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Predicting treatment outcomes in major depressive disorder
using brain magnetic resonance imaging: a meta-analysis
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Recent studies have provided promising evidence that neuroimaging data can predict treatment outcomes for patients with major
depressive disorder (MDD). As most of these studies had small sample sizes, a meta-analysis is warranted to identify the most
robust findings and imaging modalities, and to compare predictive outcomes obtained in magnetic resonance imaging (MRI) and
studies using clinical and demographic features. We conducted a literature search from database inception to July 22, 2023, to
identify studies using pretreatment clinical or brain MRI features to predict treatment outcomes in patients with MDD. Two meta-
analyses were conducted on clinical and MRI studies, respectively. The meta-regression was employed to explore the effects of
covariates and compare the predictive performance between clinical and MRI groups, as well as across MRl modalities and
intervention subgroups. Meta-analysis of 13 clinical studies yielded an area under the curve (AUC) of 0.73, while in 44 MRI studies,
the AUC was 0.89. MRI studies showed a higher sensitivity than clinical studies (0.78 vs. 0.62, Z=3.42, P=0.001). In MRI studies,
resting-state functional MRI (rsfMRI) exhibited a higher specificity than task-based fMRI (tbfMRI) (0.79 vs. 0.69, Z = —2.86, P = 0.004).
No significant differences in predictive performance were found between structural and functional MRI, nor between different
interventions. Of note, predictive MRI features for treatment outcomes in studies using antidepressants were predominantly located
in the limbic and default mode networks, while studies of electroconvulsive therapy (ECT) were restricted mainly to the limbic
network. Our findings suggest a promise for pretreatment brain MRI features to predict MDD treatment outcomes, outperforming
clinical features. While tasks in tbfMRI studies differed, those studies overall had less predictive utility than rsfMRI data. Overlapping
but distinct network-level measures predicted antidepressants and ECT outcomes. Future studies are needed to predict outcomes
using multiple MRI features, and to clarify whether imaging features predict outcomes generally or differ depending on treatments.
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INTRODUCTION

Major depressive disorder (MDD) is a highly prevalent and disabling
condition [1, 2]. Established treatments for MDD include psycho-
logical interventions such as cognitive behavioral therapy (CBT) and
interpersonal psychotherapy, antidepressant medications, and
somatic non-pharmacological treatments including electroconvul-
sive therapy (ECT), repetitive transcranial magnetic stimulation
(rTMS), and direct current stimulation. However, treatment out-
comes for MDD patients are highly variable and have been shown
to be influenced by variables including age [3], sex [4], disease
duration, and symptom severity [5]. It is difficult to predict using
clinical and demographic features, and approximately 30-50% of
patients with MDD do not respond to first-line medication or
psychotherapy [6]. Therefore, treatment selection often begins with
a “trial and error” approach, with weeks or months long trials until
an effective and well-tolerated treatment is found. Consequently,
several studies have investigated the potential of pretreatment
features to guide personalized medicine approaches that can speed
optimal treatment selection and positive clinical outcomes.

Multiple features have been evaluated for predicting treatment
outcomes including clinical [7] and neuroimaging features [8]. A
previous study demonstrated that utilizing pretreatment clinical
features, such as the scores of apparent sadness, reported sadness,
and inability to feel in the Montgomery-Asberg Depression Rating
Scale (MADRS), can successfully predict the ECT treatment out-
comes [9]. The pretreatment scores of the Beck Depression
Inventory (BDI), neuroticism, extraversion, depression, anxiety, and
stress can also predict treatment outcomes of rTMS [10]. Clinical
features, including baseline symptom severity, suicidality, and
appetite changes, and demographic features such as age, sex,
and ethnicity were also significant predictors for predicting
antidepressant treatment outcomes [11]. However, the predictive
accuracy using pretreatment clinical features varied from 44.3% to
94.3% (Table S6), and clinical heterogeneities between studies are
important obstacles in the generalizability of diagnostic models.

Neuroimaging using magnetic resonance imaging (MRI)
employs non-invasive techniques to evaluate brain anatomy and
function whose predictive utility can be optimized using machine

"Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan
University, Chengdu 610041 Sichuan Province, PR China. *Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041 Sichuan, PR China.
3Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45219, USA. “These authors contributed equally: Fenghua Long, Yufei Chen, Qian

Zhang. ®email: charlie_lee@qqg.com

Received: 18 January 2024 Revised: 18 August 2024 Accepted: 19 August 2024

Published online: 26 August 2024

SPRINGER NATURE


http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-024-02710-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-024-02710-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-024-02710-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-024-02710-6&domain=pdf
http://orcid.org/0000-0002-8287-9009
http://orcid.org/0000-0002-8287-9009
http://orcid.org/0000-0002-8287-9009
http://orcid.org/0000-0002-8287-9009
http://orcid.org/0000-0002-8287-9009
http://orcid.org/0000-0002-5912-4871
http://orcid.org/0000-0002-5912-4871
http://orcid.org/0000-0002-5912-4871
http://orcid.org/0000-0002-5912-4871
http://orcid.org/0000-0002-5912-4871
http://orcid.org/0000-0002-4737-5710
http://orcid.org/0000-0002-4737-5710
http://orcid.org/0000-0002-4737-5710
http://orcid.org/0000-0002-4737-5710
http://orcid.org/0000-0002-4737-5710
https://doi.org/10.1038/s41380-024-02710-6
mailto:charlie_lee@qq.com
www.nature.com/mp

