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Evidence suggests that neurometabolite alterations may be involved in the pathophysiology of autism spectrum disorders (ASDs).
We performed a meta-analysis of proton magnetic resonance spectroscopy (‘H-MRS) studies to examine the neurometabolite levels
in the brains of patients with ASD. A systematic search of PubMed and Web of Science identified 54 studies for the meta-analysis. A
random-effects meta-analysis demonstrated that compared with the healthy controls, patients with ASD had lower N-acetyl-
aspartate-containing compound (NAA) and choline-containing compound (Cho) levels and NAA/(creatine-containing compound)
Cr ratios in the gray matter and lower NAA and glutamate + glutamine (Glx) levels in the white matter. Furthermore, NAA and
gamma-aminobutyric acid (GABA) levels, NAA/Cr ratios, and GABA/Cr ratios were significantly decreased in the frontal cortex of
patients with ASD, whereas glutamate (Glu) levels were increased in the prefrontal cortex. Additionally, low NAA levels and GABA/Cr
ratios in the temporal cortex, low NAA levels and NAA/Cr ratios in the parietal and dorsolateral prefrontal cortices, and low NAA
levels in the cerebellum and occipital cortex were observed in patients with ASD. Meta-regression analysis revealed that age was
positively associated with effect size in studies analyzing the levels of gray matter NAA and white matter Glx. Taken together, these
results provide strong clinical evidence that neurometabolite alterations in specific brain regions are associated with ASD and age is

a confounding factor for certain neurometabolite levels in patients with ASD.

Molecular Psychiatry (2023) 28:3092-3103; https://doi.org/10.1038/541380-023-02079-y

INTRODUCTION

Autism spectrum disorder (ASD) refers to a group of brain-based
mental diseases, including autism, Asperger’s syndrome, and
pervasive developmental disorders, not otherwise specified, that
affect over 1% of the global population [1]. As a representative
neurodevelopmental disorder, ASD is behaviorally characterized
by deficits in social interactions, impaired verbal communication,
and repetitive behavior [2]. Despite considerable efforts in this
field, the heterogeneity of the illness features that characterize
ASD makes it challenging to elucidate the underlying pathology of
the illness and its treatment. Therefore, it is important to identify
reliable biomarkers for the early screening and treatment of this
disorder.

The direct measurement of neurometabolites is a potential
strategy for identifying individuals with psychiatric disorders [3].
Proton magnetic resonance spectroscopy ('H-MRS) is a noninva-
sive and simultaneous neuroimaging tool that allows for in vivo
quantification of brain metabolites in patients [4]. An increasing
number of "H-MRS studies have explored the pathophysiology of
ASD. The commonly investigated metabolites include N-acetyl-
aspartate-containing compounds (NAA), creatine-containing com-
pounds (Cr), choline-containing compounds (Cho), glutamate +
glutamine (Glx), myo-inositol (ml), and gamma-aminobutyric acid

(GABA). The NAA signal, which is the most prominent spectral
peak, reflects the neuronal density and health [5]. As an important
regulator of glutamatergic neurotransmission [6], N-acetyl-
aspartyl-glutamate generates a small peak in the brain, which is
difficult to distinguish from the N-acetyl-aspartate peak in the
'H-MRS spectrum. Therefore, the NAA signal measured in this
study was contributed by both N-acetyl-aspartate and N-acetyl-
aspartyl-glutamate. Cr plays an essential role in central nervous
system (CNS) energy homeostasis, representing the most stable
cerebral metabolite [7]. The benefit of the concentration of
creatine or phosphocreatine is relatively similar throughout the
brain, and it is often used as an “internal standard” to normalize
signals from other metabolites (for example, the NAA/Cr ratio for
the measurement of NAA). Typically, creatine and phosphocrea-
tine levels cannot be reliably distinguished using "H-MRS. In this
study, we used the term “Cr” used in the context of 'H-MRS
measurements to refer to the combined signal from creatine and
phosphocreatine. Cho is often interpreted as a measure of the
membrane turnover rate because choline is a constituent of cell
membranes [8]. The Cho signal observed by 'H-MRS is composed
of phosphatidylcholine metabolites, especially phosphocholine
and glycerol-phosphocholine. As an osmolyte in the CNS [9], ml is
a key component of the secondary messenger system, is believed
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to be an essential requirement for cell growth, and has been
proposed as a glia-specific marker [10]. Glutamate (Glu) is one of
the most abundant mobile metabolites in the brain, while
glutamine (GIn) is involved in glutamate recycling and the
regulation of brain ammonia metabolism [11]. However, because
of the lack of methyl groups in Glu, it produces broad complex
peaks that do not generate a prominent single peak in the "H-MRS
spectrum [7]. Unless optimized 'H-MRS methods are used (e.g., a
high-field scanner with a short echo time and long acquisition
time or a specialized J-editing or J-resolved sequence), the
measurements obtained are generally considered to reflect the
combined signal from Glu and GIn [12]. Thus, GIx represents
overall Glu and GIn levels and their functioning in the brain. In
contrast to Glu, GABA is the major inhibitory neurotransmitter in
the brain and plays an important role in maintaining the balance
of neural circuits [13].

