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Fine-mapping the CYP2A6 regional association with nicotine
metabolism among African American smokers
Jennie G. Pouget1,2, Haidy Giratallah1,3, Alec W. R. Langlois1,3, Ahmed El-Boraie1,3, Caryn Lerman4, Jo Knight 5, Lisa Sanderson Cox6,
Nikki L. Nollen6, Jasjit S. Ahluwalia7, Christian Benner8, Meghan J. Chenoweth1,2,3 and Rachel F. Tyndale 1,2,3✉

© The Author(s), under exclusive licence to Springer Nature Limited 2024

The nicotine metabolite ratio (NMR; 3’hydroxycotinine/cotinine) is a stable biomarker for CYP2A6 enzyme activity and nicotine
clearance, with demonstrated clinical utility in personalizing smoking cessation treatment. Common genetic variation in the CYP2A6
region is strongly associated with NMR in smokers. Here, we investigated this regional association in more detail. We evaluated the
association of CYP2A6 single-nucleotide polymorphisms (SNPs) and * alleles with NMR among African American smokers (N= 953)
from two clinical trials of smoking cessation. Stepwise conditional analysis and Bayesian fine-mapping were undertaken. Putative
causal variants were incorporated into an existing African ancestry-specific genetic risk score (GRS) for NMR, and the performance of
the updated GRS was evaluated in both African American (n= 953) and European ancestry smokers (n= 933) from these clinical
trials. Five independent associations with NMR in the CYP2A6 region were identified using stepwise conditional analysis, including
the deletion variant CYP2A6*4 (beta=−0.90, p= 1.55 × 10−11). Six putative causal variants were identified using Bayesian fine-
mapping (posterior probability, PP= 0.67), with the top causal configuration including CYP2A6*4, rs116670633, CYP2A6*9,
rs28399451, rs8192720, and rs10853742 (PP= 0.09). Incorporating these putative causal variants into an existing ancestry-specific
GRS resulted in comparable prediction of NMR within African American smokers, and improved trans-ancestry portability of the GRS
to European smokers. Our findings suggest that both * alleles and SNPs underlie the association of the CYP2A6 region with NMR
among African American smokers, identify a shortlist of variants that may causally influence nicotine clearance, and suggest that
portability of GRSs across populations can be improved through inclusion of putative causal variants.
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INTRODUCTION
Tobacco use remains the leading cause of preventable death and
disease in North America [1]. Nicotine (the primary addictive agent
in tobacco) [2] is metabolized to cotinine primarily by the liver
enzyme CYP2A6, and then to 3’hydroxycotinine exclusively by
hepatic CYP2A6 [3, 4]. The nicotine metabolite ratio (NMR;
3’hydroxycotinine/cotinine) is a stable biomarker for nicotine
metabolism by CYP2A6 in smokers [5, 6]. Individual differences in
NMR predict total nicotine clearance, and thus smoking beha-
viours (including cessation) as well as health outcomes. In
particular, higher NMR (i.e. faster nicotine inactivation and CYP2A6
activity) is associated with greater nicotine dependence, cigarette
consumption, and lung cancer risk along with lower cessation
[7, 8]. Furthermore, NMR has translational potential in personaliz-
ing cessation treatment given that smokers with higher NMR show
greater benefit from treatment with varenicline (compared to
nicotine replacement therapy) [9, 10].
The NMR can only be reliably measured in current, regular

smokers. This limits its use as a biomarker in longitudinal studies
of smoking initiation or smoking-related disease risk in occasional/

non-smokers, and limits the potential clinical utility of using NMR
to guide personalized counselling on smoking-related risks to
promote prevention efforts and behavioural change. However,
because NMR is highly heritable (h2= 60–80% [11, 12]), an
individual’s NMR could potentially be estimated using their
genetic information regardless of their current smoking status
(i.e. using a genetic risk score that predicts NMR). To achieve this,
large-scale genetic studies of NMR are required to robustly identify
the underlying genetic risk variants.
To date, most genetic studies of NMR have been undertaken in

European ancestry smokers, and the genetic architecture of NMR
in non-European smokers remains only partially understood,
contributing to potential health disparities [13]. In European
smokers, the largest GWAS of NMR conducted (n= 5,185)
identified a strong genome-wide association near CYP2A6 on
chromosome 19, and a second association near TMPRSS11E on
chromosome 4 [14]. The CYP2A6 association pattern in European
smokers was complex, with six independent variants identified in
conditional analysis and a top causal configuration including 13
variants identified in Bayesian fine-mapping [14]. To our
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knowledge we have conducted the largest GWAS of NMR in
African American smokers to date (n= 954), finding a single
genome-wide association near CYP2A6. The association pattern in
African American smokers was unique compared to that observed
in Europeans [15], with 58 of the 96 genome-wide significant hits
not reaching genome-wide significant in Europeans and a
different lead variant (rs12459249) that was not in high linkage
disequilibrium (LD) with the top variant in Europeans (r2 < 0.6)
[16].
While GWAS provide comprehensive coverage of single

