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BACKGROUND: Psychotic disorders are characterized by structural and functional abnormalities in brain networks. Neuroimaging
techniques map and characterize such abnormalities using unique features (e.g., structural integrity, coactivation). However, it is
unclear if a specific method, or a combination of modalities, is particularly effective in identifying differences in brain networks of
someone with a psychotic disorder.
METHODS: A systematic meta-analysis evaluated machine learning classification of schizophrenia spectrum disorders in
comparison to healthy control participants using various neuroimaging modalities (i.e., T1-weighted imaging (T1), diffusion tensor
imaging (DTI), resting state functional connectivity (rs-FC), or some combination (multimodal)). Criteria for manuscript inclusion
included whole-brain analyses and cross-validation to provide a complete picture regarding the predictive ability of large-scale
brain systems in psychosis. For this meta-analysis, we searched Ovid MEDLINE, PubMed, PsychInfo, Google Scholar, and Web of
Science published between inception and March 13th 2023. Prediction results were averaged for studies using the same dataset,
but parallel analyses were run that included studies with pooled sample across many datasets. We assessed bias through funnel
plot asymmetry. A bivariate regression model determined whether differences in imaging modality, demographics, and
preprocessing methods moderated classification. Separate models were run for studies with internal prediction (via cross-
validation) and external prediction.
RESULTS: 93 studies were identified for quantitative review (30 T1, 9 DTI, 40 rs-FC, and 14 multimodal). As a whole, all modalities
reliably differentiated those with schizophrenia spectrum disorders from controls (OR= 2.64 (95%CI= 2.33 to 2.95)). However,
classification was relatively similar across modalities: no differences were seen across modalities in the classification of independent
internal data, and a small advantage was seen for rs-FC studies relative to T1 studies in classification in external datasets. We found
large amounts of heterogeneity across results resulting in significant signs of bias in funnel plots and Egger’s tests. Results remained
similar, however, when studies were restricted to those with less heterogeneity, with continued small advantages for rs-FC relative
to structural measures. Notably, in all cases, no significant differences were seen between multimodal and unimodal approaches,
with rs-FC and unimodal studies reporting largely overlapping classification performance. Differences in demographics and analysis
or denoising were not associated with changes in classification scores.
CONCLUSIONS: The results of this study suggest that neuroimaging approaches have promise in the classification of psychosis.
Interestingly, at present most modalities perform similarly in the classification of psychosis, with slight advantages for rs-FC relative
to structural modalities in some specific cases. Notably, results differed substantially across studies, with suggestions of biased
effect sizes, particularly highlighting the need for more studies using external prediction and large sample sizes. Adopting more
rigorous and systematized standards will add significant value toward understanding and treating this critical population.
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INTRODUCTION
Psychosis is a devastating and heterogeneous disorder with a
poorly understood etiology [1–5]. Psychosis symptoms are
thought to emerge from network-level abnormalities within the
brain as opposed to disruptions in one discrete location [6–12].
Consistent with the neurodevelopmental theories and stress
diathesis models of psychosis, whole-brain structural abnormal-
ities such as impaired myelination [13–15], and accelerated

demyelination have been linked with symptom severity and
deficits in cognitive function [16, 17]. There are signs of
progressive degeneration of other structural measures such as
cortical thickness [18] and gray matter volume [19] linked to
psychosis. Psychotic disorders have also been characterized as a
disruption in the functional communication between brain
regions [20, 21] and alterations in the functional strength of
connections [22, 23]. These findings suggest that psychosis is
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characterized by a combination of structural and functional
dysfunction across distributed brain systems [8, 23–25].
Non-invasive neuroimaging methods can be used to measure

structural (T1-weighted imaging, diffusion imaging) and functional
(resting-state functional connectivity) brain networks. Given the
link between psychosis and brain system dysfunction, one may
ask which specific neuroimaging modalities are best suited for
diagnostic purposes, or if a combination of multiple modalities
would allow a more holistic and accurate classification of the
disorder. While a number of studies have begun to probe this
question, this idea has not been tested in a systematic review. This
meta-analytic study was designed to directly compare neuroima-
ging methods (T1-weighted imaging, diffusion imaging, and
resting-state functional connectivity) and their combination
(multimodal approaches) in their ability to classify psychosis from
healthy controls using machine learning data from whole-brain
networks. Additionally, this review evaluated whether various
statistical, methodological, and demographic information had any
moderating effects on classification.
In psychosis, a reduction in gray matter volume and enlarge-

ment of the ventricles has been reported through the use of T1-
weighted imaging (abbreviated as ‘T1’ in this manuscript) [26].
Although, this may be due to neurotoxic effects related to
medications [27], some evidence suggests volumetric differences
are present in never medicated and first-episode patients [28].
This would suggest that gray matter abnormalities may be a risk
factor leading up to the onset of psychosis or primary aspects of
its etiology. Reductions in gray matter can vary with time and are
not always consistent across people [19]. Prior work has
demonstrated that gray matter cortical thickness declines with
age in participants with psychosis at a higher rate compared to
controls, particularly in regions important for cognitive function
such as inferior frontal cortex, anterior cingulate cortex, and lateral
temporal cortex (for review see [18]).
White matter abnormalities such as decreased expression of

oligodendrocytes have been associated with psychosis [29, 30].
Diffusion tensor imaging (DTI) is a non-invasive measure of the
myelin integrity of underlying white matter [31–33]. Researchers
have found that measures of white matter integrity decrease at
higher rates in psychosis compared to controls across the lifespan
[16, 17]. The development of myelination also tends to proceed
and co-occur with the emergence of symptoms of psychosis
during the adolescent time period [34]. This work provides
evidence of developmental abnormalities that might be linked
with psychosis-specific accelerated aging of white matter path-
ways. However, the location of disruption in the integrity of white
matter pathways has remained inconsistent [35, 36]. A recent
meta-analytic study aimed at evaluating white matter integrity in
high-risk individuals found significant variation in the integrity of
white matter pathways across large tracts such as superior
longitudinal fasciculus, inferior longitudinal fasciculus, and inferior
fronto-occipital fasciculus [35]. These abnormalities tended to vary
across study design and have not been consistently linked to
variation in symptom severity.
Resting-state functional connectivity (rs-FC) is a non-invasive way