Although "H-MRS shows promise for profiling ASD by providing
chemical compositions of a variety of brain regions, the findings
across studies are inconsistent. Taking frontal NAA as a reference,
some investigators demonstrated that NAA levels were decreased in
patients with ASD compared to those in healthy controls (HCs)
[14-16], whereas another study documented that NAA levels were
increased in patients with ASD [17]. No significant differences in NAA
levels were found in any brain region between patients with ASD
and HCs [18]. Similarly, inconsistent findings have been reported for
other neurometabolites in patients with ASD. These differences may
be attributed to differences in the regions of interest (ROIs), MRS
methodologies, stages or severity of illness, or medications.

Therefore, we conducted a systematic review and meta-analysis
to analyze the neurometabolite levels in different regions of the
brain of patients with ASD. We also explored the influence of age,
sex, full-scale intelligence quotient (FSIQ), and magnetic field
strength on the neurometabolite levels in the brains of patients
with ASD.

METHOD

We conducted a systematic review and meta-analysis of ASD in accordance
with the guidelines recommended by the Preferred Reporting Items for
Systematic Reviews and Meta-Analysis statement [19].

Data sources and study selection

We performed a systematic search of peer-reviewed publications in the
English language using the PubMed and Web of Science databases
through October 14, 2022, without year limitations. We used the search
terms “Autism” AND “MRS” OR “magnetic resonance spectroscopy”. In
addition, the references of the relevant articles were manually searched to
identify additional studies. Studies utilizing "H-MRS to examine neurome-
tabolite levels in patients with ASD and HCs were included. Studies were
excluded in the following conditions: (1) review articles, (2) MRS was
measured in animal models, (3) lack of HCs, (4) samples overlapped with
other studies, (5) in vitro data, (6) lack of necessary data, (7) participants
suffering from serious complications, (8) postmortem samples, (9) non-
English publications, and (10) articles with individual metabolites studied
in < three articles.

Data extraction

Two investigators independently extracted data from the included articles.
Primary outcomes of sample size, mean neurometabolite levels, standard
deviation (SD), and P-values were collected to generate the effective size
(ES) from eligible studies. Data on the last name and country of the first
author, publication year, mean age, sex distribution (male %), FSIQ, and
criteria and diagnosis of the participants were extracted for potential
moderator analyses. The ROIs were as follows: (1) cerebellar cortex, (2)
prefrontal cortex, (3) dorsolateral prefrontal cortex (DLPFC), (4) frontal
cortex, (5) occipital cortex, (6) parietal cortex, (7) temporal cortex, including
the hippocampus, (8) thalamus, and (9) BG. When data from the bilateral
lobes were reported separately, the left lobe was used because it has been
examined in most studies. The demographic and clinical characteristics of
the included studies are summarized in eTable.
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Statistical analysis

The Comprehensive Meta-Analysis Version 3 software (Biostat, Englewood,
NJ, USA) was used for all statistical analyses. In most cases, ES was obtained
using sample size, mean neurometabolite levels, and SDs. If neurometa-
bolite levels and SDs were not available, sample sizes and P-values were
used to obtain the ES. ES was calculated as the standardized mean
difference in brain metabolite levels between patients with ASD and HCs
and then converted to Hedges' g, and a random-effects model was
employed. Hedges'g statistic provides a correction factor to address
potential biases resulting from the sample size. If between-study
heterogeneity exists, the random-effects model can allocate the study
weight based on the inverse of the total variance, producing a wider 95%
confidence interval than the fixed-effects model [20].

