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Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with a complex pathogenesis. Senile plaques composed of
the amyloid-β (Aβ) peptide in the brain are the core hallmarks of AD and a promising target for the development of disease-
modifying therapies. However, over the past 20 years, the failures of clinical trials directed at Aβ clearance have fueled a debate as
to whether Aβ is the principal pathogenic factor in AD and a valid therapeutic target. The success of the recent phase 3 trials of
lecanemab (Clarity AD) and donanemab (Trailblazer Alz2), and lessons from previous Aβ clearance trials provide critical evidence to
support the role of Aβ in AD pathogenesis and suggest that targeting Aβ clearance is heading in the right direction for AD
treatment. Here, we analyze key questions relating to the efficacy of Aβ targeting therapies, and provide perspectives on early
intervention, adequate Aβ removal, sufficient treatment period, and combinatory therapeutics, which may be required to achieve
the best cognitive benefits in future trials in the real world.
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In 1901, Dr. Alois Alzheimer, a German psychiatrist, saw a female
patient who presented with early-onset progressive cognitive
impairment and abnormal behaviors. After her death, an autopsy
of the brain revealed two now ‘classical’ neuropathological lesions:
senile plaques and neurofibrillary tangles. Because the pathologi-
cal changes were different from those found in others with
cognitive disorders and mental diseases at that time, he
considered it to be an independent disease and Kraepelin
subsequently named it Alzheimer’s disease (AD) [1]. In the
1980s, amyloid-β (Aβ), the main component of the senile plaques
and cerebral amyloid angiopathy was identified [2, 3].
Aβ is a metabolite of the amyloid precursor protein (APP), a type

I transmembrane protein concentrated at neuronal synapses, and
the proteolytic Aβ fragment is situated in its transmembrane
domain. APP can be degraded by either the “amyloidogenic
pathway” or “the non-amyloidogenic pathway” [4]. The non-
amyloidogenic pathway of APP is sequentially mediated by α-
secretase and γ-secretase, which doesn’t produce Aβ because the
cleavage site of α-secretase is located within the Aβ fragment. In
the amyloidogenic pathway, APP is first cleaved by β-secretase in
the extra-membrane proximal region to release the soluble
N-terminal (sAPPβ), and the residual C-terminal (CTF-β) on the
membrane is then released by γ-secretase to produce Aβ which is
then located into the extracellular compartment. Physiologically,
Aβ monomers may regulate excitation/ inhibition balance and

synaptic vesicle transport in nerve cells, and are primarily involved
in long term potentiation and synaptic plasticity [4]. However, in
the pathological process of AD, Aβ is not efficiently cleared, and
aggregates to form oligomers, protofibrils, fibrils and, ultimately,
plaques and perivascular deposits, which are the neuropathog-
nomonic hallmarks of AD required for definitive diagnosis [5]. With
the discovery of pathogenic mutations in familial autosomal
dominant AD, which lead to overproduction of Aβ in the brain, Aβ
accumulation was identified as the proximal causative pathway of
AD, and became the most widely accepted theory for the etiology
of AD [6–9]. Exploration of targeting Aβ for diagnosis and therapy
of AD was then initiated.

DEVELOPMENT OF ANTI-Aβ THERAPEUTICS
Since Aβ is produced by sequential cleavage of APP by β-secretase
and γ-secretase, β-secretase inhibitors and γ-secretase inhibitors/
modulators have been developed for the treatment of AD in order
to reduce the production of Aβ, but were terminated prematurely
due to adverse cognitive effects. After due consideration, it was
concluded that β-secretase inhibitors and γ-secretase inhibitors
(GSI) were not suitable for the treatment of AD because they
would inhibit the physiological effects of β-secretase and γ-
secretase and bring about a series of adverse effects. However,
current debate is considering their re-introduction at lower doses.
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Similarly, γ-secretase modulators (GSM) and other small molecules
targeting Aβ aggregation are still in development.
In 1990, Mönning et al. discovered the presence of anti-Aβ auto-