nucleotide polymorphisms (SNPs), there are several well char-
acterized CYP2A6 * alleles with known functional effects on
CYP2A6 activity that are not well captured using standard GWAS
approaches [17]. Incorporating both CYP2A6 * alleles and common
genetic variants identified by GWAS, we previously developed
ancestry-specific genetic risk scores (GRSs) to estimate an
individual’s NMR from their genetic information [18, 19]. These
GRSs explained 33.8% and 32.4% of variance in NMR in European
[18] and African [19] ancestry populations, respectively, and
showed reasonable prediction of slow vs. normal nicotine
metabolizer status in these populations (AUC= 0.78 and 0.73,
respectively) [18, 19]. As has been previously described for GRS
more broadly [13], given differences in LD structure across
ancestral populations these ancestry-specific GRSs showed poor
portability across populations, with the European and African
ancestry GRSs explaining only 18–20% of variance in NMR in the
alternate population [19]. Additionally, Bloom et al. developed an
ancestry-specific GRS for a different nicotine metabolism measure
(D2-cotinine:[D2-nicotine+D2-cotinine]) in Europeans using *
alleles and other variants from the literature [20]. Development
of a universal GRS using multi-ancestry cohorts is another
promising approach, with Baurley et al. reporting similar predictive
performance across African, Asian, and European ancestry
smokers using machine learning algorithms to predict NMR based
on age, sex, ancestry, BMI, and a set of 263 SNPs prioritized from
GWAS (of which 198 were located in the CYP2A6 region) [21].
In summary, previous large-scale efforts have been undertaken

to fine-map the CYP2A6 regional association with NMR in
European ancestry smokers [14]. However, to our knowledge
there has been no previous study fine-mapping the genome-wide
CYP2A6 association in African ancestry smokers. Given growing
interest in developing genetic tools to assist with smoking
counseling and cessation, in the current study we address this
knowledge gap and the potential health disparities it creates.
Building on our previous studies in a group of African Americans
participating in two large smoking cessation trials (Fig. S1), here
we investigated the CYP2A6 association with NMR in more detail
using an updated conditional analysis and new Bayesian fine-
mapping approach to analyze both SNPs and * alleles (including
structural variants) in the region. We also evaluated whether
incorporating the putative causal variants identified by fine-
mapping improved an existing ancestry-specific GRS to genetically

predict NMR in African American populations, and the portability
of this GRS to predict NMR in those of European ancestry.

MATERIALS AND METHODS
Participants
Our study sample comprised African and European ancestry smokers from
two clinical trials of cessation: Pharmacogenetics of Nicotine Addiction
Treatment 2 (PNAT-2; NCT01314001) [10] and Kick-it-at-Swope 3 (KIS-3;
NCT00666978) [22]. The clinical trial protocols were approved by
institutional review boards at all participating sites and the University of
Toronto.
Study design of both PNAT-2 and KIS-3 have been described in detail

elsewhere [10, 22]. Briefly, PNAT-2 randomized eligible adult smokers
(aged 18-65 years, smoking ≥10 cigarettes/day) by NMR group (normal
metabolizers vs. slow metabolizers) to treatment with placebo, nicotine
patch, or varenicline for smoking cessation; all three treatment arms
received behavioural counselling [10]. Approximately 37% of the total
PNAT-2 sample were African ancestry (genetically determined based on
comparison of genome-wide data to population reference panels as
previously described [19], see Quality Control below for further details),
and were included in the primary analyses here (n= 506, Table 1). We
conducted additional analyses evaluating the portability of GRSs devel-
oped to predict NMR in African populations to the subset of PNAT-2
participants that were European ancestry (genetically determined as
previously described [18], n= 933).
KIS-3 randomized eligible adult light smokers (aged ≥18 years, smoking

≤10 cigarettes/day) who self-identified as African American to treatment
with bupropion or placebo for smoking cessation; both treatment arms
received health education counselling [22]. Recruitment for KIS-3 was from
a community-based clinic in Kansas, MO [22]. Participants who were
African ancestry (genetically determined, as previously described [19],
n= 458) were included in the primary analyses (Table 1).

Outcome measure
Nicotine metabolite ratio (NMR, 3’hydroxycotinine/cotinine ratio). We
measured NMR as a continuous variable by determining the ratio of
3’hydroxycotinine/cotinine concentrations in blood samples collected at
the time of clinical trial enrollment, when participants were smoking
regularly. Cotinine and 3’hydroxycotinine concentrations were determined
using liquid chromatography-tandem mass spectrometry, as previously
described [23].

Genetic data collection
Genotyping. To capture common SNPs, we conducted genome-wide
genotyping using the Illumina HumanOmniExpressExome-8 v1.2 array
(Illumina, San Diego, CA, USA) at the Centre for Applied Genomics, Hospital
for Sick Children (Toronto, ON, Canada). We also included a previously
described custom iSelect® add-on, capturing an additional 2,688 variants
associated with nicotine metabolism and/or smoking behaviours for richer
coverage of regions of interest including CYP2ABFGST (chromosome 19),
CHRNA5-A3-B4 (chromosome 15), OCT2 (chromosome 6), and UGT2B
(chromosome 4) [15].
We directly genotyped the following 12 CYP2A6 * alleles: CYP2A6*46

(formerly CYP2A6*1B), CYP2A6*1×2, CYP2A6*4, CYP2A6*9, CYP2A6*12,
CYP2A6*17, CYP2A6*20, CYP2A6*23, CYP2A6*25/*26/*27 (all tagged by

Table 1. Sociodemographic and clinical characteristics of the final study sample.

Total Sample (n= 953) PNAT-2 (n= 504) KIS-3 (n= 449) Standardized Differencea

% Female (n) 57.9 (552) 50.4 (254) 66.4 (298) 0.33

Age ± SD (range) 47.1 ± 10.7 (19–80) 47.3 ± 9.8 (20–65) 46.8 ± 11.6 (19–80) 0.04

BMI ± SD (range) 30.8 ± 7.5 (15–68) 30.5 ± 7.1 (18–58) 31.2 ± 7.8 (15–68) 0.10

Cigarettes/day ± SD (range) 12.3 ± 6.4 (1–40) 16.3 ± 6.3 (5–40) 7.8 ± 2.6 (1–17) 1.76

Cotinine (ng/mL) ± SD (range) 260 ± 128 (14–837) 274 ± 130 (32–837) 244 ± 123 (14–681) 0.24

NMR ± SD (range) 0.35 ± 0.23 (0.01–1.79) 0.33 ± 0.20 (0.01–1.17) 0.38 ± 0.26 (0.02–1.79) 0.23
aStandardized differences (SD) were used to evaluate differences in study covariates between the two clinical trial samples included in the current study, with
SD < 0.1 generally accepted as indicating a minimal difference between groups [58]. SD compare differences in mean/prevalence in units of the pooled
standard deviation, which allows for comparison of the relative balance of variables in different units, and are not influenced by sample size [58].
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rs28399440), CYP2A6*28, CYP2A6*31, CYP2A6*35 as previously described
[18, 19]. These CYP2A6 * alleles have demonstrated functional effects on
CYP2A6 activity, and include structural variants (CYP2A6 gene deletions
and duplications) as well as amino acid changes (see Table S2 for details).
Individuals with structural variants (CYP2A6*1×2, CYP2A6*4, CYP2A6*12,
CYP2A6*34, and CYP2A6*53) were re-genotyped using an approach with
improved accuracy, as previously described [24].

Quality control. We performed quality control for samples and raw
genotype data using PLINK [25], following standard protocols as previously
described [15]. Individuals with discrepant sex, genotype call rate < 0.98,
heterozygosity rate > 3 SDs from sample mean, substantial cryptic
relatedness (PI_HAT > 0.185), or substantial non-African admixture (deter-
mined by visual inspection of multidimensional scaling (MDS) plots) were
excluded. Self-reported African American ancestry was highly concordant
with genetically determined ancestry in our sample (>95% concordance
rate) [15]. Variants with call rate < 0.98, minor allele frequency (MAF) < 0.01,
or Hardy-Weinberg equilibrium (HWE) p-value < 1 × 10−6 were excluded.

Imputation. We imputed chromosome 19 using the Michigan Imputa-
tion Server, which utilizes Minimac4 [26]. Accurately sequencing the
CYP2A6 region is challenging due to extensive variability, regions of high
homology (i.e. including the pseudogene CYP2A7), and complex
structural variation [17]; poor sequencing quality in this region reduces
the quality of imputed genotype calls made using standard reference
panels. Therefore, we compared the results of imputation using two
different cosmopolitan reference panels: the TOPMED Version R2
reference panel (N= 97,256 with ~30% African ancestry from African,
African Caribbean, or African American populations) [27], and the 1000
Genomes Phase 3 reference panel (N= 2504 with ~25% African ancestry
from the following populations: Esan in Nigeria (ESN), Gambian in
Western Division, Mandinka (GWD), Luhya in Webuye, Kenya (LWK),
Mende in Sierra Leone (MSL), Yoruba in Ibadan, Nigeria (YRI), African
Caribbean in Barbados (ACB), people with African ancestry in Southwest
USA (ASW)) [28]. The TOPMED imputation was performed with pre-
phasing of haplotypes using Eagle v2.4 and human genome build hg38
[29]. The 1000 Genomes Phase 3 imputation was performed with pre-
phasing of haplotypes using ShapeIT v2.r79034 [30] and human genome
build hg37, as previously described [31].
Post-imputation quality control was performed using PLINK [25] to

exclude duplicate and multi-allelic variants, as well as variants with poor
imputation quality (INFO < 0.6) or HWE p-value < 1 × 10−6. We then
compared the density of coverage and imputation quality across the two
imputation methods.

Statistical analyses
Association testing. All statistical analyses were done using R Statistical
Software unless otherwise specified [32]. We used a mega-analytic
approach, pooling data from both clinical trials (PNAT-2 and KIS-3) for all
analyses unless otherwise specified.
Based on LD patterns in our sample, and in keeping with prior CYP2A6

fine-mapping efforts in European ancestry smokers [14], we included
variants within 5 Mb of CYP2A6 in our analyses (chromosome
19:38,000,000–43,000,000 bp; Genome Reference Consortium Human Build
38, hg38). We evaluated the association of these variants in the CYP2A6
region with NMR. Given the non-normal distribution of NMR in our sample,
we applied rank-based inverse normal transformation using the R package
RNOmni [33] and used these transformed NMR values for all analyses
unless otherwise specified (Fig. S2).
Association testing was done in SNPTEST v2.5.2 [34] using linear

regression to test the association of imputed genotype dosages with
normalized NMR using an additive genotypic model with adjustment for
age, sex, body mass index (BMI), and two ancestry-informative dimensions
to account for population substructure as covariates.

Stepwise conditional analysis. To identify the number of independent
associations in the CYP2A6 region, we completed stepwise conditional
analysis in SNPTEST v2.5.2 [34] by including genotype dosages for the top
variant as an additional covariate in the base model described above
(effectively conditioning on additive effects of the top variant), and
repeating this procedure until no further association signals reached
genome-wide significance (p < 5 × 10−8). Regional association plots were
constructed using LocusZoom, with LD information from the 1000
Genomes Phase 3 African populations reference panel [35].

Bayesian fine-mapping. To identify potentially causal variants in the
CYP2A6 region, we used FINEMAP v1.4 specifying a maximum of 20
potential causal variants [36]. FINEMAP performs Bayesian fine-mapping
using a shotgun stochastic search method to identify the most likely causal
configuration of variants, given association summary statistics and local LD
patterns [36]. We also performed exploratory functionally informed fine-
mapping in FINEMAP [36] by assigning a higher prior probability to CYP2A6
* alleles (prior probability = 0.70 for these variants being causal) compared
to non-* allele variants (prior probability = 0.50). Input summary statistics
for FINEMAP were obtained as described above using SNPTEST v2.5.2 [34],
and the input SNP correlation matrix was computed from genotype
dosages in our sample using LDstore v2.0 [37]. Regional association plots
were constructed using R [32].

Variant annotation. To annotate variants identified in our analyses we
used RegulomeDB [38], a publicly available database that estimates a
variant’s likelihood of having a regulatory function using a probability
score that ranges from 0 to 1 (with 1 being most likely to be a regulatory
variant). The probability score is constructed based on a machine learning
model integrating functional genomic data including ChIP-seq signal,
DNase-seq signal, information content change, and DeepSEA scores [38].
We also evaluated whether variants were known to influence expression

of genes encoding functional proteins using publicly available expression
quantitative trait loci (eQTL) data from the Genotype-Tissue Expression
(GTEx) Project [39]. The GTEx Project eQTL analysis was based on whole
genome sequencing and RNA-seq data collected from 838 donors ( ~ 13%
African ancestry) across 49 tissues. Given the potential misidentification of
CYP2A6 transcripts as pseudogene CYP2A7 due to high sequence
homology, we considered eQTL data for pseudogene CYP2A7 along with
all other protein-coding genes. The data used for the analyses described in
this manuscript were obtained from the GTEx Portal on 12/04/2024.

Incorporation of putative causal variants into an existing genetic risk score
(GRS) for NMR. To investigate whether Bayesian fine-mapping improved
the predictive power of genetically determined NMR in African American
smokers, we compared our previously described GRS for this ancestral
population [19] (referred to here as the original GRS) to GRSs including
putative causal variants identified by fine-mapping in the current study.
The original GRS included eight CYP2A6 * alleles (*1×2, *4, *9, *12, *17, *20,
*25/*26/*27, *35) and three LD-independent genome-wide significant SNPs
(rs12459249, rs111645190, rs185430475) identified in an earlier conditional
analysis of the CYP2A6 region [15]. The initial GRS estimation was
constructed using mentholated cigarette use as an additional covariate,
and explained 32.4% of the variance in log-NMR [19]. We elected to not
adjust for menthol in the current study in order to maximize sample size
(10% of participants were missing menthol data) and because menthol
adjustment did not appreciably alter SNP effects on NMR [31]. For
harmonization with data used in the current study, we therefore
recalculated the weights for all variants in the original GRS using the
analytic approach described below (without adjustment for mentholated
cigarette use), and with CYP2A6 * allele genotypes obtained using a more
recent genotyping approach with improved accuracy [24].
The updated GRS included all eight CYP2A6 * alleles from the original

GRS and the six LD-independent putative causal variants identified by
FINEMAP as the lead variant in their respective credible set. We did not
include the three GWAS conditional hits in the CYP2A6 region from the
original GRS [19] in our updated GRS given that two of these SNPs
(rs12459249 and rs111645190) were in high LD (r2 > 0.80) with putative
causal variants identified by fine-mapping (rs10853742 and rs28399451,
respectively) and the remaining SNP (rs185430475) did not show robust
association with NMR in our updated analysis (p > 1 × 10−4). To construct
the updated GRS, the effect size of each putative causal variant was
estimated separately in KIS-3 and PNAT-2 by association testing in
SNPTEST v2.5.2 [34] using linear regression to test the association of
imputed genotype dosages with square-root transformed NMR as the
outcome variable using an additive genotypic model with adjustment for
age, sex, BMI, and two ancestry-informative dimensions to account for
population substructure as covariates. Given that the overall variance in
log-NMR explained was comparable for GRSs with variant weights derived
from linear regression against square-root or rank-transformed NMR,
square-root transformed NMR was used for comparability of weights with
the original GRS [20]. The overall effect size for each variant was then
estimated in the total sample (KIS-3 and PNAT-2) by fixed-effects meta-
analysis using the meta v1.7 R package [40], followed by multiplication of
the resultant β coefficient by the standard deviation of the sqrt-NMR to
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Fig. 1 Conditional analysis of the CYP2A6 regional association with NMR in African ancestry smokers. Five independent associations were
identified by conditional analysis (a–e), including CYP2A6 deletion variant CYP2A6*4 (b); after conditioning on these five variants (a–e), there
were no genome-wide significant associations remaining in the region (f). Genomic positions based on Genome Reference Consortium build
38, hg38.
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unstandardize the scores [19]. The GRS was then computed for each n
individual in the total sample as follows, where d refers to the number of
risk alleles and β refers to the effect size for each i variant included in the
GRS:

wGRS ¼
Xn

i¼1

βi � di

To evaluate the performance of the updated and original GRSs [19], we first
calculated the variance in log-transformed NMR (log-NMR, which best
represents the nicotine clearance rate [41]) explained by each GRS in linear
regression models of log-NMR ~ GRS using the R function lm [32]. We also
evaluated the variance in log-NMR explained by a GRS that included only
the five variants identified by conditional analysis, and the six putative
causal variants identified by FINEMAP.
Next, we compared the transferability of the updated and original GRSs

[19] from African to European populations by calculating the variance
explained in log-NMR by each GRS in the European ancestry subset of
PNAT-2 (N= 933).

RESULTS
Clinical characteristics of the final discovery sample are presented
in Table 1. From PNAT-2, two samples were excluded due to
missing or outlying normalized NMR values. From KIS-3, eight
samples were excluded due to cotinine concentrations <10 ng/mL
(which suggest non-daily smoking [42]), and one sample was
excluded due to missing BMI. After quality control, our final
sample therefore comprised 953 African American smokers
(n= 504 from PNAT-2, and n= 449 from KIS-3).
Following imputation using the TOPMED reference panel,

104,131 variants in the CYP2A6 region (chromosome
19:38,000,000-43,000,000 bp; Genome Reference Consortium
Human Build 38, hg38) were available for analysis. The median
INFO score for variants in the CYP2A6 region was 0.97 (mean= 0.92,
SD= 0.096), suggesting high imputation quality. After imputation
using the 1000 Genomes reference panel, 46,154 variants in the
CYP2A6 region were available for analysis with median INFO score
0.91 (mean = 0.88, SD= 0.110). Given the denser coverage and
higher quality genotypes obtained from imputation using the
TOPMED reference panel (Fig. S3), we used imputed genotype
dosages from these data for our analyses along with 12 directly
genotyped CYP2A6 * alleles.
Within the CYP2A6 region a total of 113 variants showed robust

association (p < 5 × 10−8) with NMR, including four of the 12 *
alleles genotyped in our sample (CYP2A6*17, CYP2A6*9, CYP2A6*4,
and CYP2A6*25/*26/*27, Table S2). Overall, these CYP2A6 * alleles
were less strongly associated with NMR than other variants in the
region (p-values ranging from p= 2.06 × 10−26 for CYP2A6*17 to
p= 4.40 × 10−8 for CYP2A6*25/*26/*27, Table S2). The strongest
association was observed for rs11878604 (beta=−0.689,
p= 4.75 × 10−44), a SNP located ~16 kb 3’ of CYP2A6 (Fig. 1). This
lead variant had a RegulomeDB probability score of 0.69 (scores
range from 0 to 1, with 1 most likely to represent a variant with
regulatory function) [38]; rs11878604 was also identified as an
adrenal eQTL for CYP2A6 in the GTEx Project, with the allele
associated with lower NMR (i.e. reduced CYP2A6 activity) showing
association with decreased CYP2A6 expression in adrenal gland
tissue (Table S1, Fig. S4).
Stepwise conditional analysis with SNPTEST [34] identified five

independent associations with NMR in the CYP2A6 region (Fig. 1,
Table S1). Only the lead variant (rs11878604) was identified as an
eQTL for CYP2A6 in GTEx. After conditioning on imputed
rs11878604 genotype dosage, a second independent association
was identified with the directly genotyped CYP2A6*4 allele
(beta=−1.033, p= 8.54 × 10−13). The CYP2A6*4 allele confers a
whole gene deletion of CYP2A6, and individuals with this allele
have correspondingly decreased CYP2A6 activity [43, 44]. Notably,
in our sample CYP2A6*4 was not in LD with any other individual

variant in the region (all r2 < 0.15), consistent with previous
literature indicating that CYP2A6*4 cannot be tagged by nearby
SNPs [45]. CYP2A6*4 was not genotyped in the 1000 Genomes
Phase 3 African populations used as an LD reference for
construction of regional association plots by LocusZoom, and as
such there is no LD information displayed on the CYP2A6*4
regional association plot (Fig. 1b). Conditioning on rs11878604
and CYP2A6*4 revealed a third independent association with
rs10853742 located ~9 kb 3’ of CYP2A6 (beta = 0.405,
p= 5.65 × 10−12), a SNP with a RegulomeDB probability score of
0.61 that was identified as a skin eQTL for CYP2A7 in the GTEx
Project (Table S2, Fig. S4). Conditioning on rs11878604, CYP2A6*4,
and rs10853742 identified a fourth independent association with
rs28399451 (beta=−0.340, p= 5.59 × 10−10). Located within
intron 6 of CYP2A6, rs28399451 had a RegulomeDB probability
score of 0.135 and was identified as a skin and peripheral nerve
eQTL for CYP2A7 in the GTEx Project (Table S1, Fig. S4).
Conditioning on genotype dosages of these four variants
(rs11878604, CYP2A6*4, rs10853742, rs28399451) identified a fifth
independent association with rs116670633 (beta=−0.676,
p= 6.27 × 10−10); this SNP was located ~85 kb 5’ of CYP2A6, had
a RegulomeDB probability score of 0.135, and was not identified
as an eQTL in the GTEx Project. After conditioning on these five
variants, there were no remaining genome-wide associations with
NMR (Fig. 1). These findings were consistent when association
testing was run independently in PNAT-2 and KIS-3 and then
meta-analyzed using an inverse-variance weighting approach
(Table S1).
Bayesian fine-mapping with FINEMAP [36] identified six causal

variants contributing to the CYP2A6 region association with NMR
(posterior probability of six causal variants in the region,
PP= 0.67). The top causal configuration included CYP2A6*4,
rs116670633, CYP2A6*9, rs28399451, rs8192720, and rs10853742;
the posterior probability of these six variants representing the true
causal configuration was 0.090, and together they explained 31%
of the heritability of NMR (Fig. 2). In addition to the top causal
configuration, Bayesian fine-mapping identified six “credible sets”
(Fig. 2, Table 2); each credible set can be interpreted as containing
a causal variant with 95% coverage probability. The lead variants
in credible sets 1–5 were highly likely to be causal (CYP2A6*4,
rs116670633, CYP2A6*9, rs28399451, rs8192720; PIP for these
variants being truly causal >0.50). Four of the putative causal
variants identified by FINEMAP were also identified by conditional
analysis (CYP2A6*4, rs116670633, rs28399451, rs10853742).
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Fig. 2 Bayesian fine-mapping of CYP2A6 association with NMR.
Top causal configuration included CYP2A6*4, rs116670633, CYP2A6*9,
rs28399451, rs8192720, and rs10853742; posterior probability of this
top configuration being truly causal = 0.090; NMR heritability
explained by top configuration (h2) = 0.31.
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Exploratory functionally-informed FINEMAP analyses specifying a
maximum of six causal variants and upweighting the 12 CYP2A6 *
alleles, which have well characterized functional effects on
CYP2A6 activity (summarized in Table S2), provided consistent
results and did not identify any alternative putative causal
variants.
The six credible sets were made up of differing numbers of

putatively causal variants, typically in high LD with each other
(Fig. S5). Credible set 1 included only CYP2A6*4 (PIP= 1), which
was not in significant LD with any other variant in the region. As
described above, CYP2A6*4 is a whole-gene deletion variant
conferring absent CYP2A6 activity [44]; because it is a structural
variant, CYP2A6*4 eQTL data is not available in existing eQTL
datasets which use array-based technology for genotyping.
Credible set 2 included only rs116670633, which as described
above, is a SNP located ~85 kb upstream of CYP2A6 with limited
evidence of regulatory function (PIP= 0.985); this variant was not
in LD with any of the variants in other credible sets, but was in low
LD with CYP2A6*35 (r2= 0.46). Credible set 3 included CYP2A6*9
(PIP= 0.890), a functional promoter region variant that decreases
CYP2A6 activity, along with 22 other SNPs in LD with CYP2A6*9
that each had very low PIPs (PIP range = 0.001–0.02, Table S3).
Credible set 4 included three variants in high LD with each other
(Fig. S5), with lead variant rs28399451 (PIP= 0.603). The variants in
credible set 4 were also in moderate LD with CYP2A6*17
(r2= 0.67–0.70). One variant in credible set 4 (rs28399439) was
an adipose eQTL for CYP2A6 in GTEx, although unexpectedly the
allele associated with lower NMR (i.e. slower CYP2A6 activity) was
associated with increased CYP2A6 expression (Table 2, Fig. S4). The
remaining two variants in credible set 4 (lead variant rs28399451
and rs4803380) were skin and peripheral nerve eQTLs for CYP2A7.
Credible set 5 included three variants in high LD with each other
(Fig. S5), with the top variant being rs8192720 (PIP= 0.574). The
variants in credible set 5 were in moderate LD with CYP2A6*25/
*26/*27 (r2= 0.50–0.53) and low LD with CYP2A6*20
(r2= 0.37–0.39); these three variants were not identified as eQTLs
in GTEx (Table 2). Credible set 6 included four variants, with lead
variant rs10853742 (PIP= 0.448). The variants in credible set 6
were in low LD with the lead variant from conditional analysis
(rs11878604, r2= 0.46). All four variants in credible set 6 were skin
eQTLs for CYP2A7 in GTEx (Table 2, Fig. S4).
Incorporating the putative causal variants identified through

fine-mapping into our existing ancestry-specific GRS [19]
resulted in a new “updated GRS.” As a benchmark, the “original
GRS” comprising eight CYP2A6 * alleles and three SNPs
(rs12459249, rs111645190, rs185430475) identified in an earlier
conditional analysis [15] explained 33.2% of the variance in log-
NMR in our sample of African American smokers (Fig. 3a,
Table 3). The updated GRS included the same eight CYP2A6 *
alleles, excluded rs185430475, and included four new SNPs
identified by fine-mapping (rs11667603, rs8192720, rs10853742,
rs28399451). Two of these new putative causal variants
(rs10853742, rs28399451) were represented by tag SNPs in the
original GRS in the African ancestry sample (Fig. S5), while in the
European ancestry sample only rs10853742 was represented by
a proxy variant in the original GRS (r2= 0.95 with rs12459249).
The updated GRS showed similar prediction of NMR as the
original GRS within the African ancestry training sample
(variance in log-NMR R2= 0.345 vs. 0.332 for the original GRS;
Fig. 3a, c, Table 3), and improved prediction of NMR in an
independent European ancestry sample (R2= 0.282 vs. 0.228 for
the original GRS; Fig. 3b, d). In comparison, a GRS including the
six FINEMAP putative causal variants alone improved prediction
of NMR to a lesser degree (R2= 0.334 vs. 0.332 for the original
GRS in African and R2= 0.251 vs. 0.228 for the original GRS in
European ancestry; Table 3), suggesting the SNPs identified by
fine-mapping provide independent predictive information from
CYP2A6 * alleles.Ta
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DISCUSSION
In this study we evaluated the strong regional association of
CYP2A6 with NMR among African Americans participating in two
large clinical trials of smoking cessation, performing an updated
conditional analysis and novel fine-mapping analyses which
improved an existing tool to genetically predict NMR. Importantly,
our analyses focused on treatment-seeking individuals participat-
ing in clinical trials of smoking cessation, which excluded
individuals with serious medical or psychiatric comorbidities
(including comorbid substance use) and those who were pregnant
or breastfeeding. As such, an important future direction will be to
expand these analyses in community samples of smokers to
evaluate external validity in the general population.
Previous conditional analysis of the CYP2A6 regional association

in this sample described by Chenoweth et al identified three
independent associations (rs12459249, rs111645190,
rs185430475) [15]; this earlier work did not include CYP2A6 *
alleles, and used an older reference panel for genotype
imputation resulting in low-density SNP coverage. The conditional
analyses and fine-mapping presented here included denser SNP
genotyping coverage and 12 directly genotyped CYP2A6 * alleles
(several of which are structural variants with robust functional
effects on CYP2A6 activity) [46–55], providing a more compre-
hensive view of variation in the CYP2A6 region than any previous
study in this population. In addition to confirming two previously
reported CYP2A6 associations with NMR in African American
smokers, our conditional analysis identified three novel associa-
tions: rs11878604, CYP2A6*4 (full CYP2A6 gene deletion), and
rs116670633.
In this first fine-mapping effort of the CYP2A6 regional

association with NMR in African populations to date, we identified

six causal variants in the region (posterior probability, PP= 0.67).
Prior fine-mapping using a similar analytic approach in European
populations identified 13 causal variants in the region. The
variants comprising the top causal configuration in our African
ancestry sample were distinct from those in Europeans (CYP2A6*4,
rs116670633, CYP2A6*9, rs28399451, rs8192720, rs1085374; PP=
0.090), and explained 31% of the heritability of NMR. Interestingly,
CYP2A6*9 is a known functional allele conferring reduced CYP2A6
activity [49], while the remaining four lead SNPs identified by
FINEMAP were not associated with altered CYP2A6 expression in
GTEx (recognizing that regulatory information in publicly available
databases is limited by methodological challenges inherent in
measuring CYP2A6 gene expression levels due to structural and
copy number variation in this region, as well as high sequence
homology with pseudogene CYP2A7). Importantly, the top
putative causal variant identified was CYP2A6*4 (PIP= 1), a loss-
of-function mutation conferring whole gene deletion of CYP2A6.
CYP2A6*4 is not included in the vast majority of genomic studies
because it cannot by genotyped accurately using array-based
technologies, and is not tagged by any individual SNP in the
region [45]. The strong evidence we observed for a causal
association between CYP2A6*4 and NMR highlights the impor-
tance of including CYP2A6 structural variants in future genetic
studies of tobacco-related phenotypes. To help facilitate their
inclusion we recently developed a method to impute CYP2A6
structural variants from SNP haplotypes obtained using standard
genotyping array data (sensitivity >60%, false positive rate <1% in
both African and European ancestry populations) [24].
Finally, we demonstrated that an updated GRS including the

putative causal variants identified in African American smokers
(versus those identified by conditional analysis in an earlier GRS)

Fig. 3 Comparison of an existing African ancestry-specific genetic risk score (“Original GRS”) for NMR with a genetic risk score
incorporating newly identified putative causal variants (“Updated GRS”). Variance in log-NMR explained by the original GRS in African
American smokers (a) and its portability to European ancestry smokers (b), as well as the updated GRS in African American smokers (c) and its
portability to European ancestry smokers (d). The original GRS comprised * alleles and SNPs identified in a previous conditional analysis,
whereas the updated GRS replaced these SNPs with putative causal SNPs identified by fine-mapping (for details of the variants included in the
original and updated GRS, see Table 3). R2 represents the variance in log-NMR explained.
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Table 3. Effects of incorporating top putative causal variants identified by fine-mapping into an existing genetic risk score (“Original GRS”) to predict
NMR in African American smokers.

Model Variants Included Ref
Allele

Effect Allele Betaa GRS
Weightb

African American European

Effect
Allele
Freqc

R2, d Effect
Allele
Freqc

R2, d

1 - Original GRS CYP2A6*4e,f — Deletion −0.935 −0.169 0.023 0.332 0.003 0.228

CYP2A6*1×2e — Duplication 0.686 0.124 0.013 0.008

CYP2A6*9
(rs28399433)e,f

A C −0.473 −0.086 0.083 0.066

CYP2A6*12e — CYP2A6/2A7
hybrid

−0.570 −0.103 0.006 0.023

CYP2A6*17
(rs28399454)e

C T −0.699 −0.127 0.107 0.001

CYP2A6*20
(rs568811809)e

TT — −0.704 −0.127 0.015 0.000

CYP2A6*25/*26/*27
(rs28399440)e

A G −0.782 −0.142 0.022 0.000

CYP2A6*35
(rs143731390)e

T A −0.345 −0.062 0.020 0.000

rs12459249e,g T C 0.578 0.105 0.674 0.670

rs111645190e,g G A −0.633 −0.115 0.139 0.000

rs185430475e,g C G 0.735 0.133 0.013 0.000

2 - Conditional analysis
variants

rs11878604 T C −0.651 −0.118 0.232 0.295 0.077 0.224

CYP2A6*4f — Deletion −0.935 −0.169 0.023 0.003

rs10853742f G C 0.591 0.107 0.669 0.664

rs28399451f G A −0.611 −0.111 0.139 0.024

rs116670633f T G −0.407 −0.074 0.031 0.002

3 - FINEMAP top causal
variants

CYP2A6*4e,f — Deletion −0.935 −0.169 0.023 0.334 0.003 0.251

CYP2A6*9
(rs28399433)e,f

A C −0.473 −0.086 0.083 0.066

rs10853742f G C 0.591 0.107 0.669 0.664

rs28399451f G A −0.611 −0.111 0.139 0.024

rs8192720f G A −0.743 −0.134 0.039 0.003

rs116670633f T G −0.407 −0.074 0.031 0.002

4 - Updated GRS
Original GRS *
alleles+ FINEMAP top
causal variants

CYP2A6*4e,f — Deletion −0.935 −0.169 0.023 0.345 0.003 0.282

CYP2A6*1×2e — Duplication 0.686 0.124 0.013 0.008

CYP2A6*9
(rs28399433)e,f

A C −0.473 −0.086 0.083 0.066

CYP2A6*12e — CYP2A6/2A7
hybrid

−0.570 −0.103 0.006 0.023

CYP2A6*17
(rs28399454)e

C T −0.699 −0.127 0.107 0.001

CYP2A6*20
(rs568811809)e

TT — −0.704 −0.127 0.015 0.000

CYP2A6*25/*26/*27
(rs28399440)e

A G −0.782 −0.142 0.022 0.000

CYP2A6*35
(rs143731390)e

‘ A −0.345 −0.062 0.020 0.000

rs10853742f G C 0.591 0.107 0.669 0.664

rs28399451f G A −0.611 −0.111 0.139 0.024

rs8192720f G A −0.743 −0.134 0.039 0.003

rs116670633f T G −0.407 −0.074 0.031 0.002

Bold font indicates novel putative causal variants identified in the present study that were not in linkage disequilibrium with variants identified in previous
non-Bayesian analyses.
aBeta reported is from fixed-effects meta-analysis of association testing results in PNAT-2 and KIS-3 samples using linear regression in SNPTEST of genotype
dosage ~ sqrt-NMR with adjustment for age, sex, BMI, and two ancestry-informative dimensions.
bGRS weights were calculated as β * SD(sqrt-NMR) to unstandardize the scores.
cEffect allele frequency observed in our sample.
dVariance in log-NMR explained (R2) by the GRS, estimated using linear regression of log-NMR ~ GRS.
eThese variants were included in the original GRS for NMR in African American smokers described by El-Boraie et al. [19], with beta and GRS weights updated in
the current study as described in Methods.
fThese variants were identified as top putative causal variants by fine-mapping in the current study.
gThese variants were identified by earlier conditional analysis of the CYP2A6 regional association with NMR conducted in the current study sample, described
by Chenoweth et al. [15].
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captured similar amounts of variation in log-NMR in African
ancestry individuals, and improved the portability of the GRS to
European ancestry individuals. Future work evaluating the
performance of our updated GRS in independent validation
samples including diverse ancestry smokers is needed to evaluate
whether this improved portability extends across other ancestries.
One potential explanation for the improved performance of our
African ancestry-specific updated GRS within European smokers is
that fine-mapping identified novel variants influencing NMR that
were not represented in the original GRS (i.e. rs11670633,
rs8192720). Additionally, prior work has demonstrated that
including putative causal variants identified by fine-mapping
improves the transferability of GRS across diverse populations
because of differences in LD structure which result in tag SNPs
from one ancestral population no longer being good proxies for
the underlying true causal variants in other ancestral populations
[56, 57]. Consistent with this, the LD patterns between tag SNPs
included in our original GRS and the four putatively causal SNPs
included in the updated GRS were different in our African and
European samples.
Overall, our results further elucidate the genetic architecture of

the CYP2A6 regional association with NMR among African
American smokers and provide a shortlist of variants that may
causally influence nicotine clearance in this population, which
could be prioritized for investigation in future functional studies of
CYP2A6 activity. In particular, the strong evidence for a causal
association observed between CYP2A6*4 and NMR highlights the
importance of including CYP2A6 structural variants in future
genetic studies of tobacco-related phenotypes. Finally, the
potential utility of genomic data - including genetic risk scores
(GRS) - in medical decision making is growing and complements
the utility of other biomarkers such as NMR, particularly
in situations where NMR measurements are not available or
feasible (i.e. non-smokers). Given that incorporating putative
causal variants improved trans-ancestry portability of an existing
GRS for NMR in this study, our results demonstrate the broader
value of fine-mapping efforts as a tool to refine and improve the
potential clinical utility of GRS across diverse populations which
may ultimately help address potential health disparities exacer-
bated by existing Euro-centric GWAS data [13].
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