Between-study heterogeneity was assessed using the Cochrane Q test
and | statistics. For the Cochrane Q test, P<0.10 was considered to be
statistically significant. The I? index determined the inconsistencies across
the original studies and subgroups and evaluated the impact of
heterogeneity. 12 values of 0%, 25%, 50%, 75%, and 100% indicated no,
small, moderate, and high heterogeneity, respectively. We then performed
subgroup analyses and unrestricted maximum-likelihood random-effects
meta-regression of ES to address the between-study heterogeneity.

We first performed a visual inspection of funnel plots to investigate
publication bias. Funnel plots were plotted by the effect sizes against
precision (inverse of SE). We also used the Egger's test to evaluate
statistical significance.

The current meta-analyses included studies with considerable hetero-
geneity and confounders, including categorical variables (assessed brain
region, magnetic field strength, and medication status) and continuous
variables (sample size, age, sex, publication year, course of the disease, and
disease severity). Therefore, we performed meta-regression analyses to
investigate the influence of these potential sources in studies showing
significant differences in metabolites between patients with ASD and HCs.

We considered P<0.05 to be statistically significant unless otherwise
noted; a P-value below 0.1 was reported as a trend.

RESULTS
Characteristics of the included studies
We performed a systematic search, which produced 244 records
from PubMed, 253 records from Web of Science, and 5 additional
records from the reference lists of the retrieved articles. After
scanning the titles and abstracts, 78 articles relevant to the
present meta-analysis were identified for a full-text review. A total
of 54 studies (including 1,501 patients and 1,294 HCs) that met the
criteria were included in this meta-analysis (Fig. 1) [14-18, 21-69].
Most studies were conducted on children (N =34, 63%). The
sample sizes ranged from 8 to 114 for patients with ASD and 8 to
70 for HCs. The average of each study ranged from 1.9 to 40.54 for
patients with ASD and from 2.0 to 41.08 for HCs. Twenty-six (48%)
studies were performed at a magnetic field strength of 3T, while
27 (50%) studies were performed at 1.5 T. 'H-MRS protocols and
methodological information, including measurement techniques
and parameters, are described in Table 1.

Meta-analysis for neurometabolite level measurements

We compared seven neurometabolite levels across the gray and
white matter of the brain between patients with ASD and HCs. Our
research revealed a statistically significant decrease in NAA
concentrations in both the gray matter and white matter of
patients with ASD compared with those in controls (gray matter:
nine studies, Hedges' g=—3.03, 95% Cl=—-0.603 to —0.003,
P=0.047; white matter: six studies, Hedges’ g=-0.690, 95%
Cl=—-1.168 to -0.213, P = 0.005; Table 1). A significant decrease in
the NAA/Cr ratio was observed in the gray matter of patients with
ASD (five studies, Hedges' g =-0.302, 95% Cl =-0.569 to -0.034,
P=0.027; Table 1; Fig. 2A). For Glx, there was a significant
decrease in the white matter in patients with ASD, while a trend
for a significant difference in the gray matter was observed
between cases and controls (white matter: five studies, Hedges’
g=—0.743, 95% Cl=—-1.288 to -0.197, P=0.008; gray matter:
eight studies, Hedges’ g =—0.263, 95% Cl=—-0.567 to 0.041,
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326 PubMed
263 Web of Science

Identification

497 Studies identified through
Electronic database search

5 Additional records identified
through reviewing reference
lists of relevant studies

!

502 Records screened

Screening

424 Records excluded

>

A4

78 Full-text studies scrutinized for eligibility

Eligibility

Included

24 Studies excluded, due to

5 without HC subjects

1 samples overlapping with
other studies

3 in vitro data

4 without necessary data

1 suffering from serious studied
complications

2 Non-English publication

8 Individual markers were
studied in less than 3 articles

A 4

54 Studies were included in meat-analysis

Fig. 1
articles to be included in the meta-analysis.

P=0.090; Table 1; Fig. 2B). Additionally, although we found a
significant decrease in Cho (six studies, Hedges’ g = —0.701, 95%
Cl=-1.297 to -0.106, P=0.021, Fig. 2C) and a trend for a
significant difference in Cr (six studies, Hedges' g = —0.425, 95%
Cl=-0.859 to —0.009, P=0.055) in the gray matter of children
with ASD, subgroup analysis showed that there was no difference
between any specific brain regions (Table 2).