to evaluate large-sale functional networks across brain regions.
Changes in these networks may be associated with genetic,
cognitive, and developmental factors of psychosis. These functional
changes have been found to be more closely linked to the
expression of behavioral symptoms used in diagnosis [21, 37]. Rs-FC
alterations in networks related to higher-order processes such as
attention and executive control [21, 38–43] have particularly been
highlighted in individuals with psychosis. However, these results are
often inconsistent in the direction and location of dysfunction
[23, 44]. The inconsistency in the rs-FC literature could be due to
individual variation in clinical characteristics: researchers that have
evaluated schizophrenia from an individual-specific approach have
identified key characteristics linked to symptoms and behavior

[45–48]. After accounting for these variations, rs-FC may serve as a
key factor in distinguishing characteristics that are specific to
psychosis in machine learning classification.
The neuroimaging approaches described above have helped to

uncover key neurobiological associations of psychosis. However,
there are limitations in each non-invasive method for measuring
brain systems [49]. One potential solution is to use a multimodal
approach in which different imaging modalities are combined.
This multimodal approach may bridge the relationship between
gray matter, white matter, and functional features of brain
networks that would otherwise be lost when evaluating a single
modality. Prior work has suggested that using multiple imaging
modalities provides a sensitive approach to identify converging
areas of dysfunction in schizophrenia [50–52].
To determine the utility of each method in understanding

neurobiological features of schizophrenia, we focus here on
machine learning approaches. These methods can use multivariate
information to identify subtle variations in the brain that may not
otherwise be captured using standard univariate methods [53, 54].
Imaging modalities can also be used as features to classify various
forms of psychiatric disorders [55]. However, there are several
important factors to consider when using machine learning
methods with neuroimaging data including improper cross-
validation [56], small sample sizes [37] and physiological artifacts
[57–60] that are known to produce inflated or misrepresented
classification results.
Here, we completed a systematic review and meta-analysis to

determine to what extent neuroimaging methods can classify
individuals with psychosis. Specifically, we asked whether any
method (or their combination) outperforms others in the ability to
distinguish participants diagnosed with a schizophrenia spectrum
disorder from healthy controls in the context of machine learning
classification. We used a bivariate random-effects model assessing
the sensitivity and specificity in each study [61]. To reduce the
potential for inflated results, we opted for a strict set of criteria for
manuscript extraction including cross-validation. Additionally, we
evaluated whether other variables moderate the metrics asso-
ciated with classification such as preprocessing technique,
statistical methods, sample size, and participant characteristics.

METHODS
Overview
This meta-analysis was conducted following the preferred reporting
guidelines for systematic reviews and meta-analysis (PRISMA)
[62, 63]. Search criteria limited the analysis to studies that applied
classification algorithms to predict clinical status in psychosis
participants who met criteria for subtypes within schizophrenia
spectrum disorders relative to healthy controls (psychosis v. healthy
control). This meta-analysis includes estimates of sensitivity
and specificity as calculated based on confusion matrices.
A bivariate approach and hierarchical summary receiver operating
characteristics (ROC) model were used to estimate sensitivity
and specificity across studies. Additionally, we conducted a meta-
regression analysis to examine differences between datasets that
may contribute to variability found between imaging subgroups
(e.g., participant characteristics, statistical methods, and quality of
preprocessing methods).

Search strategy
We searched databases Ovid MEDLINE, PubMed, PsychInfo,
Google Scholar, and Web of Science for relevant, peer-reviewed
publications. Databases were searched from inception until March
13th 2023. Titles and abstracts were searched using the following
keywords: (Schizo* or psychosis or psychotic) AND/OR (DTI or DSI
or white matter or fractional anisotropy or FA) AND/OR (fMRI or
functional connectivity or network or resting state or rsfMRI
or circuit) AND/OR (structural or T1 or anatomical) AND
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(support vector or SVM or classification or categorization or
machine learning). We included advanced search terms to only
evaluate studies written in English that included human subjects.
In the case of insufficient data, authors were contacted via email
to provide additional information.

Study selection
All titles and abstracts of identified publications were screened by
authors A.P. and S.F. for eligibility. Articles had to meet the following
inclusion criteria: (1) studies had to apply a machine learning
classification model to predict clinical status using neuroimaging
data as features. (2) Studies were required to have some form
of cross-validation (e.g., leave-one-out, kfolds, test-train split)
or external dataset validation. Results from internal cross-validation
and external dataset validation were separated in analyses.
(3) Clinical participants had to meet a diagnosis for a psychotic
disorder following the diagnostic statistics manual (DSM) or the
international classification of diseases (ICD). This included first-
episode psychosis, first-episode schizophrenia, schizophrenia, schi-
zophrenia with comorbidity, and schizophrenia spectrum disorder.
(4) Given our focus on large-scale brain systems, we restricted
ourselves to studies that included whole-brain analyses, excluding
those focused on single regions or networks. All potential studies
were carefully screened for review. If a study included both region-
specific and whole-brain analysis, then the whole-brain results were
kept for reporting. (5) Classification was based on at least one of the
following imaging types: DTI, rs-FC, T1, or some combination. As we
were interested in focusing on intrinsic brain networks rather than
task modulations, task-based FC studies and dynamic FC studies
were excluded from this analysis. Use of a simulated or synthetically
created dataset were also grounds for exclusion. Each neuroimaging
type required at least 5 studies to be used for formal meta-analysis
[64]. All neuroimaging types examined reached this criterion.
Publications were excluded based on the following criteria: (1)

failure to obtain full text of manuscript online or upon request
from authors, (2) insufficient information for quantitative extrac-
tion, (3) non- or limited- peer-reviewed publications, including
conference proceeding abstracts, and (4) intervention-based study
designs. We included multiple studies reporting on the same
original dataset. All studies were kept for qualitative analysis. To
reduce the likelihood of overfitting due to non-independence
across results and dataset decay [65], we calculated the mean
classification metrics across studies that used the same dataset
and included this combined result in our quantitative analysis.
Overfitting from repeated re-use of the same public dataset can
lead to minimal increases in prediction of unseen or independent
data across different machine learning classifiers within clinical
populations [66].

Data extraction
Our primary estimates extracted from each study included
sensitivity, a measurement used to assess the model’s ability to
accurately predict a psychosis participant correctly, and specificity,
which measures the probability of accurately predicting a healthy
control. Sensitivity is derived as the number of psychosis
participants correctly identified by the classifier divided by the
sum of all psychosis participants in the sample. Similarly, specificity
is calculated as the number of healthy control participants correctly
identified by the classifier divided by the sum of all healthy control
participants. From this measurement we can derive the false
positive rate (FPR= 1 - specificity); this measurement specifies the
probability of incorrectly labeling a healthy control as someone with
psychosis.
We also collected the following information: year of publication,

participants characteristics such as group size, age, gender,
antipsychotic medications (as converted to chlorpromazine (CPZ)
equivalents), illness duration in months, handedness, nicotine use,
symptom severity as measured by the positive and negative

syndrome scale (PANSS [67]), and analysis characteristics such as
dataset origin if using publicly available data, neuroimaging
modality type (T1, DTI, rs-FC, or multimodal), classification method
(e.g., support vector, ridge regression, decision tree), cross-
validation procedure (e.g., leave one out, kfold, train test split),
and number of features. If studies reported performance from
multiple predictive models all measures were initially extracted. In
the case of more than one statistical model, the sensitivity and
specificity scores averaged across all models were used for the
quantitative analysis.
Prediction results were classified as based on internal prediction

(within dataset cross-validation) or external prediction (validation in
a new dataset); these were used for separate quantitative analyses.
When manuscripts incorporated both an internal and an external
dataset for, both sets of performance measures were kept.
If multiple different studies used the same dataset for analysis,

we recorded the sensitivity and specificity values for each study
separately for reporting purposes and qualitative review, and
included the mean across studies with that dataset for quantita-
tive analysis to reduce the risk of overfitting (as discussed above).
In the case of studies including several different datasets for
model training, manuscripts were excluded if datasets were
already in use among other studies, otherwise, the average pooled
result was included for the quantitative analysis. When examining
studies involving more than one clinical subgroup or first-degree
relative we extracted classification measures specifically for
participants diagnosed with psychosis and healthy control groups
for quantitative analysis.

Statistical analysis and assessment of bias
Cochrane’s Q and I2 tests of heterogeneity were used to determine
significant differences between studies and modalities (T1, DTI, rs-
FC, multimodal) using a random effects model [68]. Q is used to
assess that the proportion of successful classification is equal for
all groups (healthy control and psychosis). Q is defined as the
weighted sum of squared deviations from individual study effects
(log odds ratio) against the pooled effect across studies. To
determine if there is heterogeneity within and across imaging
groups we formally test whether Q follows a chi-squared
distribution with k-1 degrees of freedom. If the null hypothesis
is rejected (p < 0.05) heterogeneity is likely present. Heterogeneity
can also be measured using I2. This measure describes the amount
of variation present across studies [69, 70]. This procedure is
calculated as a percentage of Q minus the degrees of freedom
divided by Q. Heterogeneity was operationalized as small
(I2= 25%), moderate (I2= 50%), or large (I2= 75%) [71].
To evaluate the potential for systematic bias in published

results, several analyses were conducted. First, we created funnel
plots for visual inspection of effect sizes for each imaging
modality. This figure plots the effect estimates from each study
against the standard error of effect estimates. This plot is used to
evaluate the variation in classifying psychosis while accounting for
sample size. If published effects are unbiased, then one should
assume that no correlation exists between standard error and
effect estimates after accounting for sample size heterogeneity
across studies [72]. However, a correlation between standard error
and effect estimates (seen as an asymmetry in the funnel plots),
would suggest that there is some form of bias across studies that
is not due to random sampling variation. Bias can be due to a
number of factors such as publication bias, selective reporting,
poor methodological design, and high heterogeneity [72].
Publication bias is just one of many potential reasons for
asymmetry and it is impossible to know the precise mechanisms
of asymmetry.
To formally test for funnel plot asymmetry, we conducted an

Egger’s regression test [73] and an alternative test called Peter’s
test [74]. Egger’s test is a linear regression model of the estimates
(log diagnostic odds ratio) on their standard errors weighted by
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their inverse variance. While commonly used, this method can be
problematic for assessing log odds ratio based estimates as
the standard error is dependent on the size of the odds ratio
even in the absence of small study effects [74]. The Egger’s test
can produce false positive results when sample sizes across
groups (healthy control and psychosis) are not evenly balanced
[74]. Peter’s test is an alternative test that instead uses the
inverse of the total sample size as the independent variable,
thereby accounting for heterogeneity across groups (healthy
control and psychosis) without increasing the likelihood for Type
I errors.
Two sets of meta-analyses were conducted, one in which all

studies were used and one in which a subset of outlier studies was
excluded. For these meta-analyses, we implemented a bivariate
approach in which sensitivity and specificity scores were log-
transformed and combined into a bivariate regression model [61].
This approach is useful to assess diagnostic accuracy by accounting
for biases in sensitivity and specificity [75]. Due to variation in
modeling methods and specific cutoff thresholds for sensitivity and
specificity, a random-effects model was applied. Each study was
weighted based on sample size to account for variation in effect
size. Statistical analyses were conducted using R [76]. To evaluate
sensitivity and specificity values and conduct a bivariate meta-
regression model to examine moderating effects of statistical
methods, participant characteristics, and preprocessing method
(when applicable) on the pooled estimates the packages mada [77]
and metafor [78] were implemented. To reduce heterogeneity
across studies, analyses were separated into internal prediction (via
cross-validation in the same dataset), and external prediction (in a
new dataset). A significant main effect was determined based on
the use of a likelihood ratio test comparing the derived model to a
null model. Based on this result, follow-up pairwise comparisons are
conducted to determining the level of significant across factors (e.g.,
comparing each imaging type).

Quality assessment of rs-FC preprocessing
To evaluate how denoising influences classification, we derived a
quality measure of the denoising procedure at removing motion
artifacts (Table 1) and related this rating to classification perfor-
mance. This analysis was limited to rs-FC datasets, as other
modalities did not include as many denoising procedures (Supple-
mental Table 1–4). The rating was based on results reported by Ciric
and colleagues [57], which systematically compared the ability of
different processing pipelines to remove motion biases in rs-FC
analyses. The score was based on two criteria that measured the
two major influences of motion on functional connectivity [57, 59]:
(1) the total percent of edges related to head motion in each
strategy (Fig. 2 in [57]) and (2) the distance-dependent influences of
head motion on functional connectivity (Fig. 4 in [57]). The final
score was weighted such that up to 75% of the final score was
based on the first criteria and up to 25% of the final score was based
on the second criteria (to reflect the relative difference in their
impact on functional connectivity values [57]). Note that additional
tests were also conducted on each criteria separately.
For the first criteria, each processing strategy was given a score

scaled 1–5 with 1=good performance at removing motion
artifacts in rs-FC (i.e., 0–10% edges contaminated by motion),
2=moderate performance (10–20%), 3=moderately poor perfor-
mance (20–30% edges contaminated by motion), 4=poor
performance (30–40% contaminated by motion), and 5=extreme
contamination (>40% edges contaminated by motion). Manu-
scripts that included an additional step evaluating or excluding
subjects based on framewise displacement (FD), resulted in one
point subtracted off the initial edge score (i.e., subject removal,
reporting of mean FD, group-related differences in FD, or any
other mitigation strategy [60]).
For the second criteria the score was based on the magnitude of

distance-dependent motion artifacts with 1 = good performance
of minimizing distance dependence (r >−0.15), 2=moderate

Table 1. Overview of scaling method used for assessing quality of preprocessing methods.

Good performance 1 Moderate performance 2 Moderately poor performance 3 Poor performance 4 Extreme Concern 5

Percent of Edges related to Motion

(0–10% edges correlated with
motion)

(10–20%) (20–30%) (30–40%) (> 40%)

36P+spkreg
36P+despike
36P
36P+scrub

ICA+GSR
9P
aCompCor

ICA wmMean 2P
6P
24P
wmLocal
tCompCor

Distance dependence of motion effects

QC-FC corr
r >−0.15

r=−0.15 to −0.2 r=−0.2 to −0.25 r=−0.25 to −0.3 r <−0.3

ICA
36P+scrub

ICA+GSR
wmLocal

24P
6P
36P+spkreg
wmMean
36P+despike

acompcor
2P

9P
tcompcor
36P

Percent of edges related to motion and distance dependence of motion effects are described in detail elsewhere [57]. 36 P = nuisance regressors included 6
motion estimates, mean white matter (WM), mean cerebral spinal fluid (CSF), and mean global signal (GS), along with the derivatives, quadratic terms and
squares of these signals [171]. 36 P+despike = includes 36 regressors as described above, with despiking removal of high motion frames [194]. 36 P+spkreg =
includes 36 regressors with spike regression of high motion frames [171]. 36 P+scrub = 36 parameters and motion scrubbing of high motion frames [59].
Scrubbing high motion frames were defined using framewise displacement (FD), computed as the sum of the absolute values of the derivatives of
translational and rotational motion estimates. FD > .2 mm was flagged as high motion. 2 P = nuisance regression includes mean WM and mean CSF.
6 P = nuisance regression only includes 6 motion estimates from realignment. 9 P+ GSR = nuisance regression includes 6 motion estimates, mean WM, mean
CSF, and mean GSR [195, 196]. 24 P = nuisance regression includes 6 motion estimates, their temporal derivatives and quadratic expansion terms [197].
aCompCor = nuisance regression includes 5 principal components each from the WM and CSF, in addition to 6 motion parameters and their temporal
derivatives [198]. tCompCor = nuisance regression includes 6 principal components from voxels with high variance over time [199]. wmLocal = nuisance
regression includes a voxelwise localized WM regressor in addition to 6 motion parameters, and their temporal derivatives and despiking [200]. wmMean =
nuisance regression includes mean WM in addition to 6 motion parameters and their temporal derivatives and despiking [200]. ICA = independent
component analysis, removal of motion-related variance components from the BOLD data including mean WM and CSF regressors [201].
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performance (r=−0.15 to−0.2), 3=moderately poor performance
(r=−0.2 to −0.25), 4=poor performance (r=−0.25 to −0.3), and
5=extreme contamination (r <−0.3). Each processing strategy was
scored based on these criteria as shown in Table 1. Note that for the
purposes of scoring, all ICA methods were grouped with ICA-
AROMA as the closest comparator; other methods were also
grouped with their closest fitting denoising approach. A composite
score representing the quality of the denoising pipeline was
generated with a 75% weighting from the edges contamination
measure and a 25% weighting from the distance-dependent
influence of motion.
Any manuscript using rs-FC features for classification was used

in this analysis. Each manuscript’s denoising methods were scored
by 3 independent reviewers (authors A.P., S.F., and C.G.), and that
assigned value was used for the quantitative analysis. Inter-rater
reliability was high across reviewers (100%).

RESULTS
The initial search yielded a total of 1003 manuscripts; 684
remained after removing manuscripts that did not involve
psychosis-based disorders. Articles were then restricted based
on those that included machine learning classification based on
the selected MRI imaging modalities (T1, DTI, rs-FC). This led to 224
manuscripts that were analyzed for further review. Full-text
publications were assessed for eligibility and after full text review
95 articles were retained for qualitative review and 93 for
quantitative review (for a detailed breakdown of inclusion see
Fig. 1 and Supplemental Table 1–4)). Articles were removed from
analysis for the following reasons: FC derived from tasks rather
than rest, region/network specific analysis (not whole brain),
intervention or longitudinal design, lack of cross-validation, lack of
healthy controls, and review or meta-analysis manuscripts.
Results were separated for studies using internal validation

(cross-validation within the same dataset) vs. external validation
(validation within a new independent dataset). We focus first on
reporting analyses from results of the larger internal validation

group. This initial analysis consisted of 28 T1 [79–109], 9 DTI
[48, 110–117], 38 rs-FC [48, 118–156], and 14 multimodal
[157–170] subgroups. From this sample, we identified 21 manu-
scripts that used the overlapping datasets for classification
[86, 97, 102, 105–109, 116, 138–140, 142–154, 156, 166–169, 171].
To decrease the risk of inflation from non-independence and
overfitting from dataset decay [70], we calculated the mean
sensitivity and specificity scores across all studies that used the
same dataset with the same imaging modality for the primary
analyses reported in this manuscript. In the case that the same
dataset was used with a different imaging modality for classifica-
tion, we calculated the average measures per modality. This
resulted in the inclusion of 3 rs-FC reports (using the W. China
[172], Cobre [173], and NAMIC [174] datasets), 2 T1 (BRNO [106],
Cobre [173]), and 1 multimodal (Cobre [173]). The reports from
each analysis and the represented average are shown in detail in
Supplemental Fig. 1.
However, we also conducted a parallel set of analyses in which

manuscripts that pooled information across overlapping datasets
were included separately, in order to provide information based
on larger, better powered studies. These manuscripts are also
included Supplemental Table 1–4 and results from this parallel
analysis are shown in Supplemental Fig. 2 and reported in the
results sections below.

All tested imaging modalities have a moderate ability to
predict psychosis
Aside from one T1 study [104] we found that all studies, independent
of sample size, were able to reliably differentiate psychosis from
healthy controls for all imaging modalities (Fig. 2, Fig. 3). Average
sensitivity and specificity measures were modest across all imaging
groups (T1: sensitivity= 0.73+ /−0.15, specificity= 0.77+ /−0.11;
DTI: sensitivity=0.71+ /−0.11, specificity= 0.73+ /−0.12; rs-FC:
sensitivity=0.76+ /−0.13; specificity=0.81+ /−0.09; Multimodal:
sensitivity=0.81+ /−0.14, specificity=0.79+ /−0.17). Similar results
were seen when larger-sample studies with pooled datasets were
included in analysis (Supplemental Fig. 2).

Fig. 1 Flow diagram mapping the selection of studies for the classification of psychosis-based disorders from neuroimaging modalities,
following PRISMA guidelines [64, 65]. Full inclusion and exclusion criteria are listed in Methods.
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Fig. 2 Sensitivity plots of psychosis classification performance when tested on independent internal (left; i.e.., cross-validation) and
external (right) datasets. Sensitivity and specificity scores were derived using data from the classifier in each manuscript. All manuscripts
were able to reliably differentiate participants with psychosis from healthy controls independent of neuroimaging type aside from [169]. The
size of points is scaled according to sample size and modality of analysis is shown in various colors.

Model for All Studies (Q = 669.47, df = 63, p < .01; I2 = 91.8%, �2 = 1.46)

−0.3 1 2.35 4.9 7.45 10

Log Odds Ratio

Cobre Multimodal
Lee et al., 2018
Guo et al., 2018
Liang et al., 2019
Zhuang et al., 2019
Zhao et al., 2020a
Rodrigue et al., 2021
Lin et al., 2021
Faria et al., 2021
Hu et al., 2022
Wang et al., 2022

Cobre FC
W. China Combined
NAMIC Combined
Tang et al., 2012
Yu et al., 2013b
Yu et al., 2013a
Su et al., 2013
Arbabshirani et al., 2013
Kaufmann et al., 2015
Chyzhyk et al., 2015
Rashid et al., 2016
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Test for Subgroup Differences: QM = 3.71, df = 3, p = 0.29

Fig. 3 Forest plots for log diagnostic odds ratio, separated by imaging modality. Summary forest plot for log diagnostic odds ratio for all
imaging modalities presented at the bottom of the plot. Multimodal: classification that used at least two of the following: rs-FC, T1, and/or DTI
as features. RS-FC: resting state functional connectivity. DTI: diffusion tensor imaging. T1: T1 weighted imaging. The point size of squares and
polygons are a function of the precision of the estimates.
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We next examined whether specific modalities were better able
to classify psychosis. Using a bivariate analysis, we did not find a
significant difference in internal classification performance based
on imaging modality (p > 0.05; Fig. 3). Including pooled datasets
resulted in a similar finding (p > 0.05; Supplemental Fig. 2). These
results suggest that, based on methods in the current literature,
combining multiple neuroimaging methods to track psychosis
does not provide any major advantage relative to single imaging
modalities on average.
We also conducted a separate bivariate analysis using studies that

provided classification performance in an external dataset (N= 21).
Due to the small number of studies, we were limited to
quantitatively contrasting the use of T1 (14) or FC (12) imaging
modalities. As might be expected, average sensitivity and specificity
values were slightly lower compared to the internal results (Fig. 2;
T1: sensitivity=0.66+ /− 0.07, specificity= 0.69+ /− 0.14; rs-FC:
sensitivity= 0.75+ /− 0.09, specificity= 0.74+ /− 0.09). In this
analysis, we did not find a difference in performance by imaging
modality. However, when pooled datasets were included we found
a statistically significant association between imaging modality and
classification performance in external samples (Sensitivity z= 0.34;
p= 0.003, Supplemental Fig. 3). This result indicates that rs-FC
outperforms T1-based classification of psychosis in external datasets
when large pooled datasets are used.
Notably, a close examination of these results indicates that

there is substantial heterogeneity in classification performance
across studies. We next analyze this heterogeneity in more detail,
and ask whether there is bias in reported effects and how this bias
affects classification performance.

Addressing heterogeneity reveals differences in psychosis
prediction across imaging modalities
Neuroimaging subgroups appeared to have high amounts of
variability as measured by Cochrane’s Q (Χ2= 1,004.06,
p < 0.0001). We asked whether this variability in reported effects

exhibited any evidence of bias. This was evaluated by examining
signs of funnel plot asymmetry, Egger’s test [73] and an alternative
test [74]. Funnel plot asymmetry can indicate a bias of reported
effect estimates and standard error after accounting for sample
size heterogeneity.
Funnel plots and Egger’s test produced evidence of asymmetry

in reported effects for all modalities (p < 0.05; Fig. 4), suggesting
that reported effects may be biased. Bias can occur due to
publication bias, selective reporting, poor methodological design,
and high heterogeneity of findings [72]. However, use of the
Peter’s test resulted in no significant evidence of funnel plot
asymmetry (p > 0.1). These conflicting results are likely due to the
large heterogeneity across studies and use of log odds ratio
estimates (as described in more detail in ref. [74]).
To address potential confounding results due to funnel plot

asymmetry, we conducted an additional set of analyses similar to
our primary ones, but after removing outlier studies. Outlier
studies were identified as lying outside the 95% confidence
interval of the pooled effect among each imaging group. This
resulted in a final sample of 11 T1, 8 DTI, 21 rs-FC, and 5
multimodal internally-validated studies (Fig. 4, highlighted in
Supplemental Table 1–4). After outlier exclusion, a dip test was
conducted and did not reveal significant signs of non-unimodal
distribution within each imaging group (p > 0.1).
In this reduced set of manuscripts, we continued to observe

similar classification performance across modalities, with no
significant difference in psychosis classification across imaging
modalities when classification was tested on independent internal
datasets (i.e., via cross-validation; p > 0.05; Fig. 5 left). If larger
pooled datasets were included in the meta-analysis, studies based
on rs-FC were associated with a significant decrease in false
positive classification rates compared to studies based on DTI
(Supp. Fig. 3; z=−0.58, p(FDR)= 0.01).
When classification was tested on external datasets, we also found

signs of funnel plot asymmetry (p < 0.05). After outlier exclusion,

Fig. 4 Funnel plots with psychosis classification performance, broken down into subplots based on neuroimaging modality. Note: these
results are based on internal validation only, given the higher number of studies in this domain. The top row shows funnel plots for all original
internal datasets, while the bottom row shows funnel plots after outlier exclusion. Each plot is centered on a fixed effect summary estimate,
the outer dashed lines indicate the 95% confidence interval of the fixed effect estimates. Symmetry is apparent when all studies are randomly
dispersed around the dashed vertical line. In contrast, each imaging group showed signs of funnel plot asymmetry. These observations were
confirmed by formally testing the correlation between study size and effect estimates using the Egger’s test (p < .05).

A. Porter et al.

3284

Molecular Psychiatry (2023) 28:3278 – 3292



there was still a significant difference between imaging modality
and classification, with studies using rs-FC resulting in higher
sensitivity rates (z= 0.42, p(FDR) < 0.001) compared to T1 imaging
(Fig. 5, right). This effect remained consistent when including pooled
datasets (z= 0.39; p(FDR) < 0.001; Supplemental Fig. 3).
No other differences were present across modalities. Notably, in

all versions of analyses, rs-FC studies performed similarly to
multimodal studies, and multimodal studies did not outperform
other imaging modalities in their prediction of psychosis. These
findings suggest that, with the current literature, most imaging
modalities perform similarly in psychosis classification, without
major advantages for multimodal methods relative to unimodal
methods (although rs-FC shows some slight advantages over
structural-based approaches).

Classification performance is not associated with
demographic or analysis covariates
In our final set of analyses, we investigated different potential
sources of variation in prediction results (for a detailed overview
see Supplemental Table 5). First, we examined participant
characteristics: age, gender, CPZ equivalents, illness duration,
and PANSS (we did not obtain enough studies that reported
handedness or nicotine use to conduct a bivariate model
assessing these participant characteristics). When conducting a
bivariate analysis using all studies independent of imaging
modality, we did not find a moderating effect on sensitivity or
specificity measures for any of these factors (p > 0.1).
Next, we examined analysis characteristics. We did not find

moderating effects based on classification method (e.g., support
vector, ridge, decision tree), deep vs. non-deep methods, cross-
validation scheme (e.g., leave one out, test train split, kfold), feature
size, or publication year (p > 0.1)(see Supplemental Fig. 4). We also
did not find a significant main effect based on sample size (p > 0.1).
Head motion is a major confound in neuroimaging analyses

[57–59, 175]. Therefore, we conducted an additional analysis to
evaluate whether variance in effects sizes could be related to
denoising methods designed to reduce the influence of head
motion. This analysis was performed with a subset of studies that
were either primarily rs-FC based or multimodal (rs-FC + other

methods) (N= 50). We examined the influence of motion related
artifacts on rs-FC effect sizes using a manually derived quality
assessment score (as described in Quality assessment of rs-FC
preprocessing). We found that the total quality assessment
measure did not have an effect on classification (X2(2,50)= 0.34,
p= 0.8). This result suggests that motion artifacts were not a
major driver of classification performance. However, it is important
to note that the majority of rs-FC studies used similar motion
denoising techniques.

DISCUSSION
We conducted a meta-analysis to test whether there are
advantages to combining neuroimaging modalities for classifica-
tion of individuals with psychosis. This analysis yielded several
surprising and important findings. First, we found that all
neuroimaging modalities examined (T1, DTI, rs-FC, multimodal)
were able to classify individuals with psychosis from healthy
controls. Second, we only found limited differences across
modalities, primarily in advantages of rs-FC relative to T1 in
classification performance in external datasets. Third, there was
significant evidence for heterogeneity across studies. The reported
effect sizes within each imaging group appear asymmetric,
suggesting that systematic bias may be present in past reports
of the classification of psychosis. When studies outside of the
expected confidence bounds were removed, we continued to
detect only limited differences across modalities, primarily
associated with rs-FC approaches relative to structural imaging
methods (DTI when classification was tested with internal
datasets; T1 when classification was tested with external datasets).
Notably, across all analyses, no difference was seen between
multimodal and rs-FC approaches, which had largely overlapping
classification distributions. We further discuss the implications of
these findings and provide suggestions for improvements in
future studies below.
Given that the extant of psychosis literature has identified

changes in both the function and structure of whole brain
networks, it is, perhaps, surprising that we did not see large
improvements in classification when using multimodal methods
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Fig. 5 Sensitivity plots of psychosis classification performance after the exclusion of outlier studies, when tested on independent
internal (left; i.e.., cross-validation) and external (right) datasets. Colors represent different imaging modalities; estimated summary receiver
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A. Porter et al.

3285

Molecular Psychiatry (2023) 28:3278 – 3292



compared to all unimodal methods. Interestingly, in literature
predicting behavioral variables from neuroimaging, recent papers
have also found that multimodal methods do not provide an
increase in performance relative to single modalities [176, 177].
This finding is in direct contrast to prior work arguing for the
advantages of multimodal approaches (for review see [178]). This
may be specific to these particular classification cases, to
limitations in current methods in merging multimodal results, or
due to individual differences in the function and structure of
networks which introduces noise during classification and does
not aid in prediction [179, 180].
When our analyses were restricted to remove outlier studies, we

found evidence that rs-FC approaches statistically outperform
structural (DTI for internal and T1 for external) studies in classifying
psychosis. This suggests that heterogeneity in study results
(discussed further below) may also limit our ability to detect
modality-based effects. It is interesting that even in this circum-
stance, multimodal approaches did not differ from functional (rs-FC)
approaches and had largely overlapping distributions. It is possible
that different advantages between the modalities will be identified
that pertain to specific questions and sub-populations, and that
differences across modalities will be enhanced with additional
methodological and analytical development. While the use of
multimodal methods has gained popularity and can, at times,
produce advantages to predicting psychopathology and cognition
[178, 181], these differences in accuracy may not fully capture the
inherent variation in sensitivity and specificity that was found across
studies. We look forward to seeing additional methodological
development and larger studies in this area that will help expand
knowledge in this domain.
Results from Egger’s test and the funnel plots demonstrated

asymmetry in effect sizes among reported studies. This finding
suggests that the ability to predict psychosis is negatively
correlated with study precision (as measured by variance per
participant group). Asymmetry in reported effects is usually
evidence for systematic bias, independent of random sampling
variance. This effect may be due to selective biases in reporting,
poor methodological design, or inflated effects from small sample
sizes. Publication bias, or the selective reporting of results that
produce a significant effect, is one potential interpretation of why
asymmetry was present in this analysis. Notably, however,
removing studies outside of the expected confidence interval
bound from our funnel plot analysis did not substantially change
results regarding classification performance across modalities,
aside from revealing a difference between rs-FC and DTI studies in
prediction of internal datasets. We are hopeful that the increase in
predictive modeling and popularity in preregistration of projects
(e.g. Open Science Framework) will help reduce the effect of
systematic bias in publication over time.
It is important to highlight that the Egger’s Test can produce

false positive results when sample sizes across participant groups
are not evenly balanced [74]. Our meta-analysis included manu-
scripts with a wide range of group-level sample sizes that were not
always balanced across participant groups (n= 10–600 per group).
When we conducted an alternative test for asymmetry using
Peter’s Test we did not find evidence of funnel plot asymmetry.
From this analysis, we conclude that the asymmetry of effect sizes
is likely at least in part associated with unbalanced participant
groups. Future work should seek to align the sample size of
participant groups prior to classifying psychosis.
Recent work has shown that separation of machine learning

models based on race, gender, and age results in significant
differences in classification performance [182, 183]. These findings
indicate that there are biases in classification for certain groups,
and that the lack of diversity in samples may lead to poor
performance in broader and more diverse samples. We did not see
a difference in classification based on age or gender within this
meta-analysis (Supplemental Fig. 4), but were likely underpowered

for conducting a more rigorous analysis to determine if diversity
characteristics had an effect on performance. Future work should
evaluate how classification in psychosis varies when a diverse
sample of individuals is used.
When evaluating studies that used external datasets for

prediction, we found that functional (rs-FC) methods were
significantly better at classifying psychosis compared to structural
(T1) methods. It is important to note that we were limited to
quantitatively contrast the use of T1 or rs-FC imaging modalities
due to the small number of studies that use external prediction
across other imaging modalities. Future work should place more
emphasis on using external datasets to determine the extent to
which a model generalizes and to provide an unbiased view of
predictive performance across different imaging types. Notably,
psychosis classification in external datasets was slightly lower than
in internal datasets, suggesting that internal classification is
inflating classification prediction abilities.
In addition to sample size, studies over the past decade have

reported that head motion can systematically alter rs-FC
estimates, and reduction of these biases requires appropriate
preprocessing strategies [57–60]. When examining the quality of
preprocessing methods in rs-FC we did not find that motion
preprocessing impacted classification performance. This result
could be due to the limited range of motion denoising methods
across the majority of rs-FC based studies. There is substantial
evidence that motion, respiration, and other physiological artifacts
can significantly bias estimates of rs-FC [57–60]. These biases in rs-
FC are of particular concern within psychosis samples [184–186].
Caution should be employed when evaluating classification
metrics using rs-FC if preprocessing methods do not properly
account for motion. As the field advances in motion filtering
techniques, future work will need to reevaluate the effects of
motion and classification in the context of psychopathology.
Notably, motion has also been demonstrated to impact DTI and

T1 measures and lead to misleading results such as reduced volume
and gray matter thickness [187, 188] and distorted measures of FA
[189, 190]. Unfortunately, very few DTI and T1 studies addressed
motion to a great extent, limiting our ability to analyze whether
preprocessing strategies on effect sizes. Future work should
evaluate how motion artifacts in these imaging modalities can also
influence classification [191].

Limitations and future directions
The use of neuroimaging-based classification holds considerable
promise towards supporting clinicians in the diagnosis of
psychopathology. Here, we found that many different neuroima-
ging methods were able to classify psychosis, but that these
methods performed largely similarly, with slight differences
observed between functional and structural imaging measures.
There are important factors to consider that could influence the
outcome of these findings.
Recent work has demonstrated that identification of behavioral

phenotypes linked to psychopathology requires very large sample
sizes (N > 2000) in order to produce replicable results when using
rs-FC and structural MRI measures [37]. Studies that met criteria for
this meta-analysis varied considerably in sample size (20–1100),
but were generally substantially smaller than this recommended
size. Due to the limited number of studies available, we were
unable to obtain manuscripts that utilized large enough samples
and could not formally evaluate how samples larger than 2000
participants performed across imaging modality. As the trend to
increase sample size continues, future work should reevaluate
whether the combination of neuroimaging modalities provide
substantial advantages when sample sizes are sufficiently large.
Notably, several of the largest sample sizes present in

classification studies were associated with pooling of (the same)
large public datasets. Given their non-independence, and in order
to reduce the risk of overfitting and dataset decay [65] for these
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large datasets, we included all of these results as a single average
classification statistic in our primary quantitative analyses.
However, this limited our ability to include datasets with increased
sample sizes, which is an important limitation in machine learning
studies. Therefore, we included a parallel set of analyses (reported
in Supp. Fig. 1–3) that conducted meta-analyses with these large
pooled datasets included separately. These results paralleled the
findings from the primary analyses, indicating that, at present, the
use of dataset pooling is not substantially altering findings in
psychosis classification.
In our search for large-scale network markers that predict

psychosis, we were selective in the studies that met criteria for our
analysis, requiring that, for example, they included whole-brain
analyses, used cross-validation, and reported classification mea-
sures (and for functional connectivity analyses, were based on
static rs-FC; for full list of inclusion and exclusion criteria, see
Methods). We restricted our meta-analysis to static resting-state FC,
excluding task-based FC and dynamic approaches (given the wide
variation in these, and the desire to measure task/variation
effects), and we only included whole brain analyses as opposed to
region-specific analyses, as our interest was to evaluate wide-
spread changes in brain networks. These restrictions resulted in a
surprisingly large number of rejected studies (N= 68). Future work
will be needed to systematically contrast different networks/
regions and different functional connectivity methods on their
ability to classify psychosis; past work has suggested commonal-
ities across these functional network methods [192], but that task
effects can also significantly influence prediction [193].
In addition to overlapping datasets, we only included manu-

scripts that had been peer-reviewed and indexed in PubMed
Central or Web of Science. This approach limited our inclusion of
conference abstracts, focused on recent advances. A number of
abstracts from IEEE conferences [194–199] provide a glimpse into
the outlook and growth of advanced modeling techniques for
predicting psychosis. Generally, these studies demonstrate similar
trends in performance as the studies included in the meta-analysis
and highlight the field’s continued increase in evaluating the
clinical potential associated with predictive models [200, 201].
Our investigation included results from a range of different

machine learning classification methods in the prediction of
psychosis, including deep learning (N= 23). There has been an
exciting increase in analyses that have used the analytical
potential of deep learning methods for prediction in psycho-
pathology, often adopting collaborative (team-based) approaches
[194, 202, 203]. However, recent research has also highlighted the
limitations in deep learning approaches relative to more conven-
tional machine learning models [204–208], including potential for
overfitting datasets [66] and the lack of consistent quantitative
benefits relative to prior work [209]. Consistent with Eital [209], in
our meta-analysis, we did not find any significant differences in
classification performance with deep learning methods relative to
other machine learning methods (see Supplemental Fig. 4).
However, this area of investigation is relatively nascent, and we
believe that it will be valuable to continue additional investiga-
tions regarding the precision of deep learning methods relative to
other algorithms.
Furthermore, it is worth noting that T1 and DTI data can be

analyzed through a variety of methods (e.g., T1 can be used to
analyze surface area, thickness and volume) that do not measure
the same neurobiological underpinnings. Due to the variation in
T1 measures used across each study within this meta-analysis, and
the relatively small number of studies passing our criteria, we were
unable to perform a more sophisticated model comparing each
measurement type (surface area, cortical thickness, etc.) as it
relates to classification. We look forward to seeing the addition of
progressively more studies of each of these types taking a whole-
brain approach to allow for the evaluation of many different
networks in evaluating psychosis.

Finally, this analysis was restricted to only include classification
between psychosis and healthy controls. It is possible that
differences in network organization between healthy controls
and psychosis are quite large resulting in higher classification than
would be expected when evaluating more nuanced comparisons
(e.g., schizophrenia vs. bipolar vs depression). The scope of this
analysis was focused on the interplay of function and structure in
brain networks related to psychosis and did not extend to other
disorders. Future work should evaluate how various disorders and
comorbidities relate to classification and neuroimaging modalities.

CONCLUSIONS
All imaging techniques were able to classify psychosis from
healthy controls. When accounting for variation in funnel plot
asymmetry, we found significant evidence that rs-FC methods
outperform structural imaging modalities. However, the results did
not find significant differences between multimodal and rs-FC,
suggesting that rs-FC may provide thorough information for
classification. Future work should apply stringent guidelines when
evaluating the predictive nature of neuroimaging modalities
among psychosis.
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