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Sex differences and the neurobiology of affective disorders
David R. Rubinow1 and Peter J. Schmidt2

Observations of the disproportionate incidence of depression in women compared with men have long preceded the recent
explosion of interest in sex differences. Nonetheless, the source and implications of this epidemiologic sex difference remain
unclear, as does the practical significance of the multitude of sex differences that have been reported in brain structure and
function. In this article, we attempt to provide a framework for thinking about how sex and reproductive hormones (particularly
estradiol as an example) might contribute to affective illness. After briefly reviewing some observed sex differences in depression,
we discuss how sex might alter brain function through hormonal effects (both organizational (programmed) and activational
(acute)), sex chromosome effects, and the interaction of sex with the environment. We next review sex differences in the brain at
the structural, cellular, and network levels. We then focus on how sex and reproductive hormones regulate systems implicated in
the pathophysiology of depression, including neuroplasticity, genetic and neural networks, the stress axis, and immune function.
Finally, we suggest several models that might explain a sex-dependent differential regulation of affect and susceptibility to affective
illness. As a disclaimer, the studies cited in this review are not intended to be comprehensive but rather serve as examples of the
multitude of levels at which sex and reproductive hormones regulate brain structure and function. As such and despite our current
ignorance regarding both the ontogeny of affective illness and the impact of sex on that ontogeny, sex differences may provide a
lens through which we may better view the mechanisms underlying affective regulation and dysfunction.
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INTRODUCTION
Historically, sex differences were largely ignored or were avoided.
Investigators would justify the exclusion of females because they
were “too complicated,” largely as a function of ovarian cyclicity
that compromised efforts to achieve a “stable” hormonal
environment. The obvious correlate (and paradox) of this
objection is that there is something about the female ovarian
cycle that must be relevant as an explanation for the inferred
variance in outcomes that would be observed were females
included in studies. Indeed, as evidence accumulated for the
ubiquity and consequential nature of sex differences, the
importance of sex as the source of untapped factors for resilience
and susceptibility—across the medical spectrum—became clear
and led to the decision by the National Institutes of Health (NIH) in
2015 to require examination of sex in NIH-funded studies. With
the proliferation of reported sex differences, several categories of
sex differences can be identified: sex differences in physiology can
converge in producing the same outcome, the same physiologic
processes can diverge and result in different outcomes, reported
sex differences may be of unclear physiologic consequence [1],
and finally, reported sex differences may be artefactual (e.g., a
product of post hoc secondary analysis in the wake of negative
findings in the primary analysis) [2]. The real complexity, however,
as well as the potential explanatory power emerges when one
attempts to map a role of sex onto an outcome, in our case,
affective regulation. Sex can directly impact etiopathogenesis
affecting physiologically relevant outcomes (e.g., synaptic pruning
in autism), impact fundamental brain processes (e.g., arousal,
reward) or peripheral physiological processes (e.g., immune or
hepatic function) that can influence symptom expression or

response to treatment (e.g., pharmacokinetics or dynamics),
differentially affect response to the environment (e.g., stress
exposure), elicit different responses from the environment (e.g.,
cultural consequences of sex), create differential exposure to
hormones (which can alter cellular function and response at the
receptor, signal transduction, transcriptional and translational
levels), alter cellular metabolism in a sex chromosome-specific,
hormone-independent fashion, and program physiologic function
—sensitivity and resilience—as a consequence of sex chromo-
some dosage and prenatal sex steroid exposure. By any standard,
this represents a daunting complexity.
In this article, our task—definition of the potential contribution

of sex differences to the understanding of affective regulation—is
further complicated by both the volume of reported findings and
the considerable gaps in our knowledge of the substrates and
processes underlying affective regulation. Quite simply, the
combined scope of this topic precludes comprehensive review.
Consequently, we will provide a framework for thinking about the
contributions of sex to affective illness focused on four questions:
How would sex alter brain function; Are there sex differences in the
brain; Are there sex differences in the substrates of affective
regulation; How might sex contribute to differential capacity for
affective regulation?

OVERVIEW OF OBSERVED SEX DIFFERENCES IN AFFECTIVE
DISORDERS
The most consistent and robust sex difference reported in
affective disorders is the twofold increased lifetime prevalence
of major depression (MDD) in women compared with men [3–6].
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This increased prevalence has been observed in a variety of
countries [5]. Similarly, a two- to threefold increased prevalence of
dysthymia and threefold increase in seasonal affective disorder [7]
as well as increased lifetime risks for other stress-related disorders
(e.g., anxiety disorders and posttraumatic stress disorder (PTSD)
[8–10]) in women have also been noted. Although the prevalence
of bipolar disorder is equi-prevalent in men and women [3, 6, 11]
(reviewed in ref. [12]), women are more likely to develop rapid
cycling [12] and may be more susceptible to antidepressant-
induced rapid cycling [13]. Interestingly, depression prevalence
rates are not observed to be higher in girls prior to mid-puberty/
menarche [14–20], possibly reflecting ascertainment bias/report-
ing bias (depressed boys may be more likely to come to the
attention of health care providers than depressed girls) or the
possibility that prepubertal major depression is premonitory of
bipolar illness [21] or that alterations in ovarian hormone levels
proximate to menarche combine with earlier developmental risks
in girls to increase vulnerability [22]. With some exceptions, the
age of onset [4, 5, 23–26] (but also see [27–30]), type of symptoms,
severity, and likelihood of chronicity and recurrence [4, 5, 26, 27,
31–33] (but also see [34–40]) display few consistent differences
between men and women. Clinically, the following are more likely
in women: present with anxiety, atypical symptoms, or somatic
symptoms [7, 26, 27, 37, 39, 41, 42]; report symptoms, particularly
in self-ratings [7, 26, 41]; report antecedent stressful events [43,
44]; and display increased comorbidity of anxiety and eating
disorders [30, 45, 46], thyroid disease [47, 48], and migraine
headaches [49], as well as lower lifetime prevalence of substance
abuse and dependence [27, 30, 50]. Some sex differences in
treatment response characteristics have also been observed, with
women (compared with men) more frequently reporting a poor
response to tricyclics [51–54] particularly in younger women [53]
but a superior response to selective serotonin reuptake inhibitors
(SSRIs) or monoamine oxidase (MAO) inhibitors. [55–57], with the

caveats that reports are not consistent, the sex difference in
efficacy may reflect different tolerance of side effects, and several
meta-analyses fail to replicate the observed sex difference [58, 59].
Additionally, anecdotal reports suggest that women derive a
greater benefit in their antidepressant response to tricyclic
antidepressants from triiodothyronine (T3) augmentation [48,
60]; however, recent controlled trials with T3 augmentation of
SSRIs have found neither beneficial overall therapeutic
effects nor sex differences in response characteristics [61–64].
The extent to which some differences in response reflect sex-
related differences in pharmacokinetics [65–71] remains to be
determined. In general, although differences in pharmacokinetics
have been observed as a reflection of differences in absorption
(gastric acidity and transit time), volume of distribution, and
metabolism (sex differences in CYP 1A2, 2D6, and 3A4) [58, 72],
these differences do not materially influence the dosing of or
response to antidepressants. In fact, the hypnotic zolpidem is the
only psychopharmacologic agent for which different dosing is
recommended on the basis of sex [73]. Finally, some women will
experience significant mood disorders during periods of repro-
ductive hormone change including during the luteal phase of the
menstrual cycle, puerperium, and the perimenopause, which have
no analogs in men. The contribution of these sex-specific
disorders to the increased prevalence of depression in women is
unclear.
The sex differences in both epidemiologic and clinical observa-

tions are increasingly complemented by demonstrations of sex
differences in a wide range of genetic and neurobiological
measures relevant to affective disorders in humans. It is to these
“etiopathogenic” sex differences that we now turn in an attempt
to answer the following question: in the absence of extensive or
actionable sex differences in affective disorder, why would one
think that sex differences are critical to our understanding of
affective regulation and dysregulation.
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Fig. 1 Schematic depiction of the multiple levels at which sex influences brain function. Sex is a ubiquitous, context-creating modulator of
brain and behavior, accomplished through both organizational effects that program subsequent brain sensitivities and development, and
activational effects that acutely impact neural function. Sex influences the internal environment in which brain function occurs (e.g.,
differential exposure to stress or immune soluble molecules) as well as modulating the impact of the external environment (e.g., diet or
stressors, particularly in the prenatal environment, or even social responses from others based on sex). Sex chromosomes impact brain
development directly, may impact physiology through differences in exposure to gene products (e.g., sex-linked genes or differences in gene
dosage), and alter brain function developmentally and activationally through sex-determined gonadal function and differential exposure to
sex hormones. Sex differences in peripheral organs (e.g., adipose, liver) lead to differential exposure of the brain to hormones as well as
medications (through effects on metabolism). The sexome refers to the cumulative array of sex-related modulatory effects on intracellular
molecular interactions. Sex differences appear at all levels of neural organization, from cell to circuit. Finally, reported sex differences in meta-
cognitions may influence perception and processing of environmental stimuli, thus influencing affective generation and regulation
(references appear in the text)
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HOW WOULD SEX ALTER BRAIN FUNCTION (THE LOCUS OF
AFFECTIVE REGULATION)?
The data required to answer this question fall into three main
categories: hormonal effects, which include acute or activational
effects and programming or organizational effects; effects of
genomic sex (i.e., effects independent of hormones but depen-
dent on the presence of X vs. Y chromosomes); and environmental
effects (which include effects on an organism consequent to being
one sex or the other, “downstream” effects of peripheral sex
differences (e.g., differences in metabolism), and sex differences
shaped by interactions with the environment (e.g., stressors)).
While these effects are discussed separately below, it is increas-
ingly clear that many sex differences represent the composite or
integrated effects of genetics, environmental, and sex steroid
exposures (see Fig. 1). (Of note, throughout this paper we use
“sex” to refer to biological sex as contrasted with “gender,” which
refers to sexual identify or social role and may be associated with
specific environmental challenges.)

Hormonal effects
Programming/organizational effects. Reproductive hormones
quite literally shape brain architecture as well as subsequent
sensitivities. The classical studies of Phoenix, Gorski, and Arnold
[74–76] established that exposure of the brain to reproductive
steroids during critical periods of development influenced the
development of behavioral capacities (e.g., aggression, sex
behaviors) and further “programmed” the brain so as to elicit a
different behavioral response in adulthood upon re-exposure to
reproductive steroids. Exposure of the perinatal rodent to
testosterone increases local exposure to estradiol (E2) (an
aromatized metabolite), which is responsible for masculinizing
the brain and permitting subsequent “male” behaviors. These
programmed capacities were complemented by observations of
sex differences in brain morphology and synaptic organization [77,
78].
During critical periods of brain development (i.e., in utero and,

in humans, possibly puberty) sex steroids have the capacity to
regulate many if not all of the processes (and signaling molecules)
involved in the regulation of functional brain development,
including neuroplasticity and epigenesis, as well as immune
factors (e.g., microglia) relevant to sex-specific brain development.
For example, in the Syrian hamster, sex steroids secreted during
puberty regulate levels of spinophilin, synaptophysin, glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH), and synaptic pruning
of the medial amygdala and thereby influence social and mating
behaviors [79]. In rodents, during embryonic and early postnatal
development, estradiol and testosterone permanently masculinize
several behaviorally relevant brain structures (e.g., bed nucleus of
the stria terminalis (BNST) and medial preoptic area (POA))
through modulation of the enzymes regulating epigenesis (e.g.,
DNA methyltransferase) [80, 81]. Indeed, masculinization of both
the POA and BNST (and its behavioral consequences) can be
prevented by administering histone deacetylase (HDAC) inhibitors
[81–83]. Finally, in neonatal rats E2 regulates microglial number
and morphology/activation in the preoptic area, which in turn
regulate the process of masculinization and subsequent related
behaviors [84]. These programmed differences in brain structure
and function in animals potentially manifest at multiple levels of
physiologic function from genetic to cellular to circuit level and
have provided a major source of inference about the role of
gonadal steroids in human brain function and behavior.

Acute/activational effects. There is virtually no element of neural
function that is not regulated by reproductive hormones. This is
unsurprising for several reasons: (1) reproductive steroid receptors
are among the oldest signaling molecules (e.g., the E2 receptor
existed for millions of years prior to the appearance of E2 in the
steroid metabolic cascade) [85], a fact that helps to explain why, as

intracytoplasmic molecules, reproductive steroid receptors act as a
point of convergence of multiple intracellular signaling pathways;
and (2) without the ability to coordinate reproductive motivated
behavior and biology, species do not last long. Teleology aside,
from cell to circuit, neural activity is modulated by reproductive
steroids.

Neural structure. In addition to programmed modification of
neural structure, reproductive steroids can acutely modify neural
wiring/connectivity [86, 87]. For example, E2 acts through
membrane-initiated signaling involving metabotropic glutamate
receptor 1 (mGLUR1) to phosphorylate and deactivate cofilin, an
actin severing protein. The resulting change in the cellular
cytoskeleton produces acute (within 30min) appearance of new
synaptic spines, which will become permanent if followed by
activity-dependent depolarization [86, 88, 89]. As such, E2 can
influence both acute and sustained synaptic wiring.

Neural excitability. For at least 30 years, it has been known that
reproductive steroids and their metabolites (e.g., the progesterone
metabolite allopregnanolone) are able to acutely—within minutes
—and more chronically modulate neural excitability [90–92]. The
mechanisms involved in the acute, membrane-initiated signaling
include direct binding of ion channels and of ligand gated ion
channels, activation of G-protein-coupled receptors (leading to G-
protein regulation of ion channels), and second messenger-
mediated modulation of membrane conductance [88, 93, 94]. E2
directly binds and potentiates L-type voltage gated calcium
channels [95], acts through estrogen receptor-beta (ER-β) to
increase calcium-activated potassium currents (through BK (Big
Potassium) potassium channels) to rescue neuronal excitability
after O2/glucose deprivation [96], and directly binds and activates
Slack potassium channels [97]. In addition to binding ion channels
and receptors to alter conductance, E2 can alter genes that
determine membrane properties underlying intrinsic excitability.
With long-term E2 deprivation, CA1 neurons show decreased
intrinsic excitability, less efficient generation of stimulated action
potentials and long-term potentiation (LTP), and loss of sensitivity
to the acute immediate/early regulatory effects of E2 [98].

Regulation of neural cell function. Reproductive hormones
regulate virtually all elements of neuronal (and glial) function,
including intracellular signaling, transcription, epigenetic modifi-
cation of transcription, and (protein) translation. Hormonal
regulation of the membrane concentrations of canonical neuro-
transmitters influences the extent and balance/nature of cell
signaling. In turn, through both genomic and nongenomic effects,
reproductive steroids like E2 regulate signal transduction through
direct effects on Ca2+/calmodulin-dependent protein kinase II
(CaMKII; calcium), protein kinase A (PKA; cyclic adenosine
monophosphate (cAMP)), extracellular signal-regulated kinase
(ERK; mitogens, growth factors), phosphatidylinositol-3-kinase
(PI3K)/Akt (growth factors, insulin), and G proteins (cAMP, calcium,
PI3, etc) [93, 99–102]. Not surprisingly, the effect seen depends on
the cellular context (e.g., mitogen-activated protein kinase (MAPK)
is increased by E2 in neurons and decreased in glia) [103, 104]. E2,
through its receptor, regulates gene expression through DNA
estrogen response elements (ERE) as well as by tethering to
activator protein-1 (AP1), specificity protein-1 (SP1), and nuclear
factor (NF)-κB, permitting the regulation of genes without EREs
[105]. At the level of transcription, E2 regulates all three RNA
polymerases, thus influencing general transcription as well as the
production of micro-RNAs, ribosomal RNA, and even transfer RNAs
[106]. Indeed, up to one-third of the 500 or so transfer RNAs are
robustly and rapidly upregulated by short-term exposure to E2
[106]. Via these means, E2 regulates not only short-term
transcription but also potently upregulates the entire protein
biosynthetic apparatus. The epigenetic machinery by which
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environmental events alter transcription is influenced at multiple
levels by E2; i.e., regulation of histone acetylation (through effects
on both histone acetyltransferase and histone deacetylase) and
methylation (through DNMT3b [107, 108]). These effects are at
least in part mediated through rapid signaling effects of E2 (e.g.,
ERK, PI3K), leading, for example, to increased histone acetyltrans-
ferase activity and acetylation of H3 (not H4) and target genes,
decreased HDAC2 (but not HDAC3) levels, and increased DNMT3b
(but not DNMT1) [109]. These effects in hippocampus mediate
long-term memory formation.

Regulation of neural transmission. Evidence from animal studies
and some human studies document the widespread actions of sex
steroids (and their metabolites) on neurotransmission, including
effects on the glutamate, GABA, serotonin, dopamine, cholinergic
and noradrenergic systems, as well as on the function of several
important neuropeptides (e.g., brain-derived neurotrophic factor
(BDNF), oxytocin) (see refs. [86, 92, 110–115]). The actions of sex
steroids impact multiple aspects of neurotransmitter physiology.
For example, E2 (and progesterone) regulate multiple aspects of
dopaminergic function, affecting the synthesis, release, and
metabolism of dopamine [116–118] and modulating dopamine
receptor expression and function [92, 110, 119, 120]. However, in
keeping with the complexities and diversity of dopamine’s
neuroregulatory profile, the effects of E2 on dopaminergic
function vary in a brain region-specific manner. In rodents, E2
increases stimulated dopamine release in the dorsolateral striatum
but inhibits dopaminergic activity in the nucleus accumbens, as
well as alters dopamine receptor density and striatal dopamine
uptake sites, whereas ovariectomy reduces striatal dopamine
receptor density, extracellular dopamine levels, and behaviors
mediated by the striatal dopaminergic system [110, 115, 121].
Thus, even within the reward network, E2 can differentially alter
the balance between dopaminergic tracts (i.e., striatum vs.
accumbens) [122] in female mice. In contrast, it is well established
that E2 exerts anti-dopaminergic effects on the anterior pituitary
and hypothalamus, where it inhibits dopamine synthesis and
prolactin cell responsiveness to dopamine [123]. By modulating
dopamine function in the striatum, nucleus accumbens, and
prefrontal cortex (PFC), sex steroids may impact both reward and
working memory network function. Similar data support the
potentially important roles of sex steroids in central glutaminergic
and serotonergic system functions, both of which are relevant for
affective disorders in women [124–126]. Further, the neurosteroid
metabolites of progesterone (allopregnanolone) and testosterone
(androsterone) are high-affinity, allosteric modulators of the GABA
receptor complex at physiologic concentrations [127]. Most
important, the widespread nature of sex steroid regulation of
central neurotransmission suggests the capacity for these steroids
to modulate the cross-talk among different receptor systems in
the complex regulation of behavior.
In women, positron-emission tomography (PET) imaging has

been employed to evaluate the effects of ovarian steroids on
serotonergic and dopaminergic neurotransmitter system function.
Many of these findings parallel observations in animal studies and
demonstrate in humans the potential for ovarian steroids to
regulate these neurotransmitter systems. Studies have employed a
range of PET ligands (MAO-A binding (11C harmine), serotonin
transporter binding (11C DASB, 11C MADAM), serotonin 2A
receptor binding (18F deuteroaltanserin), dopamine receptor
binding (11C raclopride)) across several different hormonal
conditions in healthy women (i.e., postpartum, across the
menstrual cycle, pre- and post-hormonal therapy, or in the
context of gonadotropin-releasing hormone (GnRH) agonist-
induced ovarian suppression). Overall, findings show an effect of
hormonal state on most of these measures (although no
menstrual cycle-related differences were observed in 11C raclo-
pride binding [128]). With the exception of two studies using

different serotonin transporter ligands, both showing that
estrogen decreased binding [129, 130], and one showing an
increase in serotonin 2A receptor binding after estradiol therapy
[131], the direction of the effects related to either high or low
levels of ovarian steroids are inconsistent across studies and could
reflect differences in study conditions and the age of the women
studied [132–134].

Circuit regulation. Reproductive hormone-dependent changes in
cell function lead to both structural and functional changes in
neural circuitry. Srivastava et al. [99] observed that E2 may rapidly
alter neuronal “wiring” by increasing synaptic spines, which
become permanent if followed by activity-dependent depolariza-
tion [89]. As mentioned above, rapid E2-stimulated membrane-
initiated signaling increases immediate/early gene transcription
(in a methylation-dependent and, hence, epigenetic fashion), acts
through mGLUR1 to induce dendritic remodeling, and alters
AMPA receptor trafficking and LTP, thus modifying both neuronal
morphology/structure and connectivity [86].
In humans, neuroimaging studies have employed a range of

experimental conditions (e.g., across the menstrual cycle, during
ovarian steroid hormone manipulation protocols, and before and
after ovarian steroid replacement in menopausal women) to
examine neural targets of ovarian steroids in women. Both PET
and functional magnetic resonance imaging (fMRI) measures have
been employed with a variety of paradigms to examine specific
neural systems. Neuroregulatory effects of both E2 and progester-
one have been documented in working memory (dorsolateral
prefrontal cortex (DLPFC), hippocampus) [135–137], reward
(orbitofrontal cortex (OFC), amygdala, striatum) [138–141], default
mode (medial prefrontal cortex (mPFC), rostral anterior cingulate)
[142–144] (although also see refs. [145–147]), emotional proces-
sing (amygdala, OFC, anterior cingulate cortex (ACC)) [148–153],
and hubs within the salience network (insula) [149, 154, 155]. Thus,
ovarian steroids have the potential to modulate many of the
functional brain networks underlying alterations in affective state
[156–162].

Sex chromosome effects
In an elegant experiment in mice, De Vries et al. [163] (also see ref.
[164]) created a four-core genotype in which Sry—the gene that
codes for the factor that results in the development of testes—
was transferred to an autosome, thereby permitting assessment of
the effects of sex chromosomes independent of gonadal/
hormonal effects. They clearly demonstrated the complexity of
sex chromosome and sex steroid influences on brain development
and that several sex differences in physiology and behavior were
determined in a sex chromosome/hormone-independent fashion.
For example, in addition to directing the development of the
testes and testosterone exposure, the presence of the Sry gene
can influence neuronal response to stress well before there is any
evidence of testes development or the secretion of testosterone
[165]. Indeed, both X and Y chromosomes contain multiple genes
relevant to brain development [166–169]. With the exception of
genes shared by X and Y chromosomes, males contain genes only
from one X chromosome (from the mother), whereas females
have one maternal copy and one paternal copy of each X-related
gene, either one of which could convey disease risk or resilience.
To maintain homeostasis in overall X-gene expression, the dosage
of X-linked genes is balanced by the epigenetic silencing of one
copy of the female X chromosome (i.e., X inactivation of parent-of-
origin genes—either the maternal or paternal). It is believed that
this process results in an equal selection for maternal vs. paternal
X silencing, although the origin of the silenced X may vary in a
tissue-specific manner and can change with aging [170–174].
Further complexity has been identified in women, in whom a
relatively large number of X-linked genes (up to 15%) escape
silencing (including those X–Y paired genes thought to share
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similar functional properties), and consequently gene dosage
effects can arise in women whereby a larger proportion of X-
related genes are expressed [175–177]. The potential relevance of
genes escaping X inactivation to disease processes in women has
recently been defined in T and B lymphocytes from women who
show bi-allelic gene expression (i.e., expression of genes from
both X chromosomes) in several immune-related genes that could
contribute to the increased prevalence of autoimmune diseases
(i.e., Lupus) in women [178]. Thus, the expression of X-
chromosome genes in women can be influenced by individual
differences in the parent-of-origin genes being expressed (i.e.,
imprinting), X inactivation (and the escape of X inactivation—
including skewing of the proportions of paternal or maternal
alleles present within cells [179]), and, possibly, the impact of
interactions between the inactivated X chromosome and other
autosomes [180–182].
Sex chromosome effects in non-brain tissues can also poten-

tially contribute to altered brain development and sex-specific
disease risk. For example, in gonadectomized mice in the four-
core genotype experimental manipulation, XX mice—regardless
of the type of gonad present—had greater food intake (and
adiposity) during daylight hours and exhibited a greater risk for a
metabolic syndrome-like phenotype [183–185]. These effects
represented abnormal X gene dosage due to the escape of
several X genes from inactivation and could impact both
circulating sex steroid levels (due to the presence of steroid
synthetic enzymes in adipose tissue) and inflammatory processes,
either of which influence brain function. The potential widespread
physiologic impact of different sex chromosomes and gene
dosage is underscored by observations that genes function in
networks, and alterations in the expression of even a single gene
may alter the function of that network. It is not surprising,
therefore, that sex differences in transcriptional profiles vary by
tissue and are as high as 72% in liver, 68% in adipose tissue, 55%
in muscle, and 14% in brain [186]. Finally, mitochondrial genes are
only transmitted from the mother, and, therefore, natural selection
can act only through women to optimize mitochondrial gene
function [187]. The corollary of this process is that the function of
mitochondrial genes may not be optimized in men and, therefore,
potentially conveys disease risk in men. Moreover, studies suggest
that some mitochondrial DNA contains functional EREs, and
since ER-β can be imported into mitochondria, it is possible
that sex steroids can also regulate mitochondrial gene function
[188, 189].

Environmental effects
It is axiomatic that the environment shapes the brain, and there
are a multitude of ways in which sex interacts with the
environment in this process. First, women are subject to very
different environmental responses than men, with many of the
resultant effects consequent for brain development. Sex-related
traumatic sequelae, for example, are enduring and profound,
altering (at the least) cognitive, behavioral, and physiological
response to subsequent stressors. Second, environmental stimuli
(e.g., stressors) may be processed in a sex-dependent fashion (see
below). Third, sex-related differences in peripheral organs (e.g.,
hepatic function) can expose the brain to a different “environ-
ment” [190]. Fourth, the maternal–placental–fetal unit contributes
to fetal development in several ways, including populating
serotonin neuronal concentrations in the mouse and human fetal
brain [191]. Finally, sex may select a different environment that
affects subsequent risk, as seen by Markle et al. [192] in the study
of the role of the microbiome in risk for diabetes. These
investigators were able to eliminate the overwhelming sex
difference in the risk of diabetes in a strain of mice (non-obese
diabetic (NOD))—four times higher in females—by transplantation
of gut contents from an adult male to the young female. This
remarkable effect was dependent on a sustained increase in

testosterone induced in the females by the transplanted
microbiota.

ARE THERE SEX DIFFERENCES IN THE BRAIN?
Structure
Despite the presence of several well-documented sex differences
in brain morphology, innervation, and regional composition in
animals [193], many of which may not be observed within the
same order (e.g., rats vs. mice [194]), only a few robust sex
differences in humans have been demonstrated consistently. First,
women with Turner syndrome (with only a single X chromosome)
have smaller MRI-measured volumes of several brain regions,
including the hippocampus, caudate, and parieto-occipital cortex,
suggesting the role of X-chromosome imprinting or X-
chromosome dosage on gray matter morphology [195]. Sex
differences in gray matter (GM) volume have also been observed
in normal men and women, with women observed to have a
higher percentage of GM volume (relative to white matter) and
cerebrospinal fluid, despite controlling for total intracranial
volume [196, 197], and greater volumes of the orbital frontal
cortices, but not hippocampus, amygdala, or DLPFC [198]
(although see ref. [199] in which increased hippocampal volume
is observed in girls compared with boys after puberty). In contrast,
a recent meta-analysis reported that men had higher gray matter
densities than women in several brain regions, including
amygdala, hippocampus, insular cortex, and putamen [200].
Indeed, a postmortem study found that men have higher cortical
synaptic density in all layers of the temporal neocortex [201]. Sex
differences in the effects of aging on cortical volumes [202] and
inter- and intra-hemispheric connectivity (as described below)
have also been reported [203, 204]. Many of these sex differences
emerge during adolescence, and some studies suggest a critical
regulatory role of androgens and the androgen receptor in the
developmental trajectories of these differences [205–210]. Thus,
both the X-chromosome and sex steroid exposures across the
lifespan potentially can alter structural volumes in men and
women. A more recent analysis of 1400 adults in which male and
female patterns of GM, white matter, and connectivity were
defined a priori on the basis of a separate cohort of scans
demonstrated a substantial overlap in sex-specific patterns in all
brain regions examined. Although the analytic methods employed
are controversial and the cohort was assembled from several
studies employing differing methodologies (see refs. [211–216]),
these data suggest that in humans individual differences
contribute more variance to brain structure and connectivity than
does sex [217]. Several caveats deserve mention. It is likely that the
impact of structural sex differences on affective regulation is brain
region specific, and, therefore, overall gray and white matter
volumes might be less relevant. Moreover, the methods employed
to measure regional volumes vary considerably across studies (see
above). Thus, in contrast to the animal literature, inconsistencies in
structural brain assessments at the human level probably reflect a
range of methodologic complexities and signal the need for
additional research to resolve these issues and identify meaningful
and generalizable findings.

Cell activity/signaling differences. The functional end of sex
effects in the brain is the cell (neuron, glia). Multiple sex
differences in cellular signaling have been observed and
attributed to both sex-related programming and acute hormonal
effects. For example, Huang and Woolley [218] showed that
although E2 acutely potentiated excitatory postsynaptic potentials
equally in males and females, E2-suppressed, rapid, perisomatic
synaptic inhibitory transmission occurred only in females. This
E2 suppression of inhibition (in oophorectomized females) was
mediated through ER-α, mGluR1, and endocannabinoid signaling,
and Tabatadze et al. [219] observed sex differences in both E2-
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dependent and E2-independent regulation of the hippocampal
endocannabinoid system. They demonstrated that ER-α/mGluR1/
IP3R signaling is regulated by E2 only in females—despite
comparable levels of ER-α, mGluR1, IP3R—and E2-independent
hippocampal tonic endocannabinoid release exists in female (but
not male) rats. These findings of presumed programmed
sensitivity parallel those of Boulware et al. [220] and Meitzen
et al. [221] showing that rapid, E2-stimulated CREB phosphoryla-
tion, which occurs only in females, can be eliminated by postnatal
exposure to E2 or testosterone (and hence, again, is an organized
sensitivity). Although the mechanisms underlying these post-
receptor differences in ER-α signaling are unknown, Oberlander
and Woolley have identified a striking sex difference in the role of
ERs in E2 regulation of glutamate signaling in the hippocampus:
glutamatergic presynaptic signaling is mediated by ER-α in males
and ER-β in females, while postsynaptic signaling is mediated by
ER-β in males and GPR30 in females [222]. Another organized sex
difference (i.e., unaffected by varying hormonal levels) in signaling
is that of corticotropin-releasing factor (CRF)-mediated signaling in
the locus coeruleus [223]. There, the differential coupling of CRF
receptor 1 to β-arrestin-2 (more in males) favors Gs-mediated
pathways (PKA, ERK) in females vs. Gs-independent pathways
(Rho, Src, ERK) in males [224]. This has striking implications for the
processing of stress-related signals as described below. In addition
to organized sex-dependent sensitivities, many sex differences in
neural signaling reflect differential exposure to acute, regulatory
effects of reproductive steroids. These include E2-stimulated BDNF
transcription (with corresponding increased expression in females
compared with males during the high E2 phase of the estrus
cycle), phosphorylated (activated) axonal Trk-B (the receptor for
BDNF), and associated synaptic plasticity [225]. Particularly
noteworthy is the demonstration that many observed sex
differences in gene expression (and that link to sex-typical
behaviors) depend on adult exposure to testosterone in males
but are independent of adult ovarian hormones in females [193].

Network differences. The existence of sex- and hormone-related
effects on brain region structural connectivity and activation provide
a basis for inferring differential network processing between sexes.
Multiple sex differences in the rat basolateral amygdala were
recently described, including increased neuronal firing rates, more
dendritic spines, and greater sensitivity/responsivity to glutamate
(via iontophoresis) in females [226]. Further, both organized and
activated sex differences in dendritic structure in the locus coeruleus
and hippocampus provide examples of “wiring” differences and
synaptic remodeling that are associated with differential circuit
function [112, 224]. Suggestions of sex-related differential cortical
dynamics in humans are primarily derived from three sources:
neurocognitive studies showing better female performance on
memory and social cognition tasks vs. better male performance on
spatial and motor speed tasks (but see refs. [227–229]; electro-
encephalography (EEG) studies demonstrating greater laterality in
male brains [230]; and diffusion MRI tractography studies [204] (but
also see ref. [231]). MRI studies with graph theoretical analysis of
anatomical connectivity suggest that, despite overlap, women show
significantly higher overall connectivity as well as increased local
and global efficiency (after controlling for brain size) [232].
Ingalhalikar et al. [204] demonstrated prominent sex differences in
cortical connectivity patterns, whereby men showed greater within-
hemispheric connectivity (favoring coordination of perception and
action), whereas female brains have greater between-hemispheric
connectivity, facilitating “communication between analytical and
intuitive processing modes.” Sex differences in connectivity patterns
(both functional and structural) were also observed by Tunc et al.
[233] and Satterthwaite et al. [234] (but see ref. [235]). Nonetheless,
in a large MRI study, Joel et al. [217] concluded that although sex
differences in brain and behavior are observed, the overlap in all
brain regions between men and women is extensive, and the

internal consistency within even a single brain is far less common
than variability; i.e., individuals are mosaics, with volume or
connectivity of brain regions (and behaviors) spanning the male/
female continuum in a region (and behavior)-specific fashion.

ARE THERE SEX DIFFERENCES IN THE SUBSTRATES OF AFFECT
REGULATION?
Many physiologic systems and processes have been implicated as
contributing to the etiopathogenesis of depression. These include
neurotransmission, neuroplasticity, stress axis, immune function,
and neural and genetic network regulation. As described below,
sex-related differences as well as reproductive steroid-related
modulation have been observed in each of these processes. (The
existence of reproductive steroid regulatory effects provides a
basis for inferring sex-dependent differential function of these
systems, but, as noted above, differences at the molecular level
may converge to result in similar physiologic endpoints.) Several
examples follow, with greater attention paid to dysregulation of
immune function, stress reactivity, and neural network function.

Neurotransmission
As described above, the effects of reproductive steroids on
neurotransmission are profound, affecting all levels of function
including neurotransmitter synthesis and metabolism, receptor
synthesis and trafficking, and signal transduction. Not surprisingly,
therefore, there are many reported sex differences, many of which
are brain region specific, in the concentrations, receptors, and
metabolites of classical neurotransmitters as well as in their
elicited intracellular signals and cellular actions. These are
reviewed elsewhere (see refs. [86, 92, 110, 111, 114, 115]).

Neuroplasticity. Alterations in neuroplasticity, including neuro-
genesis, cell death, and synaptic remodeling, are some of the
fundamental processes that underlie the development of sex
differences in the brain [194]. Sex steroids differentially regulate
many of the molecules involved in neuroplasticity (e.g., neuro-
trophin secretion), as well as several of the physiologic systems
(e.g., glutamatergic and GABA-ergic) [112, 236] regulating the
opening and closing of critical developmental windows [237].
Thus, exposures to sex steroids could regulate sex-specific
“opportunities” for the effects of physiologic events (e.g., puberty)
or adversity to differentially impact developmental (re)program-
ming and the instantiation of behavioral risk over the life cycle.
Sex differences in the mechanisms of neuroplasticity have been
reported, particularly in the hippocampus, a brain region
implicated in affective dysregulation [238]. In knock-out mice,
calcium/calmodulin kinase kinases appear to play a more
significant role in hippocampal neuroplasticity in males compared
to females [239], whereas females but not males show synapse
induction within the hippocampus by E2 (although testosterone
will induce synapse formation in males (in vivo) [240]). Similarly,
the pattern of hippocampal synaptic remodeling of CA3 dendrites
after chronic stress exposure is observed in males but not females
[241] (reviewed in ref. [113]). The relevance of these differences in
hippocampal neuroplasticity to sex differences in human brain
function (or disease) remains to be clarified. Additionally, several
sex differences in neuroplasticity after administration of ketamine
(an N-methyl-D-aspartate (NMDA) receptor antagonist used for
treating depression [242]) have been reported in socially isolated
rodents [243]. For example, ketamine reversed the decreased
spine density in the medial prefrontal cortex in males but not
females [244]. These differences also likely reflect differences in
the impact of social isolation on male and female mice [245, 246].
Recently, female mice were observed to have threefold increased
levels of hydroxynorketamine, the ketamine metabolite with rapid
antidepressant-like actions, in the absence of NMDA receptor
inhibition [247]. Thus, although a recent report from human
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studies did not identify sex differences in the antidepressant
effects of ketamine in treatment-resistant depression [248], it is
possible that sex differences in the sensitivity to ketamine could
emerge in larger samples.
There is considerable evidence that reproductive steroids

modulate neuroplastic processes implicated in depression and/
or the antidepressant response. E2, for example, does the
following: acts like antidepressants (and opposite to stress) in
stimulating BDNF [249]; increases activity of the transcription
factor cAMP response element-binding protein (CREB) [250] and
trkA (neurotrophic tyrosine kinase receptor type 1) [251, 252]; and
decreases glycogen synthase kinase-3β in rat brain [253], the same
direction of effects as seen with mood stabilizers. Interestingly, sex
differences are observed in the facilitative effects of E2 on
neuroplasticity. Although the effect on synaptic activity (i.e.,
potentiation of glutamatergic synapses in CA1 hippocampal slices)
is similar, the mechanism involves ER-β (and possibly GPER1) in
females vs. ER-α in males [222].
Neuroprotective effects of E2 and progesterone (or its

neurosteroid metabolites) have also been described in neurons
grown in serum-free media or those exposed to glutamate,
amyloid-β, hydrogen peroxide, ischemia, or glucose deprivation
[254–258] (see also ref. [259]). Some of these effects appear to lack
stereospecificity (i.e., are not classical steroid-receptor mediated)
and may be attributable to the antioxidant properties of E2 or the
GABAA-modulating effects of allopregnanolone, although more
recent data support steroid receptor-mediated mechanisms of
action. Gonadal steroids may also modulate cell survival through
effects on cell survival proteins (e.g., Bcl-2, BAX), signaling
pathways (e.g., MAPK, Akt), intracellular calcium regulation,
metabolism of amyloid precursor protein and Aβ, or through
enhancing mitochondrial respiratory efficiency [259–262].
Through increased oxidative capacity and efficiency of neuronal
mitochondria, E2 promotes neuronal bioenergetics and protects
neurons against multiple toxins, including free radicals, excitotox-
ins, Aβ, and ischemia [260]. Damage from oxidative stress to
mitochondria promotes apoptosis and cell death, and both
estrogen receptor-dependent and -independent neuroprotection
at the level of the mitochondria have been described. For
example, E2 bound to ER-β can be transported into the
mitochondria, where it binds an ERE in mitochondrial DNA [188,
189, 263] and produces a range of anti-apoptotic proteins that
maintain the integrity of the mitochondrial membranes. Thus, in
addition to its other neurotrophic actions [263], E2 could improve
mitochondrial respiratory efficiency by directly inducing transcrip-
tional activity in mitochondrial DNA and prevent the oxygen free
radicals that are believed to adversely affect mitochondrial
energetics in depression.

Neural and gene network function
Gene networks: A study of gene co-expression networks showed
marked differences between patients with MDD and controls, but
strikingly there was little overlap in the altered transcriptional
network connectivity patterns in males and females with
depression or in mice subjected to chronic variable stress [264].
Of note in this study, a hub gene—Dusp6—was downregulated in
a sex-specific fashion in both depressed women and stressed
mice, regulated cell signaling and ventromedial PFC pyramidal cell
excitation (only in females), and, when downregulated, increased
behavioral sensitivity to stressors; i.e., identical manipulations of
the same gene led to major differences in both the physiological
and behavioral effects in males and females. The sex-specific
transcriptional signatures in depression were recently replicated
by Seney et al. [265], who observed that of the 700 to almost 900
genes differentially expressed in cortico-limbic regions in men and
women with MDD compared with controls, only 73 genes were
differentially expressed in both men and women, and 52 of these
changed in the opposite direction. Additionally, postmortem

studies of men and women with MDD have reported a sex
difference in the expression within the dorsolateral prefrontal
cortex of multiple glutamatergic genes, with increased expression
in women [266]. Finally, several clock genes have been reported to
differ in a sex-specific manner, possibly in keeping with reports
that women have an overall phase advance in several measures of
circadian rhythmicity compared with men [267–269].

Neural networks: Disturbances of amygdalar activity or connec-
tivity have been implicated in affective disorders [270], and sex
differences have been described in amygdala activation patterns
[271] and connectivity [272]. Of note, the amygdala is differentially
activated in men and women as a function of the valence or
nature of the affective stimulus, positive or sexual in men and
negative in women [273].
Sex differences have been observed in resting state functional

connectivity, with several studies finding increased connectivity
within statistically defined modules or sensorimotor resting
networks (i.e., increased intra-network/module connectivity) in
women and increased inter-network or cross-module connectivity
in men [234, 274], with the caveat that studies also have reported
increased intra- and cross-modular connectivity in girls compared
to boys (Reding et al., unpublished observations) as well as other
sex-specific patterns of connectivity in boys and girls [275–277]. As
emphasized by Mak et al. [277], the divergence in some of these
functional connectivity findings reflect differing analytic methods
(e.g., independent component analyses vs. seed-based vs. data-
driven analyses), potential presence of negative affective symp-
toms on the day of scanning, and differing ages of participants
(e.g., prepuberty vs. adults). Nonetheless, abnormalities in resting
state functional connectivity within the default mode network
(DMN) have been observed in depressed men and women [157,
158, 278]. However, few if any studies report sex differences in
DMN functional connectivity in depression. Recent studies do
suggest an association between depressive rumination and
functional connectivity between the DMN and the subgenual
prefrontal cortex (sgPFC) [157]. Since studies also suggest that
women experience a greater amount of rumination during
depression than men [279], one could imagine that a sex
difference specifically in DMN functional connectivity with the
sgPFC may be detected. Alternatively, if confirmed, the presence
of sex differences in DMN network activity in asymptomatic men
and women, and the absence of comparable differences in
depression, could inform our understanding of depressive illness.
A sex difference has been reported in an emotional/arousal

network, with men showing greater activation (fMRI blood-
oxygen-level dependent (BOLD)) of the anterior cingulate gyrus,
OFC, hippocampus, and mPFC when watching negatively
valenced/high arousal pictures compared with women during
mid-cycle of the menstrual cycle [271]. Using a similar paradigm,
these investigators previously also demonstrated that activation
patterns in many of these brain regions in women decreased
during mid-cycle compared with the early follicular phase,
suggesting that higher estradiol levels at mid-cycle attenuated
the activity of this network [148]. Thus, sex differences in network
level function may also reflect the regulatory effects of sex
steroids. This observation is lent further support by the recent
discovery of an estradiol-regulated reward circuit in mice [280],
again suggesting the contribution of activational effects of sex
steroids to differential network function in depression.

Immune function. Multiple lines of evidence suggest that
immune dysfunction contributes to the risk for depression. Raison
and Miller [281] have proposed the pathogen:host defense model,
which suggests that immune activation and stress perception
have “co-evolved” to generate sickness behavior (protective in
intent) in response to environmental threats and challenges.
Additionally, multiple studies identify elevated immune activation
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markers and cytokine levels (e.g., C-reactive protein, interleukin
(IL)-6, IL-1B, and tumor necrosis factor-α (TNF-α)) in patients with
major depression compared with controls [282, 283]. Multiple sex
differences have been described for immune function, stress
response (see below), and the interaction of stress and immune
function in depression.
Sex differences in immune function or effects include the

following. (1) In response to immune activation, females
experience more adverse behavioral effects, including increased
immobility on the forced swim test and decreased sucrose
preference in rodents [284–286] and increased depression and
social disconnection in women [287, 288]. (2) In the immune
response itself, in humans some immune cells increased equally in
males and females after stress, some to a greater extent in males,
some more in females regardless of menstrual cycle phase, and
some only in females on oral contraceptives, findings again
consistent with both programming and activational sources of sex
differences [289]. Further, although lipopolysaccharide-stimulated
microglial IL-1B expression in vitro is increased in neonatal males
compared with females, it is suppressed by E2 in males and
increased by E2 in females, suggesting that not only is the sex
difference hormonally responsive, but the effect of the same
hormone is opposite in males and females [290]. (3) Sex
differences exist in the susceptibility to neuroimmune-related
disorders. Autoimmune disorders (including multiple sclerosis
(MS), lupus, rheumatoid arthritis, and thyroid disease) show a
dramatically increased prevalence (2–9-fold) in women [291],
consistent with the increased susceptibility to experimental
autoimmune encephalitis (EAE), an animal model of MS, in female
rodents [292]. Notably, in the EAE model, the same trigger (myelin
basic protein) leads to decreased lymph node immune cells,
decreased reactive cells, and decreased cytokines, as well as
increased spleen-derived “anti-inflammatory” cytokines in males
[292, 293]. The same stimulus, then, produces both different
immune responses and different delivery of immune signals to the
brain. Despite the female predominance of EAE, E2 improves EAE
severity in both males and females [294]. Indeed, while multiple
studies support the immunomodulatory effect of E2, suggesting
its suppression of the microglial “inflammatory” state and dose-
dependent suppression of the synthesis of a range of cytokines
(TNF-α, IL-1B, MCP2) [295], the role of E2 in the regulation of
immune response is complex and likely both cell- and context-
dependent [294]. Sex steroids are key regulators of immune cell
phenotype and function, with demonstrated roles in the regula-
tion of both adaptive and innate immunity. Androgens and
estrogens have been shown to regulate immune cell proliferation,
differentiation, and apoptosis, as well as cytokine and immuno-
globulin production [296–298]. Of note, sex steroids are synthe-
sized de novo in the brain (neurons, glia), and hence their
immunomodulatory effects can occur locally, representing para-
crine and autocrine rather than classically endocrine effects
(reviewed in ref. [299].

Stress axis. The importance of antecedent stress, stress sensitiv-
ity, and stress axis dysregulation in affective illness is, at this point,
axiomatic. Stress in relation to affective disorders can be viewed
from three distinct perspectives—stress as an environmental
stimulus, the stress axis as an outcome measure, and the stress
axis as a mediator of change in physiology (e.g., neural network or
immune function) or behavior. Sex differences in stress are
reviewed elsewhere [300–302], but several deserve mention in
relation to affective disorder. First, as noted above, sex may elicit
different responses from the environment (i.e., women are subject
to different, potentially stressful interactions because of their sex).
Second, women are twice as likely to experience stress-related
disorders (MDD, anxiety, PTSD, obesity (also eating disorders and
most phobias)) and more likely to develop them after trauma,

physical abuse, or maternal distress during infancy [303–308].
Prenatal stress results in earlier behavioral problems in boys, with
girls showing stronger effects (and increased amygdalar volumes)
later [309, 310]. Third, the hypothalamic–pituitary–adrenal (HPA)
axis may respond differently as a function of sex and is regulated
by reproductive steroids. Sex differences in measures of HPA axis
activity take the form of differences in magnitude, effects in one
sex but not the other, and opposite effects. For example, men
have greater stimulation of adrenocorticotropic hormone (ACTH)
and cortisol compared with women after the Trier Social Stress
Test (TSST) [311], and both CRH- and exercise-stimulated ACTH
and cortisol are greater in men than women even in the absence
of differences in reproductive steroids (i.e., under GnRH-induced
hypogonadism [312], although also see ref. [302]). Early trauma is
positively associated with basal ACTH in women and negatively
associated in men, while severe trauma is associated positively
with ACTH response to CRH in men, but not women [313]. Of note,
this literature is filled with ostensible inconsistencies, no doubt a
function of the nature, duration, and timing (developmentally) of
the stressors as well as the measures obtained.
Not surprisingly, sex differences have been reported in many

components of the stress response, including differences in
elicited changes in brain structure, non-HPA physiologic response
(e.g., immune response noted above), and behavior. Chronic stress
causes atrophy of dendrites in medial prefrontal cortex and
hippocampus (CA3 pyramidal cells) only in male rodents [314,
315], whereas projections from medial prefrontal cortex to
amygdala show (estrogen-dependent) increased spine density
and dendritic expansion after chronic stress only in females [316].
These data are complemented by behavioral studies demonstrat-
ing that stressors like tail pinch increase associative learning (e.g.,
classically conditioned eyeblink response) in male rodents and
produce learning deficits in females [317, 318]. Further, stress
effects on learning are mediated by different brain regions and
circuits in males and females (i.e., the mPFC, particularly in its
connection to the amygdala, is critical to disrupted learning in
females but not to enhanced learning in males, which involves
activation of the BNST (not seen in females)) [319]. It should be
noted that the sex differences in learning after acute stress are
reversed for chronic stress, in which memory deficits are observed
in males, but not females [236, 320]. As described above, the same
repeated stress paradigm producing similar deficits in genetically
identical male and female mice yields amazingly distinct, sex-
dependent profiles of differentially expressed genes (about 20%
overlap) compared with unstressed control animals [264]. Further,
subchronic variable stress induces multiple depression-associated
behavioral deficits (e.g., decreased sucrose preference, latency to
eat in a novel environment) in female but not male mice, with,
again, sex-dependent difference in the transcriptional response to
stress in the nucleus accumbens [321]. A variety of findings
converge in suggesting that women differentially process stressful
stimuli: negative, arousing stimuli evoke faster and greater EEG
responses in women [322], and emotion-evoking tasks produce
greater activation of the locus coeruleus in women than men
[323]. In parallel, the dendritic structure and post CRF receptor
signaling in the locus coeruleus in rodents favor an exaggerated
response to stress in females [324].

Effects of gonadal steroids. Many of the myriad sex differences in
stress processing are attributable to differential exposure to
reproductive steroids, which, with their metabolites, play a major
role in modulation of the stress response. The CRF receptor has an
ERE [325], and many components of the HPA axis vary across the
estrus or menstrual cycle. Basal and stimulated ACTH and cortisol
levels are higher in female rodents and during proestrus (when E2
and progesterone levels are high) [326–328]. These sex differences
are eliminated by ovariectomy, as are many of the sex differences
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in brain region-specific structural and functional effects of stress
noted above (e.g., the expansion of dendrites and spines in the
mPFC–amygdala projections in females [316] or the sex-divergent
effects of acute stress on classical eyeblink conditioning [319]). Of
note, metabolites of reproductive steroids also regulate
the response to stress. Thus, metabolites of progesterone
(allopregnanolone) and testosterone (dihydrotestosterone) both
dampen the response to stress in rodents, the former through
acute effects on the GABA receptor and the latter through ER-β
[329, 330].

HOW MIGHT SEX CONTRIBUTE TO DIFFERENTIAL CAPACITY
FOR AFFECTIVE REGULATION?
Affect regulation is dynamic. The ability to change and regulate
affective state (whether externally or internally facilitated) appears
at an early age, and while this capability may be “programmed” by
genomic or early environmental events (contributing to “disposi-
tion”), it is also modified as a function of experience and
environment throughout life. This view is consistent with the
following: (1) the known “cumulative” effects of stressors (leading
to different genomic expression patterns in response to sub-
sequent stress [331] and greater susceptibility to affective
disturbance); (2) other environmental (e.g., hormonal or experi-
ences with mastery and control) and genomic contributions to
susceptibility and resilience; and (3) the plasticity of affective
regulation that allows for both increased susceptibility to affective
disturbance and development of capacities/strategies for decreas-
ing affective dysregulation.
Sex differences in affective disorder—particularly the presence

of sex-specific, reproductive-related mood disorders in women
(postpartum depression (PPD), premenstrual dysphoric disorder
(PMDD), and perimenopausal depression)—provide unparalleled
insights into this dynamic process of affective regulation. Employ-
ing hormone manipulation paradigms involving blinded repro-
ductive steroid administration, often in the context of GnRH-
induced ovarian suppression, we have been able to demonstrate a
clear role for ovarian steroids in both PMDD and PPD [332, 333].
Thus, despite normal reproductive endocrine function, the
depressed state in these disorders is triggered by levels or
changes in ovarian steroids that are without impact on affect in
women lacking a history of PMDD or PPD. These affective
disorders, then, represent the combination of a regulatory role
for ovarian steroids on affective state with a susceptibility that
permits normal reproductive endocrine signals to precipitate a
dysphoric affective state. Put differently, women with these
affective disorders are differentially susceptible to reproductive
steroids such that a normal signal produces an abnormal
behavioral state. How might this process—as well as its absence
in men—be understood?

Cortical/genetic networks in males and females function
differently or are differentially responsive to stimuli like stress that
load on development of affective dysregulation
Differential processing of affective-relevant stimuli
Consistent with the animal studies noted above, the same
stimulus may be processed differently in men and women.
Supporting examples (also described above) include the following:
(1) Sex differences have been described in cortical networks
relevant for affect; and (2) stress activates the brain differently in
males and females. Stress leads to activation changes in the PFC
(increased) and in the OFC (decreased) of males, whereas females
show activation of limbic structures [334]. Further, different neural
strategies are employed to cognitively control emotions (e.g.,
cognitive control decreases amygdalar activity in males but
increases activity in the ventral striatum, ACC, and frontal regions
in females) [335, 336]. Thus, networks may be differentially elicited
or differentially deployed in response to affective stimuli.

Women process affective-related/social stimuli differently
Women experience emotional stimuli as more arousing than men
and experience increased free recall, particularly for personal life
events as well as increased memory for emotional events [337].
Affective valence category-specific sex differences in emotional
appraisal have also been described [338]. Women have greater
sensitivity to others, increased self-awareness, and increased
capacity to manage new situations [339]. Women ruminate more
than men [279], which may load on susceptibility to depression.
As with the “orchid/dandelion dichotomy” [340, 341], whereby the
environmentally sensitive child will do worse under environmen-
tally stressful and better under nurturing conditions than the
environmentally insensitive child, so the “increased sensitivity” of
women to socio-affective stimuli may allow for greater emotional
flexibility (under good conditions) but greater stress-related
adverse consequences under unfavorable conditions. Sex differ-
ences in social and other risk factors for experiencing depression
have been described by Kendler and Gardner [342]: failures in
interpersonal relationships (marital dissatisfaction, interpersonal
loss, loss of social support) play a stronger etiologic role in
depression for women, while stressful life events in the past year,
history of childhood sexual abuse, failure to achieve expected
goals, and lowered self-worth are more prevalent in male
depression.
How might these different stressors acquire differing impact on

susceptibility to affective dysregulation in men and women?
Independent of cultural expectations that impact the emotional
salience of events, reproductive steroids influence network
development and regulation such that environmental events are
differentially processed. This is true at an organizational level as
well, where E2 or testosterone will shape both circuit develop-
ment AND subsequent sensitivity to (hormonal) stimuli [74–76].
Differential processing can be seen at the level of both neural and
gene networks. As described above, Ingalhalikar et al. [204]
demonstrated that the connectivity patterns in the brains of
women may result in different processing of information, favoring
better integration of between-hemisphere, analytical, and intuitive
modes. Further (also described above), several studies demon-
strated markedly different transcription profiles in men and
women in association with major depression [264, 265]. These
observations are consistent with those of Gaiteri et al. [343] that E2
modulates the synchrony of the gene interaction networks that
are most disturbed in depression, suggesting a means by which
pathological neural activity can be transformed (through E2
regulation of transcription and synaptic formation) into enduring
cellular changes over time and across brain regions. So, the same
genes are differentially organized and expressed within different
cells and brain regions, with the differential expression under
stressful circumstances potentially compromising cross-regional
coordinated activity and adaptive behavioral strategies.