Next, we performed a region-specific meta-analysis and found
that patients with ASD had significant reductions in NAA in most
parts of the brain (DLPFC, frontal cortex, occipital cortex, parietal
cortex, and temporal cortex) (DLPFC, 5 studies: Hedges’
g=—0.349, 95% Cl= —0.694 to —0.004, P = 0.048; frontal cortex,
24 studies: Hedges' g=—0.234, 95% Cl=-0.419 to —0.048,
P=0.014; occipital cortex, 4 studies, Hedges' g = —0.667, 95%
Cl=-1.026 to —0.309, P<0.001; parietal cortex, 8 studies:
Hedges’ g=-0.318, 95% Cl=-0.535 to —0.102, P=0.004;
temporal cortex, 11 studies: Hedges' g = —0.354, 95% Cl = —0.672
to —0.037, P=0.029; Table 2; Fig. 3A, B). Notably, NAA level
changes in patients with ASD were age-dependent, as we found
that NAA level reductions in the cerebellum, frontal cortex, and
temporal cortex were specific to children with ASD (cerebellum,
5 studies: Hedges’ g=—0.305, 95% Cl=-0.558 to —0.053,
P=0.018; frontal cortex, 13 studies: Hedges' g= —0.288, 95%
Cl=-0.534 to —0.043, P=0.022; temporal cortex, 6 studies:
Hedges' g=—0.514, 95% Cl=-0917 to —0.111, P=0.012;
Table 2). In line with the age-dependent NAA alterations in
specific brain regions, analyses of the NAA/Cr ratio in the frontal
and parietal cortices revealed a reduced NAA/Cr ratio (frontal
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PRISMA flowchart of the literature search. A systematic search of Pubmed, Web of Science and relevant references identified 54

cortex, 12 studies: Hedges’ g=—0.383, 95% Cl=-0.625 to
—0.141, P =0.002; parietal cortex, 3 studies: Hedges' g = —0.341,
95% Cl = —0.666 to —0.016, P = 0.040) in patients with ASD when
compared with that in controls, and the NAA/Cr ratio (nine studies:
Hedges’ g=—0.406, 95% Cl=-0.687 to —0.124, P=0.005)
remained low in the frontal cortex of children but not in that of
adults with ASD (Table 2).

Moreover, the comparison of metabolic differences in Glx across
various brain regions revealed no statistically significant differ-
ences between the cases and controls. Although the number of
related studies was limited, we found that Glu levels increased
significantly in the prefrontal cortex of patients with ASD (five
studies: Hedges' g =0.461, 95% Cl=0.043 to 0.880, P=0.031;
Table 2; Fig. 4A), which was not observed in the BG (three studies:
Hedges’' g = —0.065, 95% Cl = —0.644 to 0.515, P = 0.827; Table 2).
The results further showed that the concentration of GABA (six
studies: Hedges’ g =-0.418, 95% Cl= —0.773 to 0.064, P =0.021)
as well as the GABA/Cr ratio (four studies: Hedges’ g =-0.702, 95%
Cl=-1.064 to 0.340, P<0.001) decreased significantly in the
frontal cortex of patients with ASD; a decreased GABA/Cr ratio
(three studies: Hedges' g = —0.862, 95% Cl= —3.086 to —0.638,
P =0.003) was also found in the temporal cortex of patients with
ASD (Table 2, Fig. 4B-D).

Investigation of heterogeneity

Most of the between-study heterogeneities were at low-to-
moderate levels in the meta-analysis; next, we performed meta-
regression analyses, as shown in eTable 2.
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A