antibodies in humans [10] and subsequent studies found that anti-
Aβ antibodies have the ability to inhibit Aβ aggregation and
promote Aβ depolymerization [11, 12]. In 1999, the late Dale
Schenk pioneered anti-Aβ immunotherapy by administering Aβ42
vaccine to PDAPP transgenic mice and confirmed that active
immunotherapy could attenuate AD pathologic change and
improve cognitive function [13]. In 2002, AN-1792 entered clinical
trials as the first synthetic vaccine against Aβ42, which was
unfortunately terminated prematurely because of adverse effects
from vasculitis/encephalitis because of T-cell activation [14].
Subsequently, to avoid activation of T cells, scientists proposed
passive immunotherapy, i.e., direct infusion of antibodies. 10D5
and pabAβ1-42 were the first antibodies shown to reduce Aβ
levels in the mouse brain by 81% and 93%, respectively [15]. In
2005, passive immunotherapy entered clinical trials. Bapineuzu-
mab, the first tested antibody in clinical trials, showed that
although it tended to improve cognitive function, the results were
not statistically significant [16]. After thorough analysis, it was
considered that the lack of benefit may have been due to late
intervention or insufficient dosage. Subsequently, more than five
Aβ-targeted monoclonal antibodies have been studied in clinical
trials, mainly in prodromal and early AD patients, but most of
them failed to meet their primary objectives [17–20].The
consecutive failures of clinical trials targeting Aβ raised doubts
about whether Aβ is the major pathogenic agent or a valid target
for AD [21].
AD is currently defined by pathological hallmarks, but these

could be either the causes or the results of the disease. So,
whether Aβ is a consequence, or an etiological agent of AD is a
critical question to be answered. Previous studies (especially
genetic) provided strong evidence to confirm the pivotal role of
Aβ in the pathogenesis of AD. However, to test whether Aβ is the
causative agent, the most critical evidence needed is the efficacy
of disease-modifying therapies targeting Aβ accumulation which
improve both the pathologic changes and cognitive decline in AD
patients.

WHAT HAS THE SUCCESS OF LECANEMAB AND DONANEMAB
CLARIFIED?
In 2021, the anti-Aβ auto-antibody aducanumab, which was
potent in clearing brain Aβ deposits and effective in delaying
cognitive decline in AD patients in a phase 3 trial (EMERGE), was
given accelerated approval by the Food and Drug Administration
(FDA) for AD [22]. This decision caused intense debate in the
scientific community, as another phase 3 trial of aducanumab
(ENGAGE), did not show a similar cognitive benefit [19].
Just as the debate was surging, the Clarity AD trial, a phase 3

trial testing the efficacy of anti-Aβ antibody, lecanemab, met all of
its expected endpoints [23]. This trial included 1,795 subjects with
early AD including mild cognitive impairment (MCI) and mild
dementia due to AD, at the highest dose (10 mg/kg intravenously
biweekly). After 18 months of treatment, all the primary and
secondary outcomes were met. Compared with placebo, lecane-
mab reduced global cognitive decline measured with the Clinical
Dementia Rating-Sum-of-Boxes (CDR-SB) by 27% at 18 months,
which represented a treatment difference in the score change of
−0.45. Statistically significant improvements were also achieved in
all secondary endpoints, with the key secondary endpoint being
the change in brain levels of Aβ measured by Aβ positron
emission tomography (PET), the AD Assessment Scale-cognitive
subscale14 (ADAS-cog14), the AD Composite Score (ADCOMS) and
the AD Cooperative Study-Activities of Daily Living Scale for Mild
Cognitive Impairment (ADCS MCI-ADL). Aβ-PET showed that after
18 months of treatment, the intracerebral Aβ load in all patients

treated with lecanemab was below 30 centiloids, with an average
reduction of 59.1 centiloids. Assessing the patients’ clinical
function through different scales, the ADAS-cog14 showed that
the patients’ cognitive decline slowed by 26%, and the ADCOMS
showed a 24% improvement in patients’ general abilities, and the
ADCS MCI-ADL showed a 37% slowing in functional decline, all of
which were consistent with the results of the primary outcome
measured by the CDR-SB. Last but not least, patients treated with
lecanemab had significantly lower plasma and CSF levels of
phosphorylated Tau (p-Tau), significantly attenuated Tau- PET
signal in the temporal lobe, and lower plasma neurofilament light
chain (NfL) levels.
In summary, the Clarity AD trial demonstrates that the clearance

of Aβ from the brain can slow the progression of cognitive decline
and attenuate the advancement of AD. This finding is further
supported by the recent phase 3 trial of donanemab [24], which
exhibited a remarkable reduction of intracerebral Aβ load by 88
centiloids after 72 weeks of treatment and showed that
donanemab could delay cognitive decline by up to 35% on its
primary endpoint (iADRS). Moreover, the study revealed that 52%
donanemab subjects achieved complete clearance of Aβ plaques
from the brain within 12 months treatment, and 47% of the
subjects did not show any clinical progression (defined as no
decline in the CDR-SB score) [24].It is worth noting that even
though these three antibodies have been successful, it is not
appropriate to compare their efficacy solely based on the
outcomes of the different trials. Future vigorous studies should
be designed for head-to-head comparisons between the different
monoclonal antibodies to determine the superiority.