F. Long et al.

learning [12-15]. Numerous studies have predicted treatment
outcomes of antidepressants, ECT, and other treatments using
pretreatment brain structural and functional MRI features. For
example, resting state functional connectivity (rsFC) between
dorsolateral prefrontal cortex (dIPFC) and visual regions evaluated
with resting state functional MRI (rsfMRI) has shown a predictive
utility [16], as well as activation of rostral anterior cingulate cortex
(ACQ) in task-based fMRI (tbfMRI) [17]. Structural MRI (sMRI) studies
have shown a predictive utility for gray matter volume (GMV) of
hippocampal subfields [18] and cortical thickness (CTh) of
supplementary motor area [19]. These features have shown
varying levels of sensitivity (ranging from 0.74 to 0.84) and
specificity (ranging from 0.67 to 0.97) in predicting treatment
outcomes. The differences in sensitivity and specificity among
studies may arise from variations in interventions, sample cohort
features, small study samples, varying MRI modalities, different
tasks in tbfMRI, acquisition parameters, and analysis methods.
Given these factors and the urgent need for predictive features for
MDD treatment, a meta-analysis of the literature is needed to
advance progress in this field.

Prior works have assessed utilizing neuroimaging features for
treatment outcome prediction. A meta-analysis explored predic-
tion based on electroencephalogram (EEG) and MRI, achieving an
area under the curve (AUC) of 0.85 [8]. This meta-analysis didn't
specify neuroimaging techniques, limiting insights into the
specific role of MRI features for MDD treatment outcomes.
Moreover, a meta-analysis of brain MRI features used for outcome
prediction in MDD reported an AUC of 0.84 [20]. However, the
expanding literature, along with limitations and unresolved
research questions of prior work, emphasizes the need for further
investigation. For example, this meta-analysis omitted separate
subgroup meta-analyses for fMRI and sMRI studies [20], prevent-
ing a detailed understanding of the performance of different MRI
modalities. Moreover, for functional MRI studies, the potential
differential predictive utility of rsfMRI and tbfMRI has not been
systematically examined. Furthermore, no meta-analyses have
compared the predictive potential of MRI and clinical features.
Therefore, an updated meta-analysis and systematic review are
warranted to comprehensively understand the performance of
brain features in predicting treatment outcomes using more
available published studies.

The primary objective of the present meta-analysis was to
evaluate the overall performance of clinical and brain MRI features
for predicting treatment outcomes for MDD. A secondary
objective was to explore the utility of different MRI modalities
for predicting treatment outcomes and determine variations in
predictive performance for different interventions. Our primary
hypotheses were that: (a) MRl data would have greater
performance for predicting treatment outcomes than clinical
features in patients with MDD, and (b) the predictive performance
in MRl studies would differ across imaging modalities and
interventions.

MATERIALS AND METHODS

Search strategy and selection criteria

Our study followed the Preferred Reporting Items for Systematic Reviews
and Meta-analyses (PRISMA) reporting guideline [21] (Table S1) and was
registered on PROSPERO (CRD42022376797). Three authors (FHL, YFC, and
QZ) conducted a literature search in PubMed, Embase, Web of Science, and
Science Direct databases from inception to July 22, 2023.

Inclusion criteria were used to select studies that: (a) included
participants meeting diagnostic and statistical manual of mental disorders
(DSM) or international classification of diseases (ICD) criteria for MDD, (b)
evaluated prediction of treatment outcome using pretreatment clinical
(including severity ratings, duration, and demographics) or brain MRI data,
and (c) provided a specific evidence-based clinical intervention such as
antidepressants, ECT, or CBT. We excluded: (a) theoretical papers, case
reports, reviews, and meta-analyses, (b) animal studies, (c) studies of
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samples with mean age younger than 18 or older than 65 years, and (d)
confusion matrix data for a study sample, which depicts the differences
between model predictions and actual outcomes using true/false
positives/negatives, was not available even after contacting the authors.
Details of the search strategy and selection criteria (Figure S1) and quality
assessment and data extraction (Tables S2-S5) are provided in the Supple-
mentary Methods.

Meta-analysis

Data analysis was conducted in R (version 4.2.1) using the mada [22] and
glmnet [23] packages. First, we calculated I* as a measure of study
heterogeneity and classified it as low, moderate, and high for I values of
<50%, 50-75%, and >75% [24]. If the data were low in heterogeneity, a
fixed effects model would be employed to estimate the results, i.e., here as
the logarithm of the diagnostic odds ratio [log(DOR)]. Otherwise, a random
effects model was employed. Log(DOR) greater than zero indicates that
the predictive model can discriminate between responders/remitters and
non-responders/non-remitters, and higher values indicate better predictive
performance [25]. Second, bivariate analyses for sensitivity and specificity
were implemented using the approach of Reitsma [26]. Because the
pooled studies use different diagnostic thresholds (such as varying
treatment response definitions), this could lead to heterogeneity in the
estimates of sensitivity and specificity. To examine the potential impact of
variable outcome thresholding approaches, we computed a summary
receiver operating characteristic (SROC) curve that displays predictive
utility across the range of potential thresholds. When the correlation
coefficient (r) between sensitivity and false positive rate exceeds 0.6, it
signifies a considerable threshold effect [27]. For the pooled meta-analysis
and all subgroup meta-analyses in the present study, no considerable
threshold effect was observed (all r<0.6; r range, —0.08 ~ 0.52). Of note,
AUC of an SROC curve ranging from 0.75 to 0.92 is generally considered to
indicate good predictive performance [28]. When the lower bound of the
95% confidence interval [Cl] for AUC exceeds 0.5 (chance performance), it
signifies that the current prediction is significantly better than chance [29].

We conducted separate pooled meta-analyses for prediction models
based on clinical features, encompassing demographics and severity
ratings (Hamilton Depression Rating Scale [HDRS] scores, Hamilton Anxiety
Rating Scale [HARS] scores, illness duration, sleep disruption score, etc.),
and models based on brain MRI features. Subsequently, MRI studies were
categorized into subgroups based on modalities (rsfMRI, tbfMRI, sMRI, and
diffusion tensor imaging [DTI]) and interventions (antidepressant, ECT,
rTMS, and CBT). In studies utilizing multiple MRI modalities, those
exclusively relying on features from a single modality to predict treatment
outcomes were categorized within the corresponding modality subgroup.
One study that combined features from multiple modalities to collectively
predict treatment outcomes was classified under the multiple MRI
modalities group [30]. The tbfMRI studies were categorized into two
subsets based on the emotional and cognitive tasks employed. We
subdivided the antidepressant studies into those using selective serotonin
reuptake inhibitors (SSRIs) and those using other medications. Separate
meta-analyses were performed in subgroups that included five or more
original studies (n = 5) to provide a reasonable statistical power, noting the
preliminary nature of such analyses [31]. If a study reports on both
response and remission, or multiple studies use the same patient data, we
calculate a weighted average of their 2x2 tables, with weights
determined by sample size [20]. We used a systematic review to
summarize the current state of the field with regard to less studied
imaging modalities and intervention approaches.

Next, we assessed publication bias by Deeks’ funnel plot asymmetry test,
considering it present if there was a nonzero slope coefficient (P < 0.05).
The diagnostic original studies usually have an imbalance in negative
samples (i.e., patients with poor treatment outcomes) over positive ones.
Therefore, this imbalance tends to inflate the calculated DOR above 1,
potentially affecting the standard errors and increasing the likelihood of a
false positive result if it is calculated by Begg’s and Egger’s methods. The
Deeks’ test conducted a linear regression of log(DOR) and precision (the
reciprocal of the square root of the effective sample size) to investigate the
relationship between effect size and effective sample size, which further
evaluated the impact of publication bias. The effective sample size is more
appropriate than the sample size to summarize the precision due to the
unequal numbers of responder/remitter and non-responder/non-remitter
in each study [32].

Then, bivariate meta-regression was used firstly to explore the effects of
covariables (sample size, age, sex ratio, illness duration, HDRS score, and
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publication year) on sensitivity and specificity of each meta-analysis [33].
Baseline BDI and MADRS scores were transformed to approximate HDRS
categories using published transformation rules [34, 35]. The bivariate
meta-regression was also used to test for the differential effects between
clinical and MRI studies, as well as among pairs of modality and
intervention subgroups within MRI studies, respectively. The likelihood
ratio test was conducted to determine the statistical significance of the
differences in estimated variances of logit sensitivity and logit specificity
before and after adding covariates (i.e., imaging modalities or interven-
tions) in bivariate meta-regression [36]. For example, to assess the
influence of interventions on predictive performance, the antidepressant
subgroup was taken as a reference group, and an ECT subgroup was
added as a covariate to analyze the statistical significance of changes in
the estimated variance. Therefore, we conducted bivariate meta-regression
on the following studies, including: (a) clinical and MRI studies, (b) three
different MRI modalities (rsfMRI, tbfMRI, and sMRI) to evaluate potential
imaging modality variations and provide additional information for
outcome prediction, (c) tofMRI studies employing emotional and cognitive
tasks to understand the impact of tasks on prediction, (d) antidepressant
and ECT subgroups to assess their distinct predictive performance, and (e)
specific SSRIs and ECT to contrast predictive features performance. For
multiple comparisons in the analyses among three different MRI
modalities, we used the Bonferroni correction, and results were considered
significant if the P value was less than 0.05/3 =0.017.

Finally, the elastic net algorithm was employed to construct a
multivariate regression model for predicting log(DOR) in each study,
investigating the impact of methodological and clinical variables on the
prediction. Methodological variables mainly encompassed data types (e.g.,
rsfMRI data), validation status, magnetic field strength, and predicted
methodologies (e.g., support vector machine [SVM]). Clinical variables
included sample size, age, intervention type, etc. To address missing values
in variables, we utilized the k-nearest neighbors algorithm for imputation.
We utilized nested cross-validation (CV) with 10-fold for the inner CV and
leave-one-out for the outer CV, aiming to select alpha and lambda values
that minimized the root mean squared error. Correlation analysis was
conducted between the predicted log(DOR) and true log(DOR) to assess
the reliability of the predictive model.

RESULTS

Characteristics of included studies

We included 13 studies that used clinical features to predict
treatment outcomes, covering 4301 patients (mean age, 45.1
years; male/female, 1753/2548); and 44 MRI studies recruited 2623
patients (mean age, 382 vyears; male/female, 1109/1514)
(Table 1 and S6). Within MRI studies, 19 rsfMRI, 13 tbfMRI, and
ten sMRI studies were included in modality subgroups (Table S7);
27 MRI studies utilized antidepressants and nine utilized ECT
which were included in intervention subgroup analyses (Table S8).
Detailed characteristics of included studies are provided in
the Supplementary Results.

Pooled meta-analysis

Due to the high heterogeneity observed with the fixed effects
model, a random effects model was employed for the present
study. The overall log(DOR) of clinical studies for treatment
outcome prediction was 1.62 (95% Cl 1.16-2.09; Fig. 1). The AUC of
SROC curve was 0.73 (95% Cl 0.67-0.81; Fig. 2), sensitivity was 0.62
(95% Cl 0.48-0.74), and specificity was 0.76 (95% Cl 0.64-0.85). No
covariates were identified to impact the sensitivity and specificity
(P> 0.05). There was a low heterogeneity observed among studies
(> = 42.4%). Deeks' funnel plot asymmetry test did not reveal
significant publication bias in the included studies (beta = 0.008,
P =0.51; Fig. S2). No significant correlation was observed between
the predicted log(DOR) and true log(DOR) in clinical studies
(r=0.12, P=0.71; Fig. S3).

The pooled meta-analysis of all included MRI studies revealed
an overall log(DOR) of 2.53 (95% Cl 2.22-2.84; Fig. 1). The AUC of
the SROC curve was 0.89 (95% ClI 0.87-0.91; Fig. 2), indicating
performance better than chance. Sensitivity was 0.78 (95% ClI
0.75-0.81), and specificity was 0.75 (95% Cl 0.71-0.79). No
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covariates had a significant impact on overall sensitivity and
specificity (P>0.05). There was no evidence of heterogeneity
observed among studies (Fig. 1). Deeks’ funnel plot asymmetry
test did not demonstrate significant publication bias in the
included studies (beta = 0.001, P=0.93; Fig. S2). In the meta-
regression comparing clinical and MRI studies, we identified
significant differences in predicting treatment outcomes (Chi? =
6.53, P=0.03), with the MRI studies exhibiting higher sensitivity
(Z=3.42, P=0.001).

For the pooled MRI studies, we employed the elastic net
algorithm with an average of alpha = 0.5 and lambda = 0.21
across all CV-folds. The predicted log(DOR) showed a significant
correlation with the true log(DOR) (r = 0.39, P = 0.02). Six variables
were identified based on the absolute value of their coefficients.
Specifically, “data: tbfMRI”, “scanner: 1.5 T”, and “sample size” were
linked to lower log(DOR), while “data: rsfMRI”, “method: ROC curve
analysis”, and “illness duration” demonstrated associations with
higher log(DOR) (Fig. 3).

Modality subgroup outcomes in MRI studies

Meta-analysis. The rsfMRI subgroup consisted of a total of 1130
patients (mean age, 40.7 years; male/female, 440/690). The
outcome prediction model had a log(DOR) of 2.74 (95% ClI
2.39-3.08), sensitivity of 0.80 (95% Cl 0.75-0.84), specificity of 0.79
(95% Cl 0.75-0.82), and an AUC of 0.90 (95% Cl 0.87-0.93).

For tbfMRI studies, which included 891 participants (mean age,
34.2 years; male/female, 394/497), the log(DOR) was 2.00 (95% Cl
1.28 to 2.72), sensitivity was 0.74 (95% Cl 0.67-0.81), specificity was
0.69 (95% Cl 0.56 to 0.79), and AUC was 0.85 (95% Cl 0.78-0.92).
Regarding different tasks employed in tbfMRI, the log(DOR) of
emotional task subgroup was 1.78 (95% Cl 0.91 to 2.65), sensitivity,
specificity, and AUC were 0.77 (95% Cl 0.68-0.84), 0.63 (95% Cl
0.48-0.75), and 0.84 (95% ClI 0.73-0.99). The cognitive task
subgroup has a log(DOR) of 2.35 (95% Cl 1.69-3.02), sensitivity
of 0.77 (95% Cl 0.69-0.84), specificity of 0.73 (95% Cl 0.63-0.81),
and AUC of 0.88 (95% Cl 0.80-0.97).

The sMRI studies included 347 patients (mean age, 39.5 years;
male/female, 146/201). The log(DOR) was 2.63 (95% Cl 1.96-3.30),
and sensitivity, specificity, and AUC were 0.79 (95% ClI 0.71 to
0.86), 0.73 (95% Cl 0.63-0.81), and 0.91 (95% Cl 0.86-0.96),
respectively (Fig. S4a and Table S9).

The heterogeneity test showed low heterogeneity in rsfMRI
subgroup (I>=1.57%) and no evidence of heterogeneity was
observed in the tbfMRI and sMRI subgroups (Fig. S6). No
publication bias was found in any of these three subgroup
analyses (Fig. S5a). Using meta-regression analysis, we found a
significant difference in the sensitivity and specificity of outcomes
predicted by the rsfMRI and tbfMRI subgroups (Chi?=8.70,
uncorrected P=0.013 survived with the Bonferroni correction).
Specifically, while the sensitivity was similar (Z= —1.13, P=0.26),
rsfMRI  showed higher specificity than tbfMRI (Z=—2.86,
P =0.004). There was no significant difference in sensitivity and
specificity in prediction of treatment outcome between sMRI and
rsfMRI subgroups (Chi2 =1.00, P= 0.61), between sMRI and tbfMRI
subgroups (Chi?=1.70, P=0.43), or between emotional and
cognitive tbfMRI (Chi2=1.61, P=0.45). Furthermore, we found
that HDRS score was a significant covariate influencing the
prediction in emotional task subgroup (Chi? = 6.34, P = 0.04), with
a negative impact on its specificity (Z = —2.88, P = 0.004).

Predictive brain features in models including all studies using each
type of MRI protocol. Analysis of features selected for outcome
predictions indicated that predictive brain regions were predomi-
nantly located within the limbic and default mode networks
(DMN) for both rsfMRI and tbfMRI studies. The rsfMRI features
included rsFC between ACC and middle frontal gyrus [37],
amygdala [38], and dIPFC [39], as well as between medial PFC
and posterior cingulate cortex (PCC) [40]. Predictive features for
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asl/rs/tbfMRI Arterial spin labeling/resting-state/task-based functional magnetic resonance imaging, BDI Beck depression inventory, CBT Cognitive behavioral therapy, DTI Diffusion tensor imaging, ECT
Electroconvulsive therapy, HDRS Hamilton depression rating scale, ISPOT-D International study to predict optimized treatment in depression, MADRS Montgomery-Asberg depression rating scale, M/F Male/

Female, N Patient number, PHQ Patient health questionnaire, Q/IDS-SR Quick inventory of depressive symptomatology-self-report, ROC Receiver operating characteristic, rTMS Repetitive transcranial magnetic

stimulation, SD Standard deviation, sMRI Structural magnetic resonance imaging, SVM Support vector machine, tDCS Transcranial direct current stimulation.

“Represents a weighted average number of study samples utilizing the same patient dataset; -represents that the relevant information or data is not reported.

tbfMRI included task-based FC between limbic and somatomotor
networks [41], as well as within DMN [42]. Activation of ACC
[43, 44] and precuneus [45, 46] in tbfMRI studies also contributed
to prediction. The sMRI predictive features for all treatments
predominantly included brain regions within limbic network not
the DMN, including GMV of hippocampus [18, 47], GM density of
ACC [48], and CTh of hippocampus [49] (Table S10, Fig. 4).

Intervention subgroup outcomes in MRI studies

Meta-analysis. Studies including 1700 patients using antidepres-
sants (mean age, 35.5 years; male/female, 736/964) showed a
log(DOR) of 2.48 (95% Cl 2.05-2.91), sensitivity of 0.78 (95% ClI
0.74-0.82), specificity of 0.74 (95% Cl 0.68-0.80), and an AUC of
SROC of 0.89 (95% Cl 0.86-0.92). The log(DOR), sensitivity,
specificity, and AUC for studies with patients only administered
SSRIs were 2.68 (95% Cl 1.81-3.56), 0.79 (95% ClI 0.72-0.84),
0.75(95% Cl1 0.61 to 0.85), and 0.91 (95% Cl 0.86-0.96), respectively.
ECT studies included 395 participants (mean age, 44.9 years; male/
female, 155/240). The log(DOR) for ECT studies was 2.56 (95% Cl
1.90-3.22), sensitivity and specificity were 0.83 (95% Cl 0.69 to
0.91) and 0.74 (95% Cl 0.65 to 0.82), and AUC was 0.89 (95% ClI
0.80 to 1.00; Fig. S4b and Table S9).

No publication bias or evidence of heterogeneity was found in
any intervention subgroup (Figs. S5b and S7). Meta-regression
showed no significant differences between antidepressant (SSRI
and other antidepressant studies combined) and ECT subgroups
(combined across imaging modalities) in sensitivity and specificity
(Chi? =098, P=061), as well as in SSRIs and ECT (Chi*=0.10,
P =0.95). We observed that sample size significantly affected the
predictive efficacy of ECT treatment outcomes (Chi®=7.98,
P =0.02), negatively influencing its sensitivity (Z = —3.50, P < 0.001).

Predictive brain features. Through a systematic review, we found
that features for antidepressants, including SSRIs examined
separately, were distributed in the limbic network and DMN.
Predictive features included rsFC between hippocampus and
angular gyrus [50], and between ACC and supplementary motor
area [51]. The task-based FC between DMN and somatomotor
networks [42], and activation of medial PFC [40], were also
significant predictors. In terms of ECT, features related to
treatment outcome were mainly found in the limbic network,
including rsFC between ACC and dIPFC [39], GMV of subgenual
ACC [52], as well as CTh of hippocampus [49] (Table S11, Fig. 4).

DISCUSSION

Findings of the present meta-analysis highlight the potential of
utilizing pretreatment brain MRl data to predict treatment
outcomes for MDD patients, outperforming clinical features.
Pretreatment alterations in functional and structural brain features
may explain in part the wide heterogeneity of clinical response to
antidepressant therapies. In imaging modality subgroups, rsfMRI
outperformed tbfMRI in specificity, more accurately identifying
true negatives (i.e, non-responders and non-remitters) among
patients. Outcome prediction of sMRI features did not differ
significantly from either of the two fMRI modalities. No significant
differences were found among the different intervention sub-
groups in accuracy of outcome prediction. Although outcome
prediction features mainly involved DMN and limbic networks,
predictive neuroimaging features differed somewhat among
modality and intervention subgroups.

Overall prediction performance

Our meta-analysis utilized brain MRI data to predict treatment
outcomes and revealed a superior predictive performance
compared to that reported in a meta-analysis of EEG data, with
an AUC of 0.89 versus 0.76 [53]. Our overall predictive
performance is similar to the findings reported by Lee et al. for
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Log (DOR) [95% CI]

Clinical studies
Zhou Y.L. et al. 2022
A. Kautzky et al. 2017 & 2018*

S. Wagner et al. 2017 .

R. Perlis et al. 2013 |
M. Riedel et al. 2011 L
Liang S. et al. 2023 ]
L. Carstens et al. 2021

2.11[1.45, 2.78]
2.09[1.67, 2.51]
1.03[0.67, 1.38]
1.25[0.63, 1.86]
1.12[0.84, 1.39]
1.07 [-0.12, 2.27]
0.95[0.10, 1.79]

M. Rezaei et al. 2021 : —a 4.17[3.02, 5.33]
L. Donse et al. 2018 & N. Krepel et al. 2020* +—=— 0.67[0.03, 1.31]
E.L. Brakemeier et al. 2007 & 2008* : e 2.47[1.25, 3.69]
Random effects model :
Summary : <o 1.62 [ 1.16, 2.09]
Hetergeneity: I = 42.4%,1*=0.41, P=0.08 :
MRI studies
Zhang F. et al. 2022 & 2023* e — 3.37[1.47, 5.27]
Wu H. et al. 2022 —a 2.95[1.68, 4.21]
Xue S. W. et al.2022 —a 2.59[0.89, 4.28]
Ye Y.X. et al. 2022 —— 2.57[1.35, 3.78]
H.J. Hopman et al. 2021 : f - { 5.28[2.93, 7.62]
T. Nakamura et al. 2021 : } = | 4.30[0.94, 7.66]
Xiao H.Q. et al. 2021 : e — | 4.34[2.20, 6.47]
Ge R.Y. et al. 2020 —a 3.18[1.71, 4.65]
Pei C. et al. 2020 —a— 2.83[1.83, 3.84]
Sun H.L. et al. 2020 —a— 1.89[1.07, 2.71]
Tian S. et al. 2020 : —a— 2.63[1.70, 3.57]
M. Moreno-Ortega et al. 2019 : } - | 3.47[1.01, 5.92]
R.F.H. Cash et al. 2019 : ——— 4.12[1.97, 6.27]
Hou Z.H. et al. 2018 : —a 3.01[1.89, 4.13]
A.M. Leaver et al. 2018 ] 1.34[0.13, 2.55]
Zhu JJ. et al. 2018 : e 2.51[1.15, 3.87]
A.T. Drysdale et al. 2017 : —a— 2.50[1.65, 3.34]
J.A. van Waarde et al. 2015 : b 3.17[1.64, 4.71]
P.M. Fisher. et al. 2022 - 0.51[-0.44, 1.46]
B.M. Meyer et al. 2019 : —_—e 3.28[1.07, 5.49]
F. Queirazza et al. 2019 P —— 2.00[0.53, 3.47]
B.R. Godlewska et al. 2018 ] 1.67[0.17, 3.17]
N.A. Crane et al. 2017 . P 3.74[1.55, 5.92]
G.J. Siegle et al. 2012 S 1.80[0.27, 3.34]
S.G. Costafreda et al. 2009a < | 2.25[-0.07, 4.58]
A.F. Marquand et al. 2008 —— 1.90[-0.17, 3.98]
ISPOT-D* L 1.83[0.79, 2.87]
Xu J.P. et al. 2022 b 4.11[2.08, 6.14]
Wu P.Y. et al. 2021 b 4.03[2.22, 5.85]
Hu X.X. et al. 2019 ——— 2.20[0.70, 3.70]
Cao B. etal. 2018 — 3.04[0.94, 5.13]
Wade et al. 2016 & 2017* I e S— 2.48[0.88, 4.08]
R. Redlich et al. 2016 C = y 3.30[0.24, 6.36]
Gong Q.Y. et al. 2011 D p—a— 1.58[0.36, 2.80]
Nouretdinov 2011 & Costafred 2009b* ——— 2.20[0.17, 4.22]
M.S. Korgaonkar et al. 2014 ey 0.94[0.01, 1.87]
S. N. Gosnell et al. 2019 D —a— 1.90[0.47, 3.34]
Random effects model
Summary <& 2.53[2.22, 2.84]
Hetergeneity: I> = 0%, 1 = 0.27, P=0.52
— T T T 1
-0.44 1.59 3.61 5.64 7.66
log diagnostic odds ratio

Fig. 1

Overall random effects model forest plot of the logarithm of diagnostic odds ratios in clinical and MRI studies. Cl confidence

interval; log(DOR), the logarithm of diagnostic odds ratios. Notes: * represents data after weighted averaging of studies that used repeated
samples. ISPOT-D included six studies utilizing the international study to predict optimized treatment in depression data.

EEG and MRI-based predictive markers (AUC: 0.89 vs. 0.85) [8].
Furthermore, we observed comparable overall performance to
another meta-analysis (AUC: 0.89 vs. 0.84) [20], further emphasiz-
ing the robust potential of MRI data in predicting treatment
outcomes in MDD patients. In addition, with the leverage of more
recent studies to increase samples, we were able to compare
different imaging modalities and treatment types. In terms of
comparisons of MRI modalities, we observed rsfMRI outperformed
tbfMRI in predicting treatment outcomes. We additionally utilized
a multivariate regression model to identify predictive factors
associated with predictive accuracy. The results further support
our findings, indicating an association between rsfMRI utility and

Molecular Psychiatry

higher log(DOR), while tbfMRI demonstrates a correlation with
lower log(DOR).

Pretreatment clinical features are readily accessible features for
patients, but the performance of models based on them in
predicting MDD treatment outcomes is limited. This may be
attributed to the diversity of clinical features introducing
heterogeneity. Although all clinical studies included scores of
symptom severity scales, the feature sets for prediction were not
uniform (i.e.,, not all studies including comorbidities or illness
duration). A prior study revealed that combining pretreatment
clinical features with early response factors (i.e., severity ratings at
two weeks after medication administration) significantly improves

SPRINGER NATURE
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Clinial group SROC curve (AUC: 0.73)

MRI group SROC curve (AUC: 0.89)
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Fig. 2 Summary receiver operator characteristic (SROC) curve within clinical and MRI studies. AUC Area under the curve, Cl Confidence
interval; Conf. region, the region of confidence interval, MRl Magnetic resonance imaging.

treatment outcome prediction, raising specificity from 30% to 90%
[54]. Furthermore, integrating clinical features with patient
genetics, metabolomics, and other features is poised to further
enhance prediction accuracy [55, 56]. Collectively, our study
highlights the superior suitability of pretreatment brain MRI
relative to clinical features for predicting treatment outcomes. It is
worth noting however that it was not possible to directly compare
clinical and MRI features for prediction in the same sample, and
warrants additional further validation in future studies.

As key brain networks that have been implicated in MDD, the
limbic network and DMN play crucial roles in various cognitive
processes, reward regulation, and emotion homeostasis [57, 58].
Previous studies have suggested that MDD patients exhibit
decreased activation in the limbic network, which has been
hypothesized to be related to abnormal reward-related behaviors
and reduced hedonic tone [59]. Furthermore, reduced rsFC within
DMN can disrupt the ability to disengage from internal emotions
and cognitive processes, impairing their ability to focus on
external tasks and experiences [57]. Our meta-analysis demon-
strated the predictive power of alterations in these networks for
treatment outcomes, showing good predictive performance with
AUC ranging from 0.84 to 0.91 that varied within that range
depending on the MRI modality and intervention subgroups.
Previous studies have reported that treatment-resistant patients
with MDD demonstrated decreased rsFC and regional homo-
geneity within DMN [42, 60-62], and reduced rsFC between DMN
and other brain regions [51, 63], as compared to successfully
treated individuals. In parallel, increased fractional amplitude of
low-frequency fluctuations and rsFC within the limbic network
[38, 64], along with elevated rsFC between limbic network and
other brain regions [65], were also found to be greater in
treatment-resistant patients. These findings are reflected in
aggregate in our meta-analysis findings.

Some factors influenced the prediction of treatment outcomes
using brain MRI data. Previous studies demonstrated that longer
MDD duration is associated with reduced GMV in hippocampus
and ACC [66], along with weakened FC between ACC and DMN
[67]. This is consistent with crucial regions in DMN and the limbic
network that we systematically identified for prediction, and MRI
features yield a higher predictive accuracy for patients with a
longer illness duration. Moreover, the negative correlation

SPRINGER NATURE

between sample size and predictive accuracy may be influenced
by the clinical and neurophysiological heterogeneity in MDD
patients [68]. Regarding methodology, the 1.5T MRI data has a
low signal-to-noise ratio and spatial resolution [69], which might
contribute to the observed low predictive accuracy in our results.
Lastly, prediction using feature-based ROC curve analysis, which
typically selects MRI features with optimal performance, exhibited
high predictive accuracy. However, as the performance of this
method does not stem from its learning capabilities, our findings
do not imply its superiority over other machine learning methods.

Varied MRI modalities

The superior predictive utility of rsfMRI relative to tbfMRI is based
on the studies that have been done previously. While methods
across studies can vary in terms of how measurements are
performed, for tbfMRI there is an additional major consideration of
what task is being performed during scans. While many studies
using a range of tasks were examined, the potential utility of
different tasks is unknown. Other methodological features for all
fMRI include factors such as the focus on regional activity vs. FC
between pairs of regions vs. whole brain connectome analysis
using graph theory approaches [70]. Sufficient evidence does not
yet exist to clarify which of these approaches has the best utility
considered individually or in combination. Further, a previous
study suggested that increased severity of MDD correlates with
reduced hippocampus and amygdala activation during emotional
processing [71]. Patients with severe symptoms and varied
treatment outcomes may exhibit comparable lower baseline
activation in these regions, which was consistent with our findings
and might be one possible explanation for the negative impact of
heightened symptom severity on specificity by using emotional
tbfMRI for treatment outcome prediction.

There are similar methodological issues for anatomic imaging,
as cortical thickness, surface area, gyral features, and volume
measurements can all provide somewhat independent informa-
tion. In our meta-analysis, we found that sMRI predictors of
treatment outcome were more commonly observed within the
limbic network rather than DMN, though from a broader
perspective, we did not observe significant differences in
predictive performance between sMRI and the two fMRI
modalities. The differences in findings across MRl modalities are

Molecular Psychiatry



@ methodological variables
name type - (%)
(Y% binary 0
data: rsfMRI binary 0
data: tbfMRI binary 0
data: sMRI binary 0
scanner: 1.5T binary 0
feature selection: none binary 0
feature selection: filter binary 0
feature selection: wrapper | binary 0
method: ROC curve analysis | binary 0
method: SVM binary 0
method: logistic regression | binary 0

(b) Correlation scatter plot

4.0

35

3.0

Predicted log(DOR)

25

2.0

True log(DOR)

F. Long et al.

clinical variables
name type - (%)
treatment: antidepressant binary 0
treatment: ECT binary 0

continuous | 17.14
continuous | 45.71

medication: naive
illness duration

number of participants continuous |

age continuous | (

sex ratio continuous | 0

HDRS score continuous | 2.86
(c) Coefficient values for predictors

W negative
[7] positive

Absolute coefficient value

Fig. 3 Results of multiple regression model in MRI group by the elastic net algorithm predicting log(DOR) of individual studies.
a Nineteen methodological and clinical variables were included in elastic net algorithm. b The predicted log(DOR) was significantly correlated
with true log(DOR) (r = 0.39, P = 0.02). c Six variables with non-zero coefficients were important predictors for log(DOR) prediction, ranked by
their absolute value of coefficient values from the lowest to the highest. CV Cross validation, ECT Electroconvulsive therapy, HDRS Hamilton
depression rating scale, log(DOR), the logarithm of diagnostic odds ratios; MRI Magnetic resonance imaging, ROC receiver operating
characteristic, rs/tbfMRI resting-state/task-based functional magnetic resonance imaging; sMRI, structural magnetic resonance imaging; SVM
support vector machine. Note: -, represents that the relevant information or data is not reported.