NAA/Cr ratio in Gray matter

Study name Statistics for each study Hedges's g and 95% CI
Hedges's Lower Upper
g limit limit p-Value
Libero et al. 2016 -0.412 -1.026 0.202 0.188 1o
Hegarty et al. 2018 -0.523 -0.971 -0.075 0.022 +
Kleinhans et al. 2009 -0.208 -0.825 0.409 0.509 L
Endo et al. 2007 a -0.127  -0.882 0.627 0.741 =
Endo et al. 2007 b 0.121  -0.587 0.830 0.737 =
-0.302 -0.569 -0.034 0.027 +
-1.00 -0.50 0.00 0.50 1.00
Decreased Increased
GlIx in White matter
Study name Statistics for each study Hedges's g and 95% CI
Hedges's Lower Upper
g limit limit p-Value
Corrigan et al. 2013 a -1.782 -2.535 -1.029 0.000
Corrigan et al. 2013 b -0.395 -0.972 0.182 0.180 Il
Corrigan et al. 2013 ¢ -0.536 -1.053 -0.019 0.042 [}
DeVito et al. 2007 -0.071  -0.593  0.451 0.791 -
Friedman et al. 2006 -1.160 -1.869 -0.451 0.001
-0.743  -1.288 -0.197 0.008 —
-1.00 -0.50 0.00 0.50 1.00
Decreased Increased
C Cho in Gray matter (Children)
Study name Statistics for each study Hedges's g and 95% CI
Hedges's Lower Upper
g limit limit p-Value
Corrigan et al. 2013 a -1.619 -2.359 -0.879 0.000
Corrigan et al. 2013 b -0.695 -1.283 -0.107 0.020
Corrigan et al. 2013 ¢ 0.093 -0.415 0.601 0.720
DeVito et al. 2007 -0.123  -0.646 0.399 0.644
Friedman et al. 2006 -1.668 -2.412 -0.924 0.000
Bejjani et al. 2012 -0.365 -1.258 0.529 0.423
-0.701  -1.297 -0.106 0.021
-2.00 -1.00 0.00 1.00 2.00
Decreased Increased

Fig. 2 Forest plot for random-effects meta-analysis for NAA/Cr, GIx and Cho in gray matter and white matter. Forest plot for random-
effects meta-analysis on differences in various brain neurometabolite (A, NAA/Cr ratio in gray matter; B, Glx in white matter; C, Cho in gray
matter) concentrations between autism spectrum disorder (ASD) patients and healthy controls. The sizes of the squares are proportional to
the study weight. The diamond marker indicates the pooled effect size. Cl Confidence interval.

The current meta-regression for NAA in the gray matter revealed

that the mean age of the participants was positively associated with
ES (coefficient [95% Cl], 0.0337 [0.0113-560]; P = 0.0032), but not with
sex, FSIQ, or publication year (eFig. 1A). For Glx in the white matter,
the results showed that mean age was significantly associated with
ES (coefficient [95% CI], 0.1914 [0.0504-3324]; P = 0.0078), whereas
sex and publication year had no moderating effect on the outcome
of the meta-analysis (eFig. 1B). Furthermore, publication year had a
moderating effect on the outcome of the meta-analysis (coefficient
[95% CI], 0.1799 [0.0446-3152]; P=0.0092) for studies measuring
frontal cortex GABA levels, but not mean age, as shown in eFig. 1C.
There were no associations between any covariates and NAA or NAA/
Cr ratios in the specific brain regions (eTable 2).

Publication bias

Publication bias was assessed quantitatively and qualitatively
using linear regression analysis and visual inspection of the funnel

SPRINGER NATURE

plots for each group and brain region. No significant publication
bias was detected for most region-specific metabolites, except for
GlIx in the white matter (P =0.04191, Table 1), NAA in the DLPFC
(P=0.00125, Table 2), and GABA in the frontal cortex (P = 0.01774,
Table 2).

DISCUSSION

We conducted a comprehensive systematic review and meta-
analysis to compare commonly investigated neurometabolites,
such as NAA, Cho, Cr, Glu, Glx, ml, and GABA, in specific brain
regions between patients with ASD and controls, while also
considering factors that could affect metabolite levels, such as age
and intelligence quotient. Our study provided the results of the
quantitative synthesis of data from 54 'H-MRS studies, of which
1501 were patients with ASD and 1294 were HCs. Our main
findings were as follows.