IS Aβ THE ETIOLOGICAL AGENT?
To determine whether a substance is a causative factor, there are
two major criteria: one is whether the substance can cause the
occurrence of the disease; another is whether targeting this
substance has a modifying effect on disease progression. A series
of studies have now shown that the increased production and/or
deficient clearance of Aβ can lead to the occurrence of AD,
including: (1) in familial AD, Aβ overproduction due to mutations
in the APP and presenilin (PS) genes is highly penetrant for the
development of AD [25]; (2) in the elderly population, the APP
gene mutation that decreases Aβ production significantly reduce
the onset of AD [26]; (3) homozygotes of APOE4 alleles that
increase Aβ accumulation also increase the risk of sporadic AD by
10-14 times [27]; (4) brain accumulation of Aβ is the initial event of
the AD process even before cognitive impairment in both familial
and sporadic AD [28, 29]; (5) experimental studies confirm the
neurotoxic effects of Aβ [30]. However as noted above, a series of
clinical trials on Aβ production and clearance failed to achieve
significant effects on cognition and function, thus raising doubts
on Aβ as the etiologic factor.
The Clarity and Trailblazer Alz2 AD trials have shown that after

clearing Aβ in the brain, not only is the cognitive and functional
decline slowed, but also the progression of AD is attenuated.
These trials provide strong support for the idea that Aβ is a
pathogenic factor and a viable therapeutic target, as they
demonstrate that reducing brain Aβ accumulation through Aβ
removal can effectively retard disease progression by slowing
cognitive decline. In addition, there is clear evidence that the
more the Aβ deposition is cleared, the lower the rate of cognitive
decline in the analysis of pooled data from previous immunother-
apy trials [31]. These data support the proposition that clearance
of Aβ will bring cognitive benefits.
It should be noted that in the Clarity and Trailblazer Alz2 AD

trials, the benefits of cognitive function are limited [21], and the
patients’ cognition continues to decline, suggesting that other
factors, such as Tau hyperphosphorylation, gliosis and oxidative
stress, are at play in the development of AD. Therefore, future
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work is needed to investigate to what extent Aβ contributes to the
development of AD, and how Aβ interacts with other pathological
processes to drive the progression of AD.

PERSPECTIVES ON Aβ CLEARANCE THERAPIES
The success of the Clarity and Trailblazer Alz2 AD trials suggests
that targeting Aβ is the right direction for future drug develop-
ment of AD. It is expected that with the success of these trials, Aβ-
targeting therapies will become a focal point in drug develop-
ment. Several key questions need to be answered to validate and
enlarge the therapeutic benefits of Aβ-targeting therapies (Fig. 1).

Mechanisms of passive immunotherapy
Anti-Aβ antibodies function through multiple mechanisms to
eliminate Aβ from both the blood and the brain. In the blood,
these antibodies bind specifically to Aβ, preventing its re-entry
into the brain across the blood-brain barrier (BBB). The disruption
of the balance of free Aβ between the central and peripheral
compartments facilitates the efflux of Aβ from the brain.
Approximately 0.1–0.3% of the anti-Aβ antibodies penetrate the
BBB and directly bind to Aβ aggregates. Some antibodies can
solubilize Aβ fibrils and inhibit the aggregation of Aβ into plaques.
This promotes clearance by enhancing the accessibility of Aβ to
other clearance mechanisms. More importantly, antibodies can
opsonize Aβ, marking it for recognition by microglia. Subse-
quently, microglia engulf and degrade the Aβ through a process
of phagocytosis, effectively clearing Aβ from the brain. These
mechanisms work synergistically to clear Aβ [32], although further
investigation is necessary to ascertain which mechanism plays a
dominant role.

In terms of immunotherapy, the decline and dysregulation of
immune function are also significant factors contributing to AD
[33]. GWAS conducted on AD populations have identified a series
of AD risk genes that are highly expressed in microglia and
macrophages, indicating the crucial role of the innate immune
system in AD [34]. In the aging brain, the phagocytic efficiency of
microglia declines, resulting in ineffective clearance of Aβ and
continuous accumulation of Aβ. Studies have demonstrated that
the impaired ability of microglia to engulf Aβ is a major
mechanism underlying the development of AD [35]. Furthermore,
microglia release a substantial amount of pro-inflammatory factors
and neurotoxic molecules which may contribute to cognitive
impairment [36]. Moreover, in the aging brain, the reduced uptake
and phagocytic capacity of peripheral monocytes towards Aβ, the
dysregulation of T and B cell functions, and the imbalance
between pro-inflammatory and anti-inflammatory factors may be
crucial mechanisms in the progression of AD [37]. Therefore,
targeting immune function represent a promising approach for
therapy in AD.

At what stage will Aβ clearance produce maximal benefit?
It is likely that the failure of previous Aβ clearance trials could be
attributed to late timing of the intervention, i.e., in the dementia
phase of AD [38]. And this leads to the consensus of early
intervention. It has been shown that AD begins 15-20 years before
the onset of clinical symptoms and progresses through asympto-
matic preclinical, and symptomatic prodromal, and dementia
stages [39]. In recent trials, intervention has been shifted from the
dementia phase to prodromal and preclinical stages [19, 40–42].
The pattern of efficacy in cognitive impairment slowing in
previous trials in MCI and mild dementia stages suggest that the

Fig. 1 Perspectives on Aβ clearance therapies. In the development of AD, Aβ firstly accumulates and deposits as plaques and perivascular
aggregate and aggregated Tau in neurons. Other processes such as glycosis, oxidative stress, and microvascular dysfunction also participate.
The Clarity AD trial and others demonstrate that clearance of Aβ brings cognitive benefits. Early intervention, targeting different Aβ species,
robust Aβ clearance, longer intervention time and targeting multiple processes are essential to further validate and improve efficacy of Aβ
targeting therapies.
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Aβ clearance treatment in the early clinical phases of AD may be
too late to reverse the progression of the disease. It is well
recognized that there is a functionally compensated stage of the
disease where Aβ accumulation is approaching an advanced
stage, and where subjects have no overt cognitive impairment
[43]. In recent years, it has been argued that Aβ, as a trigger of
AD pathogenesis, may be effective for intervention only in the
preclinical stages of AD [44]. The success of the Clarity and
Trailblazer Alz2 AD trials demonstrate that targeting Aβ is
effective in MCI and mild dementia phases, suggesting that Aβ
still plays a substantial role in the biologically advanced stage,
i.e. not just a trigger effect, and that clinical efficacy can be
achieved with interventions at biologically advanced stages of
the disease. These findings encourage the investigation on the
efficacy of Aβ clearance in moderate-to-severe dementia.

However, the Clarity and Trailblazer Alz2 AD trials also showed
that the clinical benefits were limited when the treatment starts
from the prodromal and dementia stages, even if Aβ accumula-
tion is reduced to normal levels. The underlying reason may lie
in the complex pathophysiology in the advanced stage of the
disease, including Tau aggregation, and synaptic loss. At this
stage, even if the effect of Aβ is removed, other events may form
vicious cycles to promote cognitive deterioration [45]. From all
viewpoints, preclinical intervention seeming to be the best
future approach.

Which species of Aβ should be targeted?
Aβ is produced by the proteolytic cleavage of APP and exists in
various lengths, including the most abundant forms, Aβ40 and
Aβ42. Not all Aβ monomers are toxic [46]. Studies have
confirmed that the toxicity of Aβ is independent of its size
and depends mainly on its conformation, especially the
exposure of the hydrophobic regions of Aβ peptide (residues
16–22 and 30–42) [47].The presence of the two hydrophobic
amino acids at the C-terminus makes Aβ42 more aggregable
than Aβ40, and thus Aβ42 is more toxic. Under physiological
conditions, the production and clearance of Aβ maintain a
balance. However, in AD, excessive Aβ in the brain aggregates
through hydrophobic interactions, forming soluble Aβ oligo-
mers, protofibrils, fibrils and ultimately, plaques and perivascular
deposits. Microinjection of Aβ fibrils into the cerebral cortex of
primates has been shown to cause neurodegeneration, reflect-
ing the neurotoxicity of insoluble Aβ aggregates [48]. In
addition, studies have shown that neurons exposed to Aβ
oligomers fail to form new synapses, thus proving that soluble
Aβ oligomers are neurotoxic [49]. Aβ dimers also show
significant neurotoxicity [50]. In fact, soluble Aβ species seem
to be in a complex equilibrium with the insoluble fibrils and
plaques [51]. Thus, immunotherapy targeting Aβ clearance, both
for soluble oligomers and insoluble fibrils, should be protective.

In the structure of Aβ fibrils, the N-terminus of the Aβ peptide
is exposed on the surface, and the middle and C-terminal
domains of Aβ are ‘masked’ inside. Therefore, antibodies
targeting the N-terminus of Aβ can depolymerize and remove
the aggregates by binding to the free N-terminus exposed on
the surface, inducing microglial phagocytosis and enzymatic
proteolysis. In contrast, antibodies targeting the middle segment
and C-terminus of Aβ could not bind to fibrils and thus fail to
remove Aβ plaques. To date, 17 drugs targeting Aβ have been
tested in phase 3 clinical trials, among these, seven are
monoclonal antibodies targeting Aβ clearance [52] (Table 1).
Of these, solanezumab and crenezumab target the hydrophobic
region in the middle of the Aβ peptide and bind specifically to
Aβ monomers, and have been found to have little effect on
global Aβ-PET levels or cognitive decline despite reducing the
level of free Aβ in cerebrospinal fluid [40, 53]. The remaining five
antibodies, which primarily bind to the immuno-dominant N-
terminus of the Aβ and target Aβ aggregates such as oligomers,Ta
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fibrils or plaques, all presented more or less signals of efficiency in
Aβ clearance and cognitive benefit in phase 2 or phase 3 clinical
trials [16, 19, 54, 55]. Aducanumab and gantenerumab showed
higher affinities for Aβ oligomers and fibrils [56, 57]. The trials of
aducanumab and gantenerumab both confirmed that they could
effectively clear Aβ and improve cognitive function [58, 59].
Lecanemab primarily targets Aβ soluble oligomers [60]. Phase 3
clinical trials of lecanemab also demonstrated effective reduction
of Aβ load in the brain and significant improvement in cognitive
function, confirming a dynamic balance between soluble Aβ and
Aβ load [23]. Donanemab, primarily targets N-terminal pyrogluta-
mylated forms of Aβ, a post-translational structure that exists only
in Aβ fibrils and plaques, and thus donanemab has a high affinity
for insoluble Aβ aggregates. Recently published phase 3 clinical
trial has shown donanemab to be even more effective, hitting the
pause button for nearly half of AD patients [24]. Overall, the
toxicity of Aβ species has not been fully elucidated. Developing
antibodies targeting the conformation of toxic Aβ and specific
post-translational modifications is a direction for future
immunotherapy.

How much Aβ removal is effective to achieve cognitive
benefits?
To date, seven antibodies targeting Aβ have undergone phase 3
clinical trials. Among them, lecanemab and donanemab trials have
achieved most of the expected objectives, while aducanumab
demonstrated effectiveness in slowing cognitive decline in one of
the two trials. It is worth noting that there is a clear correlation
between the clearance of brain Aβ deposition and the decelera-
tion of cognitive decline [19, 52, 61]. Recently in two high-profile
phase 3 trials, GRADUATE I and II, gantenerumab also failed to
meet a primary objective of attenuating cognitive impairment,
probably due to a lower level of Aβ clearance than expected [62].
The Clarity AD trial revealed that after 1.5 years of lecanemab
treatment, 60% of patients experienced a decrease in Aβ
deposition in the brain to threshold levels. Additionally, the
Trailblazer Alz2 AD trial showed that after 18 months of treatment
with donanemab, approximately 70% of patients had a reduction
in Aβ burden to the threshold level. In contrast, gantenerumab,
after 2 years of treatment, only achieved this threshold level in
28% of patients. These findings indicate that gantenerumab has a
significantly lower ability to clear Aβ compared to lecanemab and
donanemab. Based on analysis of past clinical trials, it is estimated
that Aβ should be reduced to below 20–25 centiloid, which is the
current conservative Aβ threshold to achieve significant clinical
benefit [63–66]. This sets a criterion for the prediction of efficacy in
future clinical trials. It should be noted that there are numerous
factors that affect clinical efficacy, such as side effects of passive
immunization, the disease stage at intervention, the length of
treatment, anti-drug antibodies, dosage, and duration of
treatment.

How long should the intervention last to achieve efficacy?
More recently, results from the open label extension trial of
gantenerumab showed an increasing gap in cognitive improve-
ment between patients who continued on high-dose gantener-
umab and controls after an intervention lasting 104 weeks,
suggesting that Aβ-clearing therapy needs sufficient time to show
benefits [59]. Considering that the level of Aβ deposition in the
brain does not correlate strongly with cognitive impairment and
that Aβ may affect cognition through indirect pathways, such as
inducing the hyperphosphorylation of Tau protein [67]. Sufficient
time may be required for repairing neuronal damage and
improving cognitive function after Aβ clearance [52].
Based on an analysis of previous clinical trials, it was proposed

that within a given time, the shorter the duration required to
reach amyloid negativity (TΔA), the longer the period required to
reveal statistically significant clinical efficacy between treatment

and placebo groups (TΔE), the greater the difference in cognitive
function between the treatment and placebo groups [52]. Of the
four anti-Aβ antibodies capable of Aβ clearance, lecanemab and
donanemab were able to clear brain Aβ loads below the threshold
within 12 months, whereas aducanumab required nearly
18 months to clear Aβ near the positive threshold, which may
be a key reason for the success of lecanemab and donanemab
[24, 52]. In addition, a “Quantitative ATN” (Q-ATN) model of AD
was developed to predict changes in cognition as a function of Aβ
removal [68]. Data from numerous observational studies were
used to derive mathematical relationships, and the model’s
predictions correlated well with actual clinical trial results. This
model was applied to forecast the results of five years of
treatment with gantenerumab, suggesting that the CDR-SB
decline would reach 0.87 points at 27 months and that this
difference would expand to 5.2 points after five years [69]. Eisai
used an AD Archimedes condition-event (ACE) simulator to
predict the long-term benefits of clearing Aβ. Projections based
on the phase 2 trial of lecanemab showed that with lifetime
administration, each stage of dementia would be delayed by 2.5–3
years in patients with an average age of 72; In patients with a
mean age of 65, progression to mild and moderate AD would be
expected to be delayed by 3.3 and 3.4 years, respectively [61].
These estimations suggest that the failure of past clinical trials of
Aβ clearance may be related to insufficient observation time,
which is 18 months in previous and current trials, and longer
treatment periods should be considered in future trials.

Is clearing Aβ alone sufficient?
Although the Clarity AD study met all of the expected endpoints,
the benefits in cognition were limited, as evidenced by the
difference of only −0.45 in CDR-SB score from placebo [23]. This
value is statistically significant but may not be clinically mean-
ingful. It is well known that whether changes in scale scores are
statistically significant depend largely on the sample size and the
magnitude of the differences between groups. Even small
differences can yield statistically significant p-values if a suffi-
ciently large sample size is achieved, but this does not mean that
they are clinically significant. How much of a change in a scale
score is clinically significant depends on whether the change
reaches the minimum clinically important difference (MCID). Prior
work has suggested that the MICD for the CDR-SB assessment in
mild AD is 1.63 [70, 71], which is greater than the 0.45 detected in
the Clarity AD study. To date, all the anti-Aβ antibodies that target
the reduction of Aβ levels in the brain have shown limited benefits
in cognitive function. Also of interest is the fact that while
numerous Aβ-lowering therapies have efficacy signals pointing
toward clinical benefit, the disease still continues to progress
despite Aβ load being normalized. This suggests that there may
be additional factors promoting cognitive decline in the brain in
addition to Aβ [45].
Aβ deposition levels do not correlate well with cognitive

function [72], indicating that Aβ is not a proximal cause of
cognitive dysfunction, although previous animal studies have
shown that Aβ is neurotoxic and affects synaptic function [73].
Studies have shown that the presence or accumulation of Tau is a
better predictor of cognitive impairment and is strongly correlated
with the degree of cognitive impairment [67, 74]. There is much
evidence that Aβ provokes the accumulation of Tau that
ultimately correlates with neuronal loss [75]. In addition, there
are other downstream events in the AD brain, such as oxidative
stress and energy metabolism disorders, which might form vicious
circles to affect the function of neural circuits and promote
cognitive decline [76]. There are many ways that Aβ can cause
cognitive impairment, including a direct effect on synapses, as
well as indirect ways such as through the induction of Tau
phosphorylation, gliosis, oxidative stress, energy dysmetabolism
and vascular dysfunction, finally causing dysfunction of neurons
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and neural circuits [45, 77]. This could explain the limited benefits
in cognition after Aβ clearance, as assessed by Aβ-PET.
How to improve the effect on cognition is a key issue to be