Changes in reproductive hormones may regulate affective state
change
Several lines of evidence support this idea. (1) Teleologically, the
reproductive hormonal regulation of sexual receptivity/motivation
facilitates reproductive efficiency (sex during periods of optimal
fertility). As such, behavioral sensitivity to hormone levels or
changes is “hard-wired.” (2) Changes in hormones have clear
regulatory function. For example, the rate of change of blood
cortisol concentration exerts a rapid (time-delayed) (5–30min)
feedback action on pituitary ACTH release [344], and fluctuating
levels of the neurosteroid allopregnanolone induce altered
function of GABA receptors through subunit-dependent confor-
mational changes in the receptor [345]. (3) Changes in reproduc-
tive steroids modify the excitatory/inhibitory (E:I) balance that
regulates behavioral state transitions and those between neural
networks [346]. For example, postpartum E2 withdrawal impairs
GABA-ergic inhibition and long-term depression in the basolateral
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amygdala (BLA) via downregulation of the GPR30 estrogen
receptor (also called GPER) [347], and GPR30 activation decreases
stress-induced anxiety by maintaining E:I balance in the BLA [348].
Similarly, allopregnanolone increases GABA-ergic interneuronal
activity, and low progesterone concentrations are associated with
increased amygdala activity in women [349]. Deficient inhibitory
interneuronal function leads to a “tuning deficit” with decreased
inhibitory filtering, increased “noise,” disturbed behavioral state
transitions, and both persistence of and failure to suppress the
hyper-excitable DMN when the cognitive control network is
activated [346]. (4) Changes in reproductive hormones in PMDD
precipitate affective state change. Blind administration of either E2
or progesterone to women in whom PMDD-related affective
disturbance had been eliminated by ovarian suppression resulted
in precipitation of depression [332]. As it was unclear whether the
precipitating event was a change (increase) in the hormone or the
exceeding of a threshold level of hormone, a study was designed
to administer reproductive steroids continuously for 3 months in
association with ovarian suppression. Following the initial
precipitation of depression in concert with hormone exposure,
the affective state resolved and failed to reappear during the
remaining 3 months of the stabilized hormone administration,
thus demonstrating that the change in hormone (rather than the
level achieved) was the inciting stimulus [350]. Similarly, preven-
tion of the luteal phase-related increase in the progesterone
metabolite allopregnanolone by the administration of dutasteride,
a blocker of allopregnanolone synthesis, prevented the switch into
the PMDD-related dysphoric state [351], thus mirroring the stress-
like behavioral state observed following changes in allopregna-
nolone in rodents [345].

Substrates of differential sensitivity
The literature is replete with models (kindling, pharmacologic
sensitization, time-dependent sensitization, learned helplessness)
demonstrating that behavior and its underlying physiological
substrates are highly context dependent. Genes and environment
interact continuously, dynamically, and in a way that can
enduringly change subsequent response to the same stimulus
[352, 353]. Sex, both endocrine and genetic, creates a context that
shapes the nervous system and helps program subsequent
responses (despite the considerable overlap between sexes that
exists for most brain structures and functions). This capacity to
create differential sensitivities is modeled in the interaction of
genes and environment that results in susceptibility or resilience
to stressful stimuli. Brain region-specific manipulation of the
transcription of genes implicated in affective disorder and
displaying sex-dependent regulation by stress (e.g., DNMT3a,
Dusp-6) alters the sensitivity to stress and susceptibility to stress-
induced, depression-like behaviors (increased with over-
expression of the former and downregulation of the latter) [264,
321]. Even within members of a genetically similar inbred strain of
mice, individual differences in stress sensitivity can be identified
and, more remarkably, successfully conveyed to other mice with
bone marrow transplantation [354]. These observations suggest
that differences in behavioral sensitivity can occur through
transcriptional responses to the environment that are enduring.
Certainly, as noted above, some sex differences in sensitivity
appear early and are sex chromosome (rather than sex hormone)
dependent. In vitro studies of mouse embryos prior to sex
differentiation (and hence sex hormone exposure) show that
chromosomal sex drives different cellular responses to stressors
and different transcriptional responses to exogenously adminis-
tered sex hormones [355]. It is intuitively compelling, however,
that differences in affective sensitivity reflect an ongoing and
sculpting dialog between environment and genome, even if
evidence of differential sensitivity exists at a cellular level. In
support of this hypothesis is the observation by Dubey et al. [356]
that lymphoblastoid cell lines from women with a reproductive

endocrine-related mood disorder, PMDD, show, compared with
controls, increased expression of a family of epigenetic modifying
enzymes (ESC/E(Z)) as well as differential response to exogenous
application of E2 and progesterone.

CONCLUSIONS AND FUTURE DIRECTIONS
We still know regrettably little about how affect is regulated. That
said, for heuristic purposes, affective regulation can be parsed into
the following: neural basis for affective experience (circuit forma-
tion/activation and synchronized firing), for changing circuit
function (switching between states; cortical oscillation/dynamics),
for dysregulation of circuit function (dysfunctional states and
disturbed kinetics of state changes), and for susceptibility to
sustained dysregulation of circuit function (genomic/transcriptional
capacities for modulating interactions with the environment). On
one hand, sex differences can be observed in these processes at
almost any level of investigation, thus underscoring two critical
points: (1) the failure to study both sexes will give us a false sense
of understanding and deprive us of physiological insights; and (2)
all physiology is context dependent, and sex, like developmental
stage, age, past history, and genetic background, is a context (and
a particularly powerful one as we have described). On the other
hand, we simply do not understand the meaning and relevance of
many of the sex differences that we have detailed above or that
have been described elsewhere. Despite the multitude of
studies documenting sex differences in the brains of lower
animals, with the exception of the hypothalamus (in which cyclic
pulsatile gonadotropin secretion is present in women but
not men) most sex differences in the human brain have
relatively modest effect sizes, with considerable overlap between
sexes.
Studies of sex differences in human affective regulation are

largely characterized by their inconsistencies, which might lead
one to conclude that these differences are neither meaningful nor
actionable. It is important, however, to bear in mind that human
studies, particularly those of the brain, entail multiple methodo-
logic complexities. (1) It is immensely more difficult to control for
potential confounds—particularly in studies of brain and behavior
—in humans than animals. (2) The expense of human studies
often precludes the recruiting of sample sizes sufficiently powered
to detect interaction effects between sex and the specific
outcome measures. (3) Intra-sex variability often exceeds
between-sex variability (which does not mean that relevant sex
differences are absent or inconsequential). (4) The methodologic
factors responsible for many of the current inconsistencies are
legion and include diagnostic methods, sample age, statistical
methods, reproductive state (prepubertal, premenstrual, postme-
nopausal), and menstrual cycle phase. This is particularly true
when examining imaging studies, in which the following variables
are seen: brain region (region of interest), volumetric measure-
ment strategy, imaging method (PET vs. structural MRI vs.
functional MRI), nature of imaging analysis (e.g., activation vs.
connectivity), and nature of stimulus (e.g., cognitive vs. affective),
to name just a few. Systematic efforts to employ common,
validated methods and rigorous study designs in adequately
powered studies will greatly improve our ability to detect and
interpret meaningful sex differences in affective regulation.
Although a picture is emerging in which affective disorders may

represent a “convergent” process (i.e., different physiologic routes
to the same behavioral phenotype), we nonetheless must avoid
the temptation to prematurely ascribe etiopathogenic meaning to
cross-sectional snapshots of observed differences. Rather, we
should attempt to develop common methodologies for examining
the substrates of affective regulation, leverage big data, and
thereby enable sex differences to help illuminate the neural
antecedents of behavior, detect novel sources of variance, and
pressure test our assumptions about pathophysiology.
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