDPS)

Childhood trauma questionnaire (CTQ)

Birchwood SF scale

Akiskal and Barret self-report

Cognition

WRAT-IV

Brief assessment of cognition in schizophrenia (BACS)

Spatial span

PCET; emotion recognition; CPT; SST (computerized)

Neurophysiology

Eye tracking

SPEM

Prosaccade

Antisaccade Tests

Electrophysiology

Resting-state EEG

Auditory paired stimuli ERP

Auditory odd ball ERP

Brain imaging (magnetic resonance)

Structural MR

Resting-state fMRI

Diffusion tensor

MRS

Schizophrenia

Schizoaffective Disorder

Psychotic Bipolar Disorder

Psychosis

Biotype 1 Biotype 2 Biotype 3

Bioindicators
gNBC

Low

High

Fig. 1 Bipolar-Schizophrenia Network for Intermediate Pheno-
types (B-SNIP) cartoon representing the path to psyhosis
Biotypes. B-SNIP study creation of Biotypes from individuals with
schizophrenia, schizoaffective disorder, and psychotic bipolar
disorder diagnoses. Reported in ref. [3].
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Fig. 2 Average cortical grey matter reduction by Biotype (B-, B-2
and B-3) in the B-SNIP population. B-1 (left), B-2 (middle), and B-3
(right) columns at matched levels show widespread volume
reduction from HC in B-1, a substantial reduction in B-2, and
localized reductions in B-3; with neocortical distribution in B-1,
fronto-temporal, in B-2 and limbic in B-3. Reported in ref. [4].
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can we learn? Which approach may be best? And, how can we
arrive at informative biology within the psychoses?

ROLE OF DATA-DRIVEN APPROACHES IN SOLVING “BIG DATA”
PROBLEMS IN PSYCHIATRY
Decades of traditional neuroscientific analyses aimed at identify-
ing structural and functional brain differences associated with
major psychiatric syndromes have largely relied on univariate
statistics and relatively simplistic brain models. These approaches
(at least so far) have proved both inadequate in identifying
underlying causes of such disorders and in enabling reliable
assignment of psychiatric diagnoses on an individual level [5].
Recently, there has been a strong move towards employing
multivariate and data-driven approaches that more closely portray
complex brain biology [6, 7]. In simplistic terms, big data describes
a situation where massive amounts of both structured and
unstructured data are collected to solve a problem. Analytic tools
are needed to disentangle the complex nature of these data.
Instances of this strategy have emerged with the historically large
projects such as Enhancing Neuro-Imaging Genetics through
Meta-Analysis (ENIGMA), UK Biobank, The Human Connectome
Project, The Adolescent Brain Cognitive Development (ABCD)
study, and disorder-focused studies such as the Bipolar-
Schizophrenia Network for Intermediate Phenotypes (B-SNIP)
and the Alzheimer’s Disease Research Initiative (ADNI). Combining
brain network models with clinical, behavioral, genetic, and
cognitive data requires using flexible, data-driven multivariate
approaches that acknowledge the complexity of each data type
by jointly accounting for their covariance structure [8–10]. Given
the inherent density and complexity of neuroimaging data, recent
brain network modeling has relied on more sophisticated data-
driven techniques such as machine learning approaches, which
can either be supervised or unsupervised. Further, we are now
solidly in the era of deep learning. This has enabled models that
are increasingly flexible, including the ability to capture nonlinear
relationships and to identify unknown patterns within a data set
that correspond to clinical variables [11]. Deep models can
convincingly outperform standard machine learning in a variety of
tasks, including classification using brain imaging data [12]. An
example of how deep learning can improve our ability to separate
clinical groups is shown in Fig. 3. These approaches enable us to
visualize the data and identify individuals who are misclassified or
lie at the boundary between categories, likely a promising source
of information as we work to refine categories or move towards
individualized risk markers.
These data-driven techniques are (i) powerful tools to generate

and validate hypotheses, (ii) efficient for condensing and reducing
large-scale data, (iii) use relatively lenient statistical assumptions,

(iv) are more effective at partitioning data into signal vs noise, and
(v) are able to capture/model brain complexity more accurately. In
the B-SNIP project, we used a modified form of ICA called parallel
independent component analysis [13], a form of unsupervised
machine learning (ML), to automatically cluster and derive links
between brain function and genes in psychosis in a bi-multivariate
fashion [8, 9, 14] (Fig. 4). This analytic approach serves as an initial
step to reduce the phenotypic data in a natural way and to derive
relationships between these domains. As an extension, the above-
derived metrics or features can then be subjected to the second
round of ML clustering that could provide biological clusters
across individuals that are segregated or classified based on
multimodal biological data.
More recently we applied traditional ML techniques such as

support vector machines (SVM) to B-SNIP data to both show and
validate the superiority of biologically derived group discrimina-
tion (B-SNIP Biotypes) over traditionally segregated groups in
terms of brain connectivity in psychosis [15] (Fig. 5). In that study,
Regional Homogeneity (ReHo) a metric that measures local brain
connectivity, was used as a feature. The same data were analyzed
in two ways (a) a traditional ANOVA-based mean difference
approach that works at the group level and (b) a multivariate
machine learning-based SVM analysis that taps into individualized
predictions. Both approaches highlighted the general superiority
of clustering data using biological constructs (i.e., B-SNIP Biotypes
over traditional phenomenological approaches (i.e., DSM)). How-
ever, the fact that SVM-like approaches offer a more in-depth look
at individualized predictions is valuable information that is often
lost in traditional statistical analyses. For example, using ANOVA
we ascertained which specific brain region discriminated groups
at the group level. On the other hand, SVM allowed us to ascertain
that a multivariate ReHo-based feature set was able to predict
whether a given individual belonged to a Biotype class with much
higher accuracy and certainty than if they were classified based on
DSM stratification. Given that the two methods approach the
same data structure using different means, the project was a
fruitful exercise to demonstrate the importance of using varied
techniques to provide a more complete understanding of brain
dysfunction in psychosis. Such efforts using large data sets and
multiple data analytic approaches will be critical for generating
low-dimensional representations of clinical symptoms, network
measures of brain structure/function, and genetics that are useful

depth 2

depth 1

Fig. 3 Big data routines directed to B-SNIP volumetric data. One,
two, and three-layer deep belief network trained on structural MRI
data from three clinical groups, unaffected relative, and controls.
Not previously reported.