addressed in the future for AD therapies. Emphasis is being placed
on multi-targeted combination interventions. In terms of Aβ
targeted therapy, reducing Aβ production and aggregation
remains the principal direction. For example, specific γ- and β-
secretase inhibitors and modulators have been developed to
specifically reduce Aβ production without affecting other physio-
logical mechanisms mediated by these secretases. The C-terminal
region of apolipoprotein E (APOE-CT) can also selectively inhibit
the cleavage of APP by γ-secretase, thus effectively reducing the
production of Aβ [78]. However, whether it can be used for clinical
treatment needs to be confirmed by further clinical trials. Current
intervention strategies for Tau include inhibition of Tau hyperpho-
sphorylation and promotion of aggregated Tau clearance.
However, initial clinical trials have not been successful [79, 80].
The formation of neurofibrillary tangles is a downstream event of
Aβ in terms of pathogenesis; it is recognized as a secondary
change of AD and a result of driving factors that contribute to the
development of the disease. The possibility of achieving efficacy
by removing hyperphosphorylated Tau alone is limited. Therefore,
intervention strategies other than removal of aggregated Tau may
be more effective, especially to prevent Tau from aggregating,
rather than to remove tangles after they have been formed. The
relationship between Aβ and Tau has been extensively studied in
the past and blocking Aβ induced Tau aggregation is an important
intervention strategy for AD, especially in the early stage of the
disease. An important observation in past clinical trials of Aβ
clearance is that cognitive function continues to deteriorate after
Aβ clearance, implying that processes including Tau aggregation
are not exclusively dependent on the role of Aβ after disease
initiation and that there are other factors that contribute to the
development of AD [81, 82]. Future anti-Aβ therapies are likely to
be combined with one or multiple co-therapies against oxidative
stress, microglial dysfunction, mitochondrial dysfunction, or
disruption of the blood-brain barrier. Importantly, neuronal injury
and damage to neuronal circuits serve as the foundation for
cognitive decline. Neuroprotection is crucial in preserving the
cognition of patients with AD. To this purpose, the Alzheimer’s
disease neuroprotection research initiative (ADNRI) has been
proposed recently [83]. In general, effective interventions for AD
require a comprehensive approach and a tertiary prevention
strategy [84].

What do accompanying adverse effects tell us?
Although the fundamental purpose of developing a drug is to
make it available to all AD patients, each drug has its own specific
efficacy and side effect profile based on its mechanism of action.
Aβ monoclonal antibodies are no exception. In the Clarity AD trial,
subgroup analyses breaking down participants by age, sex, race,
ethnicity, geographic region, disease stage, and use of sympto-
matic AD medications found treatment benefits of lecanemab
across the board. However, results showed that patients who
carried two copies of APOE4 appeared to post no treatment effect
on the CDR-SB, considering that APOE4 began to cause Aβ
deposition earlier than APOE4 noncarriers, resulting in a more
severe and complex Aβ burden in the brain [23, 85]. The main side
effects of Aβ monoclonal antibody are amyloid-related imaging
abnormalities (ARIA) with edema (ARIA-E) or microhemorrhage
(ARIA-H), the exact pathogenesis of which are uncertain and are
currently presumed to be related to the clearance of aggregated
Aβ from brain vessels [86]. All clinical trials to date have shown
that ARIA-E and ARIA-H events were related to APOE4 genotype
and occurred rarely in the placebo arm [18, 87]. In the Clarity AD
trial, the rate of ARIA-E in lecanemab-treated patients was 12.6%,
significantly higher than in the placebo group. APOE homozygous
patients had the highest incidence of ARIA-E, reaching one-third,

and one patient developed severe symptoms. The aducanumab
trial also showed consistent results, with up to 66% of APOE4
homozygous patients developing ARIA-E. Meanwhile, lecanemab
and aducanumab trials suggested that the incidence of ARIA-E in
APOE4 heterozygous patients was 10% and 36%, respectively,
which were significantly higher than those in non-APOE4 carriers
(5% and 20%). Similarly, ARIA-E occurred in 40.6% of patients
treated with donanemab who were APOE4 homozygous, sig-
nificantly higher than the 22.8% of APOE4 heterozygotes and
15.7% of non-carriers. Two APOE4 heterozygous carriers even-
tually died as a result of severe ARIA-E [88]. These results suggest
that patients with the APOE4 allele, especially APOE4 homozygote
patients, have significantly higher risks than benefits when initially
receiving Aβ antibodies treatment, and patients and their families
should be fully informed of the risks of drug administration in
subsequent clinical applications.
Notably, two patients in the Clarity AD trial experienced drug-

related adverse events that resulted in severe cerebral hemor-
rhage or even death [23]. One was a man with atrial fibrillation
who was on anticoagulants; another, a woman with cerebral
amyloid angiopathy (CAA) who received thrombolytic tissue
plasminogen activator (tPA) after a presumed stroke. Twenty
years ago, research by Jucker suggested that tPA and anti-Aβ
antibodies should not be given to the same AD patient, especially
in the presence of CAA [89]; the Clarity AD trial seems to bear this
out. Therefore, for patients who are taking anticoagulants for
underlying diseases or have clear MRI evidence of CAA and are at
higher risk of cerebral hemorrhage. Patients and their families
should be fully informed of these risks.
Studies based on the aducanumab trial have also shown that

baseline microhemorrhages and APOE4 carrier status are asso-
ciated with an increase in the incidence of ARIA-E [87]. Caution is
required when accepting these patients for treatments. Never-
theless, most ARIA-E events are asymptomatic and only some
present as transient headaches which resolve typically within 12
to 16 weeks after initial detection, and without significant
sequelae [18, 23, 87].
Another interesting result was that ventricular volume was

significantly increased (by 0.5–1.0%) in patients treated with Aβ
antibodies and significantly correlated with the frequency of ARIA
[90]. However, it is important to clarify that enlarged ventricles do
not mean that brain atrophy is aggravated. It is well known that
ventricular volume depends on the volume of brain parenchyma
and changes in ventricular contents. As the study showed, the Aβ
antibody did not cause significant changes in hippocampal and
whole brain volume, meaning that the volume of the brain
parenchyma did not change significantly, so that enlarged
ventricles may be due to an increase in ventricular contents, with
changes in CSF at the core. Clearance of Aβ from the cerebral
vasculature may lead to an increase in vascular permeability and a
decrease in colloidal osmotic pressure, which partially manifests
itself in the parenchyma as ARIA, whereas changes of the choroid
plexus capillaries may lead to an increase in the production of CSF,
and at the same time, interstitial fluid joins the CSF, leading to an
increase in the volume of the CSF, which in turn may lead to
ventricular enlargement. Significant interstitial edema was also
seen on brain images of patients presenting with ARIA, which was
also confirmed from an imaging perspective [91]. It is also in line
with findings that there is a significant correlation between
ventricular volume and the frequency of ARIA. Consequently, the
patients’ cognitive function eventually improved rather than
suffering once the ARIA is controlled. In addition, as mentioned
in our previous study, immunotherapy targeting Aβ clearance
might produce a “dust-raising effect “, i.e., the conversion of
deposited Aβ into more toxic soluble oligomers, which might
cause accelerated neuronal degeneration, leading to a reduction
in brain parenchymal volume and enlargement of ventricles [32].
Last but not least, the loss of brain volume does not exclude a
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secondary alteration of the inflammatory response in the brain
attenuated by immunotherapy. In conclusion, the loss of brain
volume could be the result of a combination of factors, and
whether it is essentially a protective secondary alteration or a
result of toxic effects needs to be further verified in future studies.

CONCLUSIONS
The success of Aβ targeting humanized antibodies lecanemab
and donanemab supports the theory that Aβ is the etiologic
agent of AD, and encourages researchers to explore the
pathogenesis of AD from the perspective of Aβ. Currently, a
number of phase 3 clinical trials of immunotherapy for AD are
underway, including an ongoing trial of lecanemab targeting the
presymptomatic stage (the AHEAD Study) and the Trailblazer-
Alz3 trial of donanemab. The next generation of donanemab
(remternetug) is showing exceptional efficacy [92]. While the
Clarity and Trailblazer Alz2 AD trials give us confidence in
targeting Aβ, there are still a multitude of challenges which need
to be addressed to further validate and improve therapeutic
benefits for the future. Furthermore, we also advocate for a
multi-target approach in the treatment of AD, beyond Aβ
clearance, especially focusing on neuroprotective therapies for
damaged neuronal circuits.
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