of mechanistic interest for MDD, as local anatomic alteration can
induce functional alterations elsewhere in regions with which they
are connected. They also are of interest in supporting the need for
more multimodal imaging studies [72-76] that use diverse MRI
data in an integrated way to perhaps improve prediction as well as
understanding of treatment response in MDD.

Different interventions

Antidepressant medication is commonly used to treat depression.
They aid in restoring the functionality of brain networks by
modulating interaction of neurotransmitter systems [77]. ECT is a
stimulation therapy that produces therapeutic effects by directly
stimulating neural activity. Animal models have shown that
repeated electrical stimulation induces neurogenesis, synaptogen-
esis, and synaptic plasticity in the brain [78]. In the intervention
subgroup meta-regression, despite the different mechanisms of
antidepressants and ECT, similar sensitivity, specificity, and AUC
were observed in treatment outcome prediction using over-
lapping brain features. Our study demonstrated that the primary
distribution of brain-predicting outcomes of antidepressant
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therapy was observed in the limbic network and DMN, while
those for ECT were more specific to the limbic network. Although
FC of the PCC and precuneus contributed to outcomes prediction
for both antidepressants and ECT, the structural characteristics
and functional activation within DMN were exclusive to predicting
antidepressant outcomes. Interpretation of this similarity is also
complicated by the fact that many receiving ECT are also
administered antidepressants before and during ECT treatment.

While ECT is widely recognized for its high efficacy in treating
therapy-resistant patients, it is not a first line treatment due to
costs, adverse effects on memory, and stigma [79]. In this context,
identifying brain features that predict a poor response to
antidepressants and a more positive outcome to ECT would be
advantageous clinically by suggesting a need for ECT rather than a
trial with a different antidepressant medication for treatment
nonresponsive patients.

Limitations

Certain limitations should be noted in interpreting the present
findings. First, confusion matrices essential for our primary analysis

SPRINGER NATURE
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were unavailable in some included studies even after contacting
authors. We used scatter plots of all participants and high-
resolution ROC to estimate them in order to include more studies
in our analysis [44, 50, 80, 81]. Second, two of thirteen clinical
studies included patients with bipolar depression (with a
proportion of no more than 15%) [82, 83]. This overlap in illness
risk may affect the predictive performance for pure MDD patients
and also the comparisons of clinical and MRI studies. Further,
many clinical studies (more than 20 studies published to date
based on our rough search, such as these studies [84, 85]) used
early response (i.e., clinical ratings after two or four weeks of
treatment) rather than pretreatment baseline clinical ratings as
input features to predict treatment response in MDD. To be
consistent with the inclusion and exclusion criteria of MRI studies
and to compare the clinical predictive results to MRI results that
were predicted by using pretreatment brain MRI features, we only
found and included 13 clinical studies taking pretreatment clinical
ratings as predictors. Thus, due to the variations in study numbers
between clinical and MRI studies in the present study, more future
studies using pretreatment clinical features are needed to validate
the present results. Third, similarly, the variations in patient
numbers between fMRI and sMRI subgroups, as well as
antidepressants and ECT subgroups, limit the ability to draw
conclusive differences in predictive performance among treat-
ment and imaging modality subgroups. Additionally, given the
influence of sample size on ECT subgroup sensitivity, caution is
warranted in interpreting our results. Fourth, subgroup analyses of
rTMS, CBT, and DTI were not performed, due to the insufficient
number of included studies (n < 4) to analyze and draw a robust
SROC. Fifth, although included studies have defined treatment
response and remission based on previous research or

SPRINGER NATURE

professional consensus, there are still variations in definitions
due to the use of different rating scales that impact the ability to
model binarized outcome prediction [86]. Sixth, we did not
incorporate validation as inclusion criteria to ensure a larger
sample size, allowing for a comprehensive and robust analysis
with enhanced statistical power and reliability. Most included
studies utilized separate datasets for training, testing, and
validating predictive models. Only two studies employed inde-
pendent external validation datasets [43, 87]. While we were able
to include more studies in our more up-to-date review of prior
work, limitations in the available literature may lead to some
degree of overfitting that would increase estimated model utility.
Finally, the current meta-analysis combined studies employing
varying modalities and interventions, and validation was not
universal across all included studies. Consequently, the applic-
ability of the current model to clinical practice remains limited.

CONCLUSION

The present findings revealed that pretreatment brain MRI
features outperformed clinical characteristics in predicting short-
term treatment outcomes in patients with MDD. The observed
variations between rsfMRI and tbfMRI are also noteworthy. We
found that rsfMRI biomarkers have higher accuracy in predicting
non-responders/non-remitters than tbfMRI. These findings may be
helpful in the early identification of patients who may not benefit
from treatment, potentially aiding clinicians in considering
alternative treatment options. Additional research is required to
validate and expand upon these findings, particularly in exploring
the predictive capabilities of specific MRl modalities and specific
interventions.
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