Molecular Psychiatry (2023) 28:3092-3103
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NAA in Frontal cortex

Study name Statistics for each study Hedges's g and 95% CI
Hedges's Lower  Upper
g limit limit p-Value
Goji et al. 2017 -0.493 -1.054 0.068 0.085 1
Horder et al. 2018 0.250 -0.255 0.756 0.332 L
Tebartz et al. 2014 -0.098 -0.606 0.410 0.705 i
Fujii et al. 2010 -0.130  -0.635 0.375 0.614 L )
Brix et al. 2015 -0.542 -1.199 0.114 0.106 |
Bernardi et al. 2011 -0.029 -0.749 0.690 0.936 1
Libero et al. 2016 -0.081 -0.688 0.527 0.795 i
Endres et al. 2017 -0.055 -0.655 0.545 0.857 J
Horder et al. 2013 a -0.788 -1.525  -0.052 0.036 —
Horder et al. 2013 b -0.901 -1.672 -0.131 0.022 —t
Fuijii et al. 2010 b -0.255 -0.881 0.371 0.425 i
Hardan et al. 2016 -0.645 -1.319 0.029 0.061 —i
DeVito et al. 2007 -0.478 -1.007 0.051 0.077 {1
Mori et al. 2013 -0.616 -1.038  -0.194 0.004 5
Murphy et al.2002 1.090 0.309 1.871 0.006
Harada et al. 2011 -0.062 -0.870 0.745 0.880
Kleinhans et al. 2007 -0.783 -1.5568  -0.009 0.047 —i—
Hisaoka et al. 2001 0.256 -0.124 0.636 0.187 —
Aoki et al. 2012 0.000 -0.551 0.551 1.000
Carvalho et al. 2018 -1.037 -1.748  -0.326 0.004
Bejjani et al. 2012 a -0.071 -0.957 0.815 0.875
Bejjani et al. 2012 b 0.687 0.058 1.315 0.032 ——]
Levitt et al. 2003 -0.459 -1.061 0.143 0.135
Jiménez et al.2021 -0.555  -1.071  -0.038 0.035
-0.234 -0.419  -0.048 0.014
-1.00 -0.50 0.00 0.50 1.00
Decreased Increased
NAA in Parietal cortex
Study name Statistics for each study Hedges's g and 95% CI
Hedges's Lower Upper
g limit limit p-Value
Horder et al. 2013 a 0.059 -0.649 0.767 0.870 —
Horder et al. 2013 b -0434 -1.175 0.308 0.252
Bernardi et al. 2011 -0.145  -0.865 0.576 0.694 o
Kleinhans et al. 2007 -0.466  -1.221 0.289 0.226
Hisaoka et al. 2001 -0.477  -0.861 -0.094 0.015
Levitt et al. 2003 -0.491 -1.094 0.112 0.111
Page et al. 2006 -0.175  -0.816 0.466 0.592 &
Murphy et al.2002 0.000 -0.732 0.732 1.000
-0.318 -0.535 -0.102 0.004 =
-1.00 -0.50 0.00 0.50 1.00
Decreased Increased

Fig. 3 Forest plot for random-effects meta-analysis for NAA in frontal cortex and parietal cortex. Forest plot for random-effects meta-
analysis on differences in frontal cortex (A) and parietal cortex (B) NAA concentrations between autism spectrum disorder patients and
healthy controls. The sizes of the squares are proportional to the study weight. The diamond marker indicates the pooled effect size. Cl

Confidence interval.

(1) The comparison of metabolic differences between
patients with ASD and HCs across the gray matter of the brain
revealed statistically significant differences in NAA levels and
NAA/Cr ratios, accompanied by a trend for significant differ-
ences between patients with ASD and HCs for Cr and Glx
analyses.

(2) In the white matter, there were significant reductions in NAA
levels and GlIx concentrations between patients with ASD and HCs,
and no statistically significant differences were found for Cr, Cho,
and ml.

(3) A region-stratified anatomical focus on NAA showed that
there were significant reductions in NAA in many brain regions
(including the DLPFC and frontal, occipital, parietal, and temporal
regions), but not in the prefrontal cortex and thalamus.

(4) Patients with ASD showed a significant decrease in the NAA/
Cr ratio in the DLPFC, frontal cortex, and parietal cortex, whereas
no differences were observed in the cerebellum, prefrontal cortex,
and temporal regions.

Molecular Psychiatry (2023) 28:3092-3103

(5) Significant differences were found for GABA and the GABA/
Cr ratio between patients with ASD and HCs in the frontal cortex,
while the GABA/Cr ratio decreased in the temporal cortex of
patients with ASD.

(6) Glu increased significantly in the prefrontal cortex of patients
with ASD.

(7) Age was a confounding factