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Yu-Ting Hu 1,2✉, Zhong-Lin Tan1, Dusan Hirjak 3 and Georg Northoff 1,2✉

© The Author(s), under exclusive licence to Springer Nature Limited 2023

The excitation-inhibition (E/I) imbalance is an important molecular pathological feature of major depressive disorder (MDD) as
altered GABA and glutamate levels have been found in multiple brain regions in patients. Healthy subjects show topographic
organization of the E/I balance (EIB) across various brain regions. We here raise the question of whether such EIB topography is
altered in MDD. Therefore, we systematically review the gene and protein expressions of inhibitory GABAergic and excitatory
glutamatergic signaling-related molecules in postmortem MDD brain studies as proxies for EIB topography. Searches were
conducted through PubMed and 45 research articles were finally included. We found: i) brain-wide GABA- and glutamatergic
alterations; ii) attenuated GABAergic with enhanced glutamatergic signaling in the cortical-subcortical limbic system; iii) that
GABAergic signaling is decreased in regions comprising the default mode network (DMN) while it is increased in lateral prefrontal
cortex (LPFC). These together demonstrate abnormal GABA- and glutamatergic signaling-based EIB topographies in MDD. This
enhances our pathophysiological understanding of MDD and carries important therapeutic implications for stimulation treatment.

Molecular Psychiatry (2023) 28:3257–3266; https://doi.org/10.1038/s41380-023-02193-x

INTRODUCTION
Major depressive disorder (MDD) is a mental disorder that features
a variety of different symptoms including affective, cognitive,
sensory-perceptual, motor, and vegetative [1]. The symptomatic
complexity of MDD is mirrored by an almost analogous complex-
ity on the level of the brain regions, including limbic regions [2, 3],
regions that comprise default mode network (DMN) and lateral
prefrontal cortex (LPFC) [4–6], as well as lower-order regions like
motor cortex [7] and visual cortex [8, 9]. The hierarchical
architecture of functional brain networks in the healthy brains is
altered in MDD and linked with gene expression profiles [10].
Excitation-inhibition (E/I) imbalance is an important molecular
pathological feature of MDD as alterations in GABA and glutamate
levels have been found in multiple brain regions in MDD patients
[11, 12]. For instance, increases in glutamate concentrations in the
medial prefrontal cortex positively correlate with the anxiety levels
in women with MDD [13]. Yet another study observed inverse
correlation between glutamate levels in the dorsal anterior
cingulate cortex (ACC) and anhedonia ratings [14]. Together,
these observations raise the question whether there are brain-
wide changes in E/I balance (EIB) pattern in MDD following a
particular topographic pattern in comparison to healthy brains.
Addressing this yet to be answered question is the main goal of
our paper.
For that purpose, we hereby review the changes in the

expression levels of molecules associated with the inhibitory
GABA and excitatory glutamate systems throughout the whole

brain relying on postmortem brain studies of MDD patients
compared to healthy controls. Following recent results on the
topographic distribution of EIB in healthy subjects [15], we focus
on three key topographic features in the present study: i) general
view of whole brain involvement considering all regions; ii) cortical
and subcortical limbic regions; iii) comparison between DMN
regions and LPFC as they are known to stand in a negative
relationship [16]. Accordingly, unlike most of the postmortem and
imaging studies that focus on specific regions or networks, we
here pursue an explicit whole-brain topographic approach. This
contributes to a better understanding of the pathophysiological
mechanisms of MDD, and moreover to future therapeutic
stimulation interventions as for instance transcranial magnetic
stimulation or deep brain stimulation, as they operate through
modifying the EIB [17].

METHODS
Retrieval strategies
This study was conducted in accordance with the 2020 PRISMA
guidelines (see Fig. 1 for schematic representation). Journal
articles written in English on human brain research were system-
atically searched in PubMed from the earliest record to 05th
November 2022. The following terms were searched as keywords
in the title and abstract sections: (Major-depressive-disorder OR
depression) AND (GABA* OR glutam*) AND (postmortem OR post-
mortem). Articles other than original research, such as review and
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case report, were excluded. Included studies quantified gene or
protein expression levels of the following molecules in post-
mortem MDD brains by comparison with the healthy postmortem
brains: i) glutamic acid decarboxylase (GAD) and glutaminase
(GLS); ii) calcium-binding proteins parvalbumin (PV), calbindin
(CB), calretinin (CR), and neuropeptide somatostatin (SST); iii)
subunits of GABA-A and -B receptors, and of ionotropic glutamate
receptor AMPA, NMDA, and kainite; iv) GABA transporter 1 (GAT1),
vesicular glutamate transporter (VGLUT), and excitatory amino
acid transporter (EAAT). Molecules were summarized in Supple-
mentary Table 1. Search and selection were done by two
independent reviewers.

Brain region grouping
The cortical regions investigated were defined by the Brodmann
area (BA) as it is the basis for defining postmortem anatomical
human brain structures. For grouping the brain regions, we
followed the seven-network parcellation [18, 19]. Among which,
three profiles, i.e., the limbic regions, regions that comprise DMN
and LPFC were highlighted. In brief, limbic regions include BA11,
24, 25 and 28, as well as the hippocampus and amygdala [20, 21];
DMN regions includes the medial part of BA8~10, BA21, 24 and 28
[22]; LPFC includes BA44, 46 and 47. Involved brain regions and
grouping details are shown in Supplementary Table 2.

Semi-quantification
Each study that reveals a significant increase in MDD patients
compared with healthy controls in the expression level of one or
more GABA and glutamate neurotransmission-related molecules
will be counted as one entry and represented by a red rectangle
in the figures, indicating an activation in the corresponding
system; instead, studies that found a significant decrease in
expression will be indicated in blue. Results for those molecules
whose expression was not significantly different between MDD
patients and healthy controls will not be shown in the figures
while will be listed in Table 1. Of note, for studies measuring
transporters that remove neurotransmitters from the synaptic
cleft, namely GAT1 and EAAT1~3 in this review, lower levels of
transporters imply higher neurotransmitter retention in the
synaptic cleft, this would be seen as an increase in correspond-
ing neurotransmission (red rectangle); conversely, an increase in
the transporter level would be considered as a reduction in the
transmission.

RESULTS
Search results
Searching identified a total of 202 records from PubMed, of which
40 review articles and 40 articles on animals were removed before
screening. Of these, 77 records that didn’t meet the inclusion
criteria were excluded. See the PRISMA flow chart of review
process presented in Fig. 1 for details. Characteristics and main
findings of the included studies are shown in Table 1.

Global whole brain EIB alterations in postmortem MDD brains
We first provide a global overview of GABA- and glutamatergic
changes throughout the whole brain in MDD. Despite the disparity
in the number of studies across different cortical regions, this
overview shows a brain-wide variation in EIB-relatedmarkers (Fig. 2).
This suggests a more global rather than localized changes in the EIB
related to glutamatergic excitation and GABAergic inhibition in
MDD brain. We next raise the question whether there are specific
topographic patterns in the EIB changes of MDD, that is, balances
between different set of regions, within such global change.

E/I imbalance within cortical-subcortical limbic regions
GABAergic alterations. Higher mRNA levels of GAD65 and -67
were found in BA24 [23]; GAD65/67-ir neuronal density was
increased in both the orbitofrontal cortex (BAs not specified) and
the hippocampus [24]. However, studies have also reported that
both mRNA [25] and protein levels of GAD67 [26] were reduced in
BA25; lower GAD67 mRNA was also found in the hippocampus
[27]. Lower PV mRNA levels were identified in BA25 [25]. The
mRNA [25, 28, 29] and protein [28] levels of SST were also reduced
in BA25. Decreased SST gene expression [30] and density of SST-ir
neurons [31] were also observed in the amygdala. Gene
expression of many GABA-A receptor subunits has been found
elevated in BA24 [23, 32], namely α1, α2, α4, α5, β1~3, δ, ε, γ2, and
θ; while diminished α1 expression has also been reported [32].
Higher levels of GABA-B receptor subunits 1 and 2 were observed
in BA24 [23]. In sum, evidence points strongly towards reduced
GABAergic signaling in MDD in the limbic regions (Fig. 3).

Glutamatergic alterations. GLS gene expression levels were
increased in BA24 [23]. Higher gene expression of AMPA 1 [23,
33], 2~4 [23], NMDA 1~2C [23], kainate 1 [23], 5 [33]; and elevated
[3H] AMPA binding density were observed in BA24 [34]. The
mRNA level of AMPA 1, 3, 4 was found lower in the hippocampus
[35]; while AMPA 4 levels were higher in the amygdala [32]. NMDA
2A protein levels were increased in amygdala [36]. VGLUT1~2
mRNA levels were higher in BA24 [23]; and VGLUT1 was also
higher in the hippocampus [37]; while VGLUT1 was lower in BA28
[38]. Diminished levels of EAAT1~2 gene expression was reported
in both BA24 [33] and hippocampus [37]; higher levels of EAAT3
[39] were found in BA24; whereas decreased EAAT3 protein levels
were validated in BA25 [26]. In sum, there is strong evidence for
increased glutamatergic signaling in the limbic regions of MDD
(Fig. 3).
Together, this opposing change between the levels of

molecules associated with GABA and glutamate neurotransmis-
sion supposedly leads to E/I imbalance with abnormally increased
excitation and reduced inhibition in the cortical-subcortical limbic
regions (Fig. 3).

E/I imbalance between default mode network (DMN) and
lateral prefrontal cortex (LPFC)
GABAergic alterations. DMN regions: GAD67 protein levels were
significantly reduced in BA9 [40], while higher mRNA levels of
GAD65 and -67 were found in BA24 [23]. The mRNA levels of SST
[41], and the density of CB- [42] and CR-ir [43] neurons were
decreased in BA9. Diminished gene expression of GABA-A
receptor subunits was found, including α1 (BA10 [44] and 24

Fig. 1 PRISMA flow chart. PRISMA flow chart for the inclusion of
studies.
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[32]), α3 in BA10 [44], α4 (BA8 [32], 9 [32], and 10 [44]); γ1 in BA21
[32], and δ in BA10 [44]. Elevated gene expression of GABA-A
receptor subunits has also been reported, including β3 in BA10
[32], and α1, α2, α4, α5, β1~3, δ, ε, γ2, and θ in BA24 [23, 32].
Higher levels of GABA-B receptor subunits 1 and 2 were observed

in BA24 [23]. In sum, strong evidence shows reductions in the
levels of various molecules associated with GABA neurotransmis-
sion in the DMN regions of MDD patients (Fig. 4).
LPFC: Increased GAD65 and -67 mRNA levels were found in

mainly dorsolateral prefrontal BA46 [23]. GAD65/67-ir neuronal

Fig. 2 Global excitation-inhibition balance changes in the postmortem MDD brain. Global GABAergic (upper) and glutamatergic (lower)
signaling changes. Each rectangle represents a study, with red indicating an increase in the system activity and blue a decrease. The numbers
in the circles represent the corresponding Brodmann areas. Circles with light green background indicate that there were studies measuring
the transporters which remove the neurotransmitters from the synaptic cleft, namely GAT1 or EAAT1~3. am= amygdala, hp= hippocampus.

Fig. 3 Excitation-inhibition imbalance in cortical-subcortical limbic regions of the postmortem MDD brain. GABAergic signaling (upper) is
decreased, whereas glutamatergic signaling (lower) is increased. am=amygdala, hp=hippocampus.
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densities have been reported to be higher in the dorsolateral
prefrontal cortex (BAs not specified) [24]. Higher levels of gene
expression levels were observed for GABA-A receptor subunits,
including α1~5, β1~3, δ, γ2, and ε in BA46 [23, 32]; β3, δ, and γ2 in
the dorsal-LPFC [33]; as well as δ in BA44 [32, 45]. Whereas
reduced levels of subunit γ1 were found in BA46 [32]. In addition,
higher GABA-B receptor subunit 1 was identified in BA46 [23];
higher subunit 2 was seen in both BA44 [45] and 46 [23]. Gene
expression level of GAT1 was decreased in BA46 [32]. In sum, there
is strong evidence for the increased level of GABA
neurotransmission-related molecules in the LPFC of MDD patients
(Fig. 4).

Glutamatergic alterations. DMN regions: GLS gene expression
levels were increased in BA24 [23]. Higher gene expression of
AMPA 1 [23, 33], 2~4 [23], NMDA 1~2C [23], kainate 1 [23], 5 [33];
and elevated [3H] AMPA binding density were observed in BA24
[34]. Gene expression levels of AMPA subunits 2 and 4 were also
increased in BA10 [32], so was the level of subunit 1 in BA21 [32].
While there were studies that found a significant decrease in the
protein level of AMPA 1 [46] and NMDA 2A~2B [46, 47] in BA10.
The gene expression of VGULT1 was found elevated in BA10 [48]
and BA24 [23], while was found decreased in BA28 [38]; its protein
level was observed to reduce in BA9 [49]. VGLUT2 gene expression
was higher in BA24 [23] but lower in BA21 [38]. Diminished gene
expression level of EAAT1~2 [33] and higher EAAT3 levels [39]

were reported in BA24. In sum, there is some evidence for increase
in glutamatergic molecules in DMN of MDD albeit, unlike in the
case of GABAergic decrease in DMN, the evidence is not as
uniform across all measures (Fig. 4).
LPFC: GLS mRNA levels were elevated in BA46 [23]. In BA46,

gene expression levels of AMPA 2~4, kainate 1, and NMDA 1~2B
were reported to be increased [23], while AMPA 3 [32, 45] was
decreased. Higher gene expression levels of AMPA 2, 3 [33, 50]
and kainate 1, 2, 5 [33, 50] were detected in the dorsal-LPFC, while
NMDA 1~2A reduced [51]. EAAT1~2 mRNA levels were diminished
in dorsal-LPFC [33]; and their protein levels were lower in BA47
[52]. In sum, there is evidence for changes in glutamatergic
molecules in LPFC of MDD (Fig. 4).
Together, GABAergic signaling seems to be abnormally strong

in LPFC relative to DMN in MDD. In contrast, the glutamatergic
evidence in both DMN and LPFC is mixed when considering all
markers as they show both increases and decreases. Therefore,
more research is needed to develop a clearer picture of the
balance of glutamatergic changes between DMN and LPFC
in MDD.

Other EIB alterations
GABAergic alterations. Motor-related regions: Higher gene
expressions of GABA-A receptor subunit δ and β3 were observed
in BA6 [32]; protein levels of GABA-A receptor subunit α5 [53] and
GABA-B receptor subunit 1 [54] were both significantly increased

Fig. 4 Excitation-inhibition imbalance in default mode and lateral prefrontal regions of the postmortem MDD brain. GABAergic signaling
(upper) is decreased in the default mode regions while increased in the lateral prefrontal regions; whereas glutamatergic signaling (lower)
remains balanced between these two regions. DMN=default mode network, LPFC=lateral prefrontal cortex.
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in BA7. The gene expression level of GAT1 was decreased in BA4
[32]. Figure not shown.
Primary sensory regions: CB-ir neuron densities were signifi-

cantly decreased in the visual cortex (BA17) [55]; the densities of
both CB- and CR-ir neurons were lower in the auditory cortex
(BA41 and 42) [56]. Figure not shown.
Other regions: Increased GAD 65/67-ir neuronal density was

observed in BA22 [24]. Gene expressions of the GABA-A receptor
subunit α5 and -γ2 were elevated in BA20 [32]; and levels of
subunit β3 were higher in BA38 [32]. Figure not shown.

Glutamatergic alterations. Motor-related regions: Decreased gene
expression of kainate subunit 1 [32] and protein level of NMDA
subunit 2A [57] were found in BA6. Figure not shown.
Other regions: Increased gene expressions of GLS and NMDA 2A

were observed in BA20 [32]. Figure not shown.

Summary – Topographic structure of EIB changes
By summarizing the EIB changes, three key observations emerge
in the brain topography of MDD patients (Fig. 5).

i. EIB reflected by glutamatergic excitation and GABAergic
inhibition in MDD brains shows general brain-wide changes
across the whole brain regions rather than regionally
localized changes.

ii. Opposite alteration is found between GABAergic and
glutamatergic signaling within the cortical-subcortical limbic
regions: GABAergic signaling is attenuated, whereas gluta-
matergic signaling is elevated.

iii. Opposite GABAergic signaling is found between the DMN
regions and LPFC: increased in the LPFC, while, on the
contrary, diminished in the DMN regions. On the other hand,
the glutamatergic signaling is relatively unchanged in both
LPFC and DMN regions.

DISCUSSION
We here reviewed the brain-wide topographic pattern of E/I
imbalances in MDD as operationalized by changes of inhibitory
GABAergic and excitatory glutamatergic markers in postmortem

tissue. Our findings of brain-wide E/I imbalance are further
supported by in vivo magnetic resonance spectroscopy (MRS)
studies in MDD patients. Reduction in GABA levels were observed
in multiple brain regions, especially in the medial prefrontal
regions including the ACC in MDD patients [11, 58–60]. These
support our observation of decreased GABAergic signaling in
especially cortical-subcortical limbic and DMN regions in post-
mortem studies as reviewed here.
One key system with changes in E/I imbalance in MDD are the

regions of the cortical-subcortical limbic system with especially its
anterior regions like the perigenual ACC (PACC). In MDD patients,
significantly reduce negative BOLD responses during external
emotional tasks have been demonstrated in PACC [61], together
with enhanced resting-state activities [60, 62]; and increased
functional connectivity of the rostral ACC with subcortical limbic
regions has been reported [16]. These are in line with our
observation of reduced GABAergic and elevated glutamatergic
signaling in cortical-subcortical limbic regions.
Yet another key network is the default-mode network (DMN).

Our current data suggest that increased DMN activity may be
related to reduced GABAergic inhibition in DMN as suggested by
our previous study [16]. In contrast, the LPFC in MDD patients is
characterized by decreased activity [16], and our present data
suggest such deficient LPFC activity to be related to increased
GABAergic inhibition. These changes amount to an abnormal
reciprocal balance of decreased-increased GABAergic inhibition in
DMN-LPFC which well mirrors an analogous pattern of their
reciprocal modulation on the more systemic-macroscopic level,
e.g., hyperactivity in DMN and hypoactivity in LPFC [5, 16]. This is
supported by a recent study that showed how deficits in inhibitory
GABAergic interneurons, through modulating excitatory neuronal
input/output and local cell circuit processing of information in key
brain regions, may underlie the shift in the balance of DMN and
LPFC [16]. Such switch in the supposedly GABAergic mediated
reciprocal activity balance of DMN and LPFC in MDD patients is
closely associated with a shift in awareness. Rather than focusing
on the external environment, people with MDD show increased
self-focused awareness of their own physical conditions or
thoughts generally coupled with negative aspects [63, 64].
Increased self-awareness is related to increased neural activity in

Fig. 5 Diagram of the key observations. Topography of excitation-inhibition balance changes in the postmortem MDD brain.
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DMN as has been revealed by functional imaging studies in MDD
patients [5, 61, 65].
In addition to limbic and DMN-LPFC regions, we also

demonstrate abnormal E/I imbalance in more primary regions.
For instance, in the occipital cortex of MDD patients, GABA levels
were found to be unchanged [66] or lower [11, 58, 59] compared
to healthy controls; the latter is consistent with the reduced CB-ir
neuron density that has been found in the postmortem study [55].
Beyond demonstrating global topographic pattern of EIB

changes in MDD, our findings carry important therapeutic
implications. The current practice mostly focuses on stimulating
one region in isolation as for instance the dorsal LPFC with
transcranial magnetic stimulation [67] or the ACC with deep brain
stimulation [68, 69]. Our results show that we may need to extend
our therapeutic approach beyond single regions: we need to
change the topographic pattern of EIB rather than just targeting
the EIB in one single region or network. Our previous clinical study
demonstrated the therapeutic potential and good tolerance of
transcranial magnetic stimulation in the visual cortex of patients
with MDD [17]. Due to the co-occurrence of different symptoms
with different balances or constellations among sensory, motor,
cognitive, affective, social, and vegetative functions in MDD [1],
one can thus speak of “symptom coupling” or “co-occurrence of
symptom” which, as we assume, can be traced to the brain-wide
topography changes in EIB across different regions and their
respectively associated functions [70]. In that case topography,
indexing the spatial relations between different regions’ EIB,
would also be manifest on the psychological or mental level in
form of the relationship of the different symptoms – topography
may then provide the “common currency” of cellular/E/I
imbalance, neural and mental levels [71].

CONCLUSION
Recent studies of the healthy brain have shown global topo-
graphic patterns of EIB. We here ask the question whether there
are abnormal topographic EIB patterns in MDD compared with
healthy brains. We show that GABA- and glutamatergic changes in
postmortem MDD brains exhibit i) brain-wide changes; ii)
disbalance in cortical-subcortical limbic regions with decreased
GABAergic signaling and increased glutamatergic signaling; iii)
reciprocal modulation of GABA neurotransmission in DMN
(reduced GABAergic signaling) and LPFC (elevated GABAergic
signaling). Together, we demonstrate global-topographic E/I
imbalances in MDD, supported by in vivo MRS findings of
changes in especially inhibitory GABAergic system of MDD.
Beyond providing novel insight into pathophysiological mechan-
isms, these findings carry important implications for stimulation
therapy that may target topographic patterns of EIB rather than
individual regions of EIB.
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