GO PROCESSES
Nervous system development, 

Neurogenesis, Neuro-
differentiation, System
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CANONICAL PATHWAYS
NMDA long term potentiation, 
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Fig. 4 Gene enrichment in the default mode networks in
psychosis. Significant ontology terms derived from a pooled gene
enrichment analysis depicting a variety of processes/pathways/
networks mediating the risk of psychosis via default mode
connectivity. Reported in ref. [13].
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in the diagnosis and sub-diagnosis of psychiatric syndromes and
in paving a path toward future intervention and treatment.
A major challenge is that we have a threefold problem in which

the brain, the psychiatric disorders, and the (multimodal) data are
all highly complex. Consider the case of clustering, as a general
data-driven tool. We can cluster among relatively static variables
(such as brain regions or genetic locations) to identify weighted
patterns of variables that contributed to a variable of interest. We
can also cluster within-subject, across time, for example, to
identify transient and more sensitive patterns of functional
connectivity [16, 17]. Such dynamic functional brain measures, in
our hands, are proving more useful than classic summary
measures of resting-state epochs.
Beyond this, we can attempt to jointly identify homogeneous

subsets of subjects and data, e.g., using bi- or tri-clustering
methods [18]. Perhaps counter-intuitively, this latter approach can
enhance our ability to detect differences linked to psychiatric
syndromes such as schizophrenia, including the connection to
symptoms, by focusing on subsets of subjects who exhibit more
homogeneous data. We can also use such approaches to visualize
and evaluate individuals on the boundary between groups or
evaluate their hierarchical relationship to one another [19]. Finally,
if we incorporate continuous measures such as neuropsychologi-
cal assessments or age, we can identify patterns of data that show
graded relations [20]. The use of dimensional measures to assess
brain disorders is of particular focus in B-SNIP as well, since we
know the boundaries between existing DSM categories are likely
not sharp [2]. In summary, our current state of analytic methods
allows us to access an unprecedented level of algorithmic
flexibility, computational resources, and a growing amount of
open data. The challenge is how best to leverage all of these to
move the field forward.

DEEP PHENOTYPING PROJECTS, BIG DATA, AND GENOMICS
In psychiatric disorders, studies that define component pheno-
types and their genetic associations, offer great promise for
illuminating their biological basis. This has led to several large
deep phenotyping studies in which many clinical, and brain
structure- and function-based phenotypes have been assessed
individually in large numbers of genotyped individuals. Deep

phenotyping with simultaneous genome-wide analyses serves as
a discovery tool for previously unsuspected relationships of
phenotypic traits with each other, and with specific molecular
involvements. The B-SNIP study includes all of the detailed
assessments (Table 1). Genome-wide analyses of such data
present challenges, because of the large numbers of phenotypes,
daunting (but achievable) sample sizes, appropriate multiple
testing corrections for statistical significance, and the resulting
computational and statistical burden.
Quantitative neurobiological traits related to brain diseases

have become of particular interest since the Research Domain
Criteria (RDoCs) initiative [21, 22] which can be seen as expansions
of the endophenotype concept, proposed decades earlier by
Gottesman [23, 24], similar to Gershon’s and Gottesman’s 1967
proposal that schizophrenia and its component phenotypes are
polygenic. Biological markers, phenotypes, and underlying neuro-
biological functions related to the disease are conceptualized as
continuous “domains” that are more pathological in psychiatrically
affected persons. The implicit theory on the genetic architecture
of disease is that there are multiple genetic variants with small
effects that are correlated with trait markers, and with the right
combination the trait markers’ quantitative value crosses a
threshold for disease liability. The polygenic component of any
given endophenotype can be calculated as the additive contribu-
tion of many genotypes, including those not significantly
associated with the endophenotype or the illness.
An important challenge for analysis of deep phenotyping

results is to find a significance threshold based on the family-wise
error rate (FWER), (i.e., the probability of Type I error in the entire
set of tested hypotheses). An inappropriate statistical significance
threshold can mask potential true-positive signals or incur a signal
[25]. The probability of a false-positive in at least one of the
phenotypes for which GWAS has performed increases with each
GWAS (or gene subset analysis). It is tempting to publish
component results separately and to restrict multiple test
correction to the genotypes in one GWAS. But this gives a false
picture of the sample space and adds to the unfortunate number
of existing false-positive GWAS results [26].
For the GWAS analysis of any given trait, the correlation

structure of phenotypic and genotypic data can be accounted for
by determining the “effective number of independent tests” [27].
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Fig. 5 SVM classification results on regional homogeneity (ReHo) connectivity metrics. Upper: DSM groups with healthy controls (HC);
lower: Biotype groups with HC. X axis: False-positive rate (specificity). Y axis: True-positive rate (sensitivity). Each blue line represents a ROC
curve of each SVM with different training-testing separations. Reported in ref. [15].
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Meff--based methods use dimension reduction techniques to filter
out the correlation between tests, leaving just the effective
number of independent tests, and then apply a Bonferroni
correction using Meff- instead of the number of genotypes or
phenotypes in their respective formulas. As an exercise, we
applied Meff- dimension reduction methods to 335 individuals
with magnetic resonance imaging (MRI) structural phenotypes
determined by Freesurfer6 [28]. We did the same with data from
B-SNIP [1, 29] for 777 unrelated patients with schizophrenia,
schizoaffective disorder, psychotic bipolar disorder, and healthy
controls (HC). Using separate Meff- estimates for genotypes and for
phenotypes, based on various implementations of dimensional
reduction of the correlation matrices of each, we obtained FWER-
based p-value thresholds of roughly 8.4E−13 [30] (Fig. 6). This is
considerably more stringent than the uncorrected FWER of 3.5E
−11, and the opposite of the reduced stringency we would expect
from dimension reduction.
However, there are reports that allele frequency and sample size

may affect significance thresholds, and permutation values of the
null hypothesis are considered the gold standard for significance
thresholds. We shuffled the identification numbers on the
genotype data so that the correlations among genotypes and
among phenotypes would be preserved. This was a big data
problem. Each permutation requires 4.3E6 × 335 tests of
association, and these test results must be sorted to find the
minimum p-value results of all the tests. The minimums for each
permutation are then ordered, to estimate the 5th percentile of
the minimums as the p < 0.05 significance threshold of the FWER.
This computation was difficult to perform on the available shared
servers in our setting. Nonetheless, the results of the permutations
were quite interesting [30]. Although the test results on each
GWAS of permuted data followed a uniform distribution as
expected, when results were arranged by minor allele frequency
(MAF), and we inspected the distribution of the smallest test
values, there was an excess of very small p-values for MAF < ~0.1.
In this data set, then, the FWER threshold for p < 0.05, we had
observed for the whole data set from permutation (8.4E−13)
actually applied only to the lower MAF range for common variants.
When we recomputed the statistics for the remainder of the MAFs,
the threshold p-value was 1.93E−10, which is a bit less stringent
than the p-value of the statistical calculations, as expected. Further
permutation of these results revealed that this MAF skewing
disappears when the permuted data set is ten times larger.

The general conclusion to be derived from this experience with
deep phenotype GWAS thresholds is that even though permuta-
tion gets cumbersome with the currently huge number of
separate tests (because of the large number of random shuffles
needed to get reliable genome-wide significance levels) it is less
likely to give false positives, which have plagued the GWAS
literature [26]. A second conclusion is that we had reached the big
data limits of a moderately powerful server.

ANATOMIC FINGERPRINT OF PSYCHOSIS: MULTIDIMENSIONAL
ITEM RESPONSE THEORY (MIRT)
The MIRT analysis sought to address the problem of linking
neurobiological measures with clinical expression of psychosis
[31]. Specifically, the aim was to identify the cortical region(s) in
persons with psychosis that are involved in psychotic symptom
manifestation [32]. The study asked where in brain greater
psychotic symptoms (using PANSS, MADRS, and YMRS) would
correlate with the reduced cortical thickness (from MRs processed
using FreeSurfer) in the B-SNIP sample using MIRT. We a priori
hypothesized that there would exist meaningful anatomic brain
regions associated with a psychosis-driven biomarker in this
sample. Reductions in cortical thickness have already been widely
reported [4]. An anatomic fingerprint could be used to identify
regions for further study in psychosis: for example, functionally,
with fMRI & electrophysiology and molecularly, with human
postmortem brain tissue.
In previous studies that approached this question using total

psychosis rating scores for correlations with cortical thinning, the
results have been weak [33–35]. Ours is an alternative statistical
approach to look at the relationship between psychotic symptoms
and regional cortical thickness, using MIRT. The MIRT approach
examined both symptomatic (psychosis) and biological (cortical
thickness) domains simultaneously while maintaining item-level
symptom ratings and regional cortical thickness measures as
inputs to the model, simultaneously, aiming to enhance precision
in characterizing the relationship [36].
B-SNIP data from 1890 psychosis probands, relatives, and

healthy controls (HC), including FreeSurfer (v5.1) analyses, were
done as previously described [1]. Characteristics of psychosis were
captured with the PANSS, MADRS, and YMRS. The MRI scans on
individuals were captured using five different scanners over as
many study sites (a GE Signa, a Philips Achieva, a Siemens Allegra,
a Siemens Trio, and a GE Signa HDxt) [4]. The analysis in the
bifactor model began with 119 variables (68 measures of cortical
thickness +51 clinical symptom rating items) with a primary
dimension, 9 biological subdomains, and 5 clinical subdomains for
a 15 dimension bifactor model. The analysis revealed that 16 of
the 68 biological (i.e., cortical thickness) variables loaded strongly
(>0.7) on the primary dimension and we used those 16 variables.
Moreover, a subset of the 51 clinical variables (i.e., psychosis
symptoms) loaded less strongly but still distinctively on the
primary dimension (>0.25) to estimate the final bifactor model,
that identified the individual clinical variables associated specifi-
cally with reduced thickness in the 16 brain regions. In terms of
multiple comparisons, the MIRT provides a simultaneous estima-
tion of parameters for all variables in the model and therefore
does not require adjustment for multiple comparisons.
The final clinical symptoms which showed >0.25 association

with the cortical thickness parameters were: (i) delusions, (ii)
hallucinatory behavior, (iii) suspiciousness and persecution, (iv)
passive, apathetic social withdrawal, (v) depression, (vi) unusual
thought content, (vii) and, active social avoidance. Surprisingly,
the set of brain regions where high ratings on the psychosis
symptoms (i–vii) associated with the lowest values for cortical
thickness all fell onto a large, contiguous brain region, spanning
several lobes, creating a “psychosis region”. This region, where
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Fig. 6 Effects of permutations on Minor Alle Frequency. Permuta-
tion of phenotypes and genotypes gives skewed p-values in the low
range of common minor allele frequencies. Reported in ref. [30].
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high psychotic symptoms associated with low cortical v0lume, fell
directly onto a contiguous swath of neocortex including
temporal–parietal–frontal regions (Fig. 7). Curiously, this region
includes many of the regions already identified from archival
studies as important to psychosis in conventional diagnoses, like
the superior temporal gyrus [37] and prefrontal cortex [38].
It is generally assumed that regional cortical thinning is

associated with a neuron-sparing pathology in that region. The
data here are consistent with the literature in implicating
neocortical “thinning” pathology in this area of the neocortex as
specifically associated with high clinical psychosis manifestations.
This is also consistent with pathology in fronto-temporal
connectivity being particularly important to psychosis [38, 39].
The hippocampus is a rather small cortical structure located
medial to the involved neocortical regions and is highly
connected to many surrounding regions [40]. The hippocampus
has often been reported as hyperactive in SZ, especially in early
psychosis. The pathology that underlies this hyperactivity has
been explored in human tissue [41] and in animal models of the
human pathology [42] and a plausible model suggested involving
an increase in CA3 excitatory transmission. It could be possible
that these alterations within the hippocampus translate into
reductions in cortical thickness in nearby tissue. The plausibility of
this formulation can be explored in parallel animal models and
can be directly examined in human postmortem tissue. As
suggested by the MIRT analysis, this is a testable formulation
and may generate new knowledge.

DEFICIT SYNDROME ACROSS BIOTYPES
Negative symptoms have received a great deal of attention since
they are associated with deficits in functional outcome, poor
treatment response, and biological correlates that differ from
other symptoms of schizophrenia. Deficit and non-deficit forms of
schizophrenia have been proposed based on multiple negative
symptoms that are persistent for greater than 1 year and are not
fully attributed to symptoms of depression or anxiety, drug effects
or environmental deprivation. Deficit and non-deficit forms of
schizophrenia differ in several key domains, such as biological
correlates, risk factors, and etiology. In B-SNIP, a machine learning
approach was taken to redefine psychosis spectrum patients
(schizophrenia, schizoaffective disorder, and bipolar disorder with
a history of psychosis) into subtypes based on neurobiological

measures instead of clinical symptoms. This approach identified
three biotypes with various degrees of severity from worse to
better (BT1, BT2, BT3). Therefore, we proposed that psychosis
patients categorized into BT1 were also more likely to have a
deficit syndrome compared to the BT3 group.
Utilizing the B-SNIP-1 database, we categorized psychosis

probands into deficit and non-deficit groups by subtracting the
PANSS negative subscale score for blunted affect by the general
subscale score for depression (PDS2) [43, 44]. Participants with a
PDS2 score greater than zero were categorized as deficit and
those with a score less than or equal to zero were categorized as
non-deficit. This resulted in 225 deficit syndrome and 620 non-
deficit syndrome groups. In the deficit group there were 153 SZ,
41 SAD, and 31 BPP, while in the non-deficit group there were 190
SZ, 171 SAD, 253 BPP (chi2= 97.9, p < 0.001, Table 2). When
stratified by Biotypes the deficit groups consisted of 82 BT1, 60
BT2, 61 BT3, whereas the non-deficit groups consisted of 112 BT1,
167 BT2, 213 BT3 (chi2= 23.2, p < 0.001). BT1 also had significantly
higher PDS2 scores compared to BT2 and BT3 (p < 0.001), but
there was no difference between BT2 and BT3 (Fig. 8). The mean
and standard deviation for PDS2 scores were as follows: BT1 (0.23
+ 1.87), BT2 (−0.51+ 1.87), BT3 (−0.67+ 1.69). When examining
biotype factors by PDS2 scores, it was determined that higher
PDS2 scores were associated with poorer biofactor 8 (Eye-tracking
saccade task, antisaccade error composite score from principal
component analysis) (beta-estimate = 0.079, p < 0.001) and
biofactor 6 (BACS composite Z-score) scores (beta-estimate=
−0.139, p < 0.001).
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Fig. 7 These regions represent areas where high psychosis
symptoms correlate significantly with low cortical thickness. The
regions include left (L) and right (R): 1= inf. parietal ctx; 2= pars
opercularis; 3= precuneus; 4= supra-marginal gyrus; 5= lat. orbi-
talfrontal C; 6= pars triangularis; 7= sup. temporal sulcus; 8=
fusiform gyrus; 9=mid temporal gyrus; 10= insula; 11= sup.
temporal gyrus. Reported in ref. [36].

Table 2. Comparison of diagnostic and biotype grouping when
stratified by deficit and non-deficit syndrome.

SZP SADP BPP Fisher’s test

Deficit (n, %) 153 (45%) 41 (19%) 31 (11%) p < 0.001

Non-deficit (n, %) 190 (55%) 171 (81%) 253 (89%)

Biotype-1 Biotype-2 Biotype-3 Fisher’s test

Deficit (n, %) 82 (42%) 60 (26%) 61 (22%) p < 0.001

Non-deficit (n, %) 112 (58%) 167 (74%) 213 (78%)

SZP schizophrenia, SADP schizoaffective disorder, BPP bipolar disorder with
a history of psychosis.
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Fig. 8 PDS2 score comparisons across Biotypes. Participants from
the B-SNIP1 study underwent deficit syndrome scoring (PDS2) and
the boxplot shows contrasts of PDS2 between Biotypes. *p < 0.001,
(•) mean. Not previously reported.
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Our observations are consistent with previous findings of
distinct alterations in white matter microarchitecture [45],
prefrontal activation with memory retrieval [46], and neurocogni-
tion [47] in deficit vs non-deficit subtypes of schizophrenia. These
findings are also concordant with our recent observations of the
association between negative symptoms, electrophysiological
evidence of diminished neural activity, and cognitive impairments
in psychotic disorders [48]. Our findings suggest that such a
deficit–non-deficit distinction may cut across psychotic disorders
and may provide some support to the biotype-based classification
of psychotic disorders.

LINKING PERIPHERAL INFLAMMATION TO BLOOD–BRAIN
BARRIER PATHOLOGY
Peripheral markers of dysregulated inflammation and related
immunological pathways have received considerable attention in
recent years with a strongly established presence in schizophrenia
and bipolar disorder [49, 50]. While these findings have been
promising, clinical trials examining targeted biologic treatments
against IL6 or TNFα have failed to produce clinically meaningful
results [51–53]. This lack of connection can be due to several
reasons. First, these studies utilized categorical symptomatic
constructs for establishing a diagnosis of schizophrenia or bipolar
disorder instead of neurobiologically defined categories (e.g.,
Biotypes). Second, many of the studies examining inflammatory
differences between schizophrenia or bipolar disorder patients did
not account for the complexity and interactions between
peripheral inflammatory markers, as these studies have focused
primarily on the unitary effects of inflammatory markers on CNS
changes. Third, many of the clinical trials testing the effects of
anti-inflammatory treatments in schizophrenia or bipolar disorder
have not stratified patients by baseline inflammatory states and/or
signatures with the exception for the study by McIntyre et al. [53].
Last, a link between peripheral inflammation and/or signatures of
inflammatory markers and their detrimental effects on the CNS are
lacking. Therefore, our group approached some of these
challenges by examining the evidence for peripheral inflammatory
changes comparing neurobiologically defined psychosis groups
with traditional diagnostic categories of psychosis, as well as
evaluating the potential effects of inflammatory signatures on
brain integrity.
Cytokine components of the adaptive immune system, includ-

ing proinflammatory cytokines (IL2, IFNγ, and TNFα) and anti-
inflammatory cytokines (IL4, IL10, and IL13) act as key signaling
molecules to coordinate adaptive and innate components of the
immune system and exert direct effects on the brain by crossing
the blood–brain barrier (BBB) to activate astrocytes and microglia
[54]. Cytokines are essential in the development and function of
the CNS and are core actors in the maintenance of neuronal
integrity, neurogenesis, synaptic remodeling, and neurotransmis-
sion [55]. The brain is immunologically privileged due to the BBB
limiting cell entry [56]. BBB disruption in psychosis is characterized
by increased permeability [57], a greater interface between
peripheral and CNS inflammatory signaling [58], and an increase
in CNS proteins measurable in plasma [59]. A link between
cytokines and the choroid plexus, a contributor to the blood–CSF
component of the BBB, has been established in schizophrenia as
evidenced by elevations in peripheral cytokines (CRP, TIMP1,
MMP9, cortisol, and others) being linked to inflammatory
signatures in the choroid plexus [60]. These findings suggest a
direct link between the periphery and the upregulation of
immune/inflammation-related genes in this key structure. Initial
cytokine studies by the B-SNIP group examined 13 analytes in a
subset of participants with blood collection for peripheral
biomarker studies. We compared levels of individual cytokines
and exploratory analyses of cytokine groups across diagnostic and
Biotype groups. Two findings consistent with the prior literature

were elevations in IL6 and CRP observed in schizophrenia as
compared to controls (Fig. 9). However, when examining these
across biotype groups, there were greater differences between
groups than in the diagnostic comparisons, particularly notable in
IL6 and CRP (Fig. 9). Structural imaging studies of the bilateral
choroid plexus volume identified larger volumes in psychosis
probands compared with healthy control subjects. It was also
noted that there were greater differences when the psychosis
probands were stratified by Biotype as opposed to diagnostic
groups with the least impairments in BT3 compared to controls
(Fig. 10). Increased IL6 and CRP levels were also significantly
associated with larger choroid plexus volume in probands. As
noted in Fig. 9, CRP and IL6 levels in BT3 were more similar to

Fig. 9 CRP and IL6 group comparisons. Participants from the B-
SNIP1 study underwent analyte level measurements and boxplots
showing contrasts of CRP and IL6 between psychosis probands and
across biotype groups are illustrated. *p < 0.05, **p < 0.01, (•) mean.
Under review.

Total choroid plexus volume
across diagnostic groups & biotypes
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Fig. 10 Choroid plexus group comparisons. Effect sizes for choroid
plexus volume comparisons of total choroid plexus volume for
schizophrenia (SZP), schizoaffective (SADP), psychotic bipolar I
disorder (BPP), and biotypes (BT1, BT2, and BT3) compared to NC.
The dot indicates Cohen’s d and lines indicate confidence intervals
(CI). Cohen’s d estimates were adjusted for age, sex, race, site, and
intracranial volume. Under review.
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controls than the other biotype groups. This finding is of interest
because the choroid plexus expresses the receptor for IL6 [61],
and in the blood, IL6 has pleiotropic activity, which induces the
synthesis of acute-phase proteins (e.g., CRP), activates the
acquired immune response by stimulating antibody production
and effector T-cell development, and can promote the differentia-
tion or proliferation of non-immune cells [62].
Differences in IL6 and CRP observed across Biotype groups and

controls suggested an avenue for further research into the ways in
which dysregulation in inflammatory pathways may impact
measures of BBB function and pathological correlates. The degree
to which IL6 and CRP are selectively related to this, vs a broader
multifaceted inflammatory process, is unclear. Exploratory factor
analyses (data presented at the poster at the American College of
Neuropsychopharmacology in 2019) of a group of 13 cytokines
identified 5 notable factor groupings of cytokines. Interestingly,
the factor that distinguished BT3 as well as controls from the other
BT groups, was comprised of significant loading for not only IL6
and CRP, but also complement 4 (C4a), IL8, IL10, and VEGFD.
Examination of diagnoses only noted a separation of schizo-
phrenia participants vs controls. This exemplifies how separate
findings from individual cytokines may in fact represent different
markers of the same inflammatory process that also includes other
influential contributors, and in this example may inform inflam-
matory mechanisms in part related to altered BBB function.

BASIC NEURO-COGNITIVE CONTINUUM (BANCC)
Biomarkers accounting for the most important initial separation
between Biotypes index multiple aspects of cognition (e.g.,
response inhibition, goal maintenance, response selection, verbal,
and working memory). Cognition-related biomarkers also gener-
ated the most promising endophenotypes, primarily for Biotype-1
(about a quarter of the B-SNIP sample [3]). Deviation in cognitive
functions are traditionally linked to SZ-like psychoses, but they
clearly extend to other psychosis syndromes [63–67] as well as to
syndromes with genetic and phenotypic overlap with the
psychoses [68–70]. In addition, cognitive ability, when left
untreated, maybe the best predictor of course and functional
outcomes across the psychoses [71, 72].
Cognitive ability, of course, is a manifestation of the structural

and functional integrity of the brain. This fact has fueled the
logical extension of cognitive ability research in psychosis to
related neuroimaging domains. McTeague et al. [68, 73] draw the
reasonable conclusion that there is a transdiagnostic latent feature
accounting for a broad vulnerability to serious psychiatric
syndromes, and this latent feature is indexed by common and
broad neurobiological measures of cognition, brain structure, and
neural function. Understanding the ubiquitous nature of these
inter-related neurobiological features may offer an opportunity for
appreciating a dimensional vulnerability for serious psychopathol-
ogy that does not respect conventional clinical diagnostic
boundaries [67, 68, 74, 75].
McTeague et al. [73] predicted that research addressing the

relevance of a multi-trait neurocognition continuum must be both
transdiagnostic and dense in phenotype measurement. Although
B-SNIP does not have sufficient data on syndromes other than
idiopathic psychoses, we do have extensive phenotyping data at
multiple levels of analysis [1, 29, 76]. As such, we were able to
evaluate the extensiveness of phenotypic overlap between a
multimodal cognition construct and multiple neurobiological
features for individual subjects across the psychosis dimension.
Across B-SNIP1 psychosis cases (n-711), their relatives (n= 883),

and healthy persons (n= 278), we evaluated relationships
between a multivariate dimension of cognitive ability (what we
called “Cognitive control”) [3] and multiple sets of measures not
used to construct this dimension. These measures included: (i)
structural MRI (397 Freesurfer variables characterizing cortical

volume, surface area, and thickness across multiple regions), and
(ii) cognition-psychophysiology measurements (20 neuropsycho-
logical, EEG/ERP, and ocular motor measures). Within each
measurement set (397 structural MRI measures; 20 cognition-
psychophysiology measures) we computed the subject–level
relationships between all individual measures simultaneously
and the multivariate dimension of cognitive ability [77]. Random
effects were the intercepts and predictors (e.g., MRI or cognition-
psychophysiology). We estimated individual variable-specific
associations in relation to the overall measurement set association
using empirical Bayes estimates. This analysis determined if each
individual measure in a set (MRI or cognition-psychophysiology) fit
a single function on cognition, so the purpose of this analysis was
to discover how the overall association varied across measures
within a set.
Figure 11 shows bar plots averaging over variables within a

measurement set for MRI and cognitive-psychophysiology; other
sets have the same pattern. These plots show mean values within
cognitive ability quintiles (x axis) for probands, relatives, and
healthy subjects. Note that probands span the cognitive ability
range but the overwhelming majority of broadly recruited healthy
subjects occupy the upper 3 quintiles (no blue bars in lower 2
quintiles). The functions (slopes and y-intercepts) are statistically
equivalent for probands, relatives, and healthy subjects. The
overwhelming majority of measures are captured by the overall
functions in Fig. 11: (i) structural MRI (slope on cognition= 0.22 in
standard units, SE= 0.0052, p < 0.0001)—379 of 397 (95.5%) fit
this function; (ii) cognition-psychophysiology (slope= 0.43 in
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Fig. 11 Overall structural MRI (top plot) and cognition and
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cognitive ability. The cognitive ability dimension is plotting in
quintiles by different subject groups (healthy in blue, probands in
orange, relatives of probands in yellow). When considering all
measures in a set, all groups show declines in both MRI and
neurophysiology and cognition from high to low cognitive ability
levels. Not previously reported.
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standard units, SE= 0.0088, p < 0.0001)—13 of 20 fit this function
(65%). These analyses indicate the extensiveness of the transdiag-
nostic neurocognition construct described by McTeague and
others [69, 70, 73, 74, 78]. We call the overall pattern of
associations across these hundreds of laboratory measures the
BAsic Neuro-Cognitive Continuum (BANCC). BANCC has a deficit
and surplus extremes and may index the multifactorial back-
ground that accounts for similarities between syndromes. BANCC
quantifies cognitive dysfunction and associated biomarkers. An
important question is whether a psychosis person’s BANCC
location is immutable or can be changed with targeted
intervention, along with concomitant changes in associated
features (like functioning and symptomatology).
The overwhelming number of structural MRI and cognition-

psychophysiology variables that fit the BANCC, at first blush, may
yield the impression there is no other meaningful variance to
explain. There are counterparts to BANCC, however, that we
believe are indexed by variables not captured by this primary
dimension. One possibility is that measures orthogonal to BANCC
identify phenotypic expressions of distinct diseases, or “bio-
indicators”, of specific psychosis pathophysiology. These bio-
indicators are superimposed on BANCC. We present four
illustrations of this possibility and its theoretical relevance for
parsing specific etiologies from the multivariate-polygenic back-
ground of BANCC.
First, for structural MRI there were two complimentary findings.

Variables statistically deviating from BANCC included (i) almost all
of the hippocampal measures, and (ii) gross measures of brain
space enlargements and/or lesions (e.g., all ventricular volumes,
white matter signal abnormalities, overall CSF). The entire
hippocampal complex bilaterally showed a more devastating
decline over cognitive ability than all other brain measures (they
have steeper slopes than evident for the canonical pattern of
Fig. 11). The hippocampal complex is central to neurodevelop-
mental models of psychosis (31). All the brain space-lesion
measures had the same distributional properties; their average is
displayed in Fig. 12, illustrating a discontinuity within probands at

the deficit cognitive ability end; (iii) in our genetics data the
temporal horns of the lateral ventricles [79, 80] have a specific
genome-wide significant hit within Neurexin 1 (NRXN1), important
in synapse formation and whose rare complete deletion is
associated with psychosis and autism [81]. These findings indicate
the hippocampal complex and adjacent structural alterations may
be critical for indexing the specific etiology of a psychosis
subgroup [32, 41].
Second, for the psychophysiology set, there were two additional

complimentary findings: (i) measures of intrinsic brain activity,
which specifically indexes Biotype-2, statistically deviated from
BANCC. Their distributional properties are displayed in the left half
of Fig. 13; and (ii) ERP magnitudes to salient stimuli, which
specifically indexes Biotype-1, track with BANCC for probands and
relatives but not for healthy people (see right half of Fig. 13). At
the surplus end of cognitive ability, all groups have statistically
similar ERP magnitudes (black arrow), but healthy subjects have
considerably lower intrinsic activity (red arrow). Healthy persons,
but not probands and relatives, maintain ERP magnitudes as
cognitive ability declines. Signal fidelity is always a function of (i)
background neural activity against which the signal-specific neural
response is generated, and (ii) signal strength to salient stimuli.
Even when psychosis cases generate a robust neural response to
salient stimuli, their signal-to-noise ratios (ERP magnitude/intrinsic
activity) are low. Signal-to-noise becomes especially dire in
psychosis as cognitive ability declines because background noise
is elevated and signals related to information processing are
diminished.
The above presentation supports propositions [73] that (i)

multimodal assessments are necessary to appreciate both the
ubiquity of BANCC regardless of psychiatric status [75, 82], and (ii)
that there may be distinct deficits not captured by this construct.
Our analyses indicate that despite the overwhelming phenotypic
variance captured by BANCC, there are some biomarkers that
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deviate from the canonical pattern (what we propose as bio-
indicators) that may more closely index diseases within psychiatry,
at least within what is now idiopathic psychosis.
There are two additional possibilities stimulated by these

analyses that may be usefully considered in subsequent investiga-
tions. First, it is often assumed that working within a level of
analysis, and finding of shared variance patterns within, for
instance, diverse signs/symptoms [83] or multiple cognitive
abilities, will support identifying associations across levels of
analysis (e.g., describing how psychosis symptoms map to
neurobiology or how cognition relates to brain structure). Data
from B-SNIP indicates these approaches yield strikingly different
outcomes. For instance, shared variance in psychosis-related
symptoms do not map to the same symptom domains as when
symptom variance is parsed in relation to neurobiology [84].
Likewise, when describing shared variance within cognition alone,
a common “cognitive ability” dimension captures the over-
whelming share of variance across diverse cognitive tests [85].
But when extracting shared variance between cognition and brain
structure [86] or cognition and diverse saccade tasks (Huang et al.,
under review), specific cognitive abilities are extracted in relation
to the anatomic and ocular motor performance that is different
from the generalized “cognitive ability” dimension. Which
approach provides the most veridical outcome in different
applications is an empirical question.
Second, numerous investigators propose that serious psycho-

pathology is a dimensional extension of normalcy at the
extreme end of a multifactorial liability continuum. This appears
to be true for a primary dimension like BANCC. But it is also
possible that bio-indicators index specific etiologies in a discrete
rather than continuous fashion that dictate manifestation of
symptomatic pictures we equate with psychosis syndromes. One
possibility is that an individual, based on constitutional factors
and environmental circumstances, may fall anywhere along
BANCC, but an individual would only manifest a psychosis
syndrome in the presence of one or more psychosis-relevant
bio-indicators. Whether these additional discrete “hits” have
specific effects or move an individual toward the deficit end of
BANCC may be specific to different bio-indicators as they
increase the likelihood of the development of a more serious
version of any psychiatric disease [70]. This is different from
models assuming psychosis risk is continuously distributed in
the population [23, 78, 87].

FUTURE RESEARCH DIRECTIONS
Soon, B-SNIP will finish the replication analysis, to test the extent
of the replicability of brain-informative biomarkers in individuals
with psychosis and healthy volunteers. If replicable, it will confirm
the potential usefulness of these kinds of biomarkers over time for
disease characterization and whether or not and how these
measures need to be adjusted for future discovery. Nonetheless,
even if replicable, the biomarkers and psychosis Biotypes will still
have to be useful for disease understanding or treatment
guidance. Biomarkers to mark disease constructs would be
important; biomarkers to guide treatment decisions would be
clinically useful; biomarkers to guide drug discovery would be
helpful. Some pathological biomarkers have already suggested
potential pathways to novel treatments or selective drug
responses, which are being pursued. We are pursuing practical
ways of applying these B-SNIP outcomes to clinical advantage for
individuals with psychosis.

DISCUSSION
These computational vignettes from B-SNIP were conducted to
gain an understanding of psychosis biology and to test the
disparity between phenomenologically and neurobiologically

defined psychosis groups. Exploration of these ambitions has
only begun. With key phenotypes, especially the phenotype bio-
factors, neurobiologically defined psychosis groups like the
psychosis Biotypes showed distinctive characteristics, suggesting
the more homogeneous underlying biology hypothesized within
Biotypes. We learned preparatory lessons about working with
biologically similar groups; and we gained an appreciation for the
remaining heterogeneity within even biomarker-defined psycho-
sis groups, like Biotypes. The cross-dimensional characteristics
measured in B-SNIP include those which are highly robust (genetic
measures, brain structure, electrophysiology) as well as those less
robust (clinical assessment, symptom complexes, psychosocial
function). All of the biomarkers across all levels of function need to
be assessed for secondary influences like alertness, sex, race,
circadian influences, and medication effects. More will be done as
these studies move forward. Performing computations across the
levels of analysis were key approaches that often identified
Biotype differences and distinctions. We believe that, while
phenomenology is critical for describing many aspects of
psychosis course, prediction, and care, the study of
neurobiological-defined groups will advantage cellular, molecular,
systems, and target discovery, which is the goal in our B-SNIP
studies.
In this paper, (i) we initially reviewed the B-SNIP use of a

comprehensive biomarker battery to define bio-factors, then
Biotypes for psychosis; then we added vignettes from projects
that test specific questions both trans-diagnostically and within
the Biotypes, often using big data approaches and frequently
across multiple levels of analysis. Early on, (ii) B-SNIP piloted the
application of cutting-edge computational approaches for large
data sets to identify maximally informative methods. (iii) We have
looked at genetic associations for biomarkers and Biotypes and
noted that the statistical rigor designed into genetic analyses
may be more demanding than needed for biomarker-gene
associations; this sets a new target for future genetic studies that
transcend the use of clinical definitions alone. When we wanted
to show a relationship between a clinically important measure
(i.e., psychosis) and a neurobiologically meaningful outcome
(i.e., cortical thickness) we turned to MIRT to query the anatomy
of psychosis. The answer from MIRT analysis demonstrated
a broad and contiguous expanse of neocortex covering
parietal–temporal–frontal areas, which is associated with psy-
chosis manifestations. It is up to us to follow this finding up,
perhaps first with brain imaging, then, in human postmortem
tissue studies, even though the anatomic target remains broadly
defined. (iv) Looking again at clinical symptoms and the
Biotypes, we show that the B-1 Biotype has more individuals
with high negative symptoms than the other Biotypes, suggest-
ing an approach to enrich a population for specialized treatment
testing. Also, (v) since B-SNIP appears to be an ideal group in
which to examine immune factors in psychosis—given its high
volunteer numbers, its subject diversity, and adequate blood
samples—we performed an initial analysis of immune factors in
conventional diagnoses and in Biotypes. We report, not a single
immune factor, but a complex “fingerprint” of immunologically
significant factors is most discriminating. These numbers will be
greatly enhanced with the B-SNIP2 population and results will be
more definitive at that point. These results will contribute to
current conversations of blood immune factors in psychosis
pathophysiology. (vi) This paper ends with the observations of a
large cognition-driven continuum in individuals across all B-SNIP
volunteers, showing that cognition correlates with many brain
biomarkers across all biomarker families. Therefore, to advantage
disease understanding, these continuous cognition-associated
data call attention to the biomarkers that fall outside of the
continuum as targets. We have identified several of these non-
continuum biomarkers (possibly, bio-indicators of disease) and
will use them in future studies to identify target engagement for
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novel treatments. It is a rational approach to treatment discovery
in psychosis.
It seems probable from initial B-SNIP studies that we will gain

pathophysiological understanding gradually, slowly, and episodi-
cally. These studies show that large case numbers are essential,
that computational approaches designed not only for a large data
set but for analyses of complex targets like the brain are needed.
Moreover, the use of multiple biomarkers representing different
levels of function is necessary. We may have expectations for fast
and efficient answers, where the critical clinical need is constantly
pushing our research. In the area of psychosis and serious
psychiatric illness, the magnitude of the need and of individual
personal suffering drives our work every day. We may benefit from
some auspicious observations and fortuitous connections to help
us along, as has happened before in our field. Still, in order to
identify clear molecular and systems targets, the connections we
can make between biomarkers and clinical characteristics need to
be molecular and regional, with systems implications. For us, every
discovery and advance in neural understanding provides another
step to use in clinical discovery. We know already that we will
need to be able to move from biomarkers to the molecular level
and to an understanding of their regional neuroanatomical and
functional implications in the context of the brain’s tremendous
complexity. This includes what we still need to learn about the
connections between several levels of data, as we find informative
levels of analysis. It is a task we have dedicated our efforts toward
in the previous sections, and note that such efforts do not yet
yield a clear unified picture. Complexity remains for ongoing and
future efforts to address these issues, yet new directions are being
generated through “big data” methods, and large amounts of
variance from a range of phenotypes are being successfully sorted
into meaningful constructs.
We currently ask many questions of our biomarkers, including

how to make in vivo biomarkers molecularly informative. To
advantage this, we can test functions pharmacologically. We can
try to use case-specific stem cells in informative designs with
molecular readouts. We can attempt to bring biomarker informa-
tion to the level of genetic markers, as our numbers grow to link
these two areas: phenotypic and genetic data. And we can use
complex biomarker “fingerprints”, if you will, to expand the
information content of the biomarker tools.
There are approaches to link human biomarkers with parallel

readouts in animals, where molecular and cellular pathology can
be manipulated. This could provide clear molecular hypotheses to
explain alterations in human biomarkers, making the biology of
the biomarker apparent. This will allow us not only to use a
biomarker as just that—a marker to code a biological phenomena
—but also as an indication of the pathobiology of that change. We
hope to have as clear biomarkers for our brain disorders as we
have clear measures for other disease functions, like blood
pressure, EEG, and chest fluoroscopy. Even with tools like these,
the treatment of the psychiatrically ill will be difficult because of
the extensive complexity of the brain as a system. To attain
success, we will have to embrace the complexity of the brain,
recognizing the brains’ plasticity, its systems, its individual
distinctiveness, and all of the gender and racial diversity we
know is common to brain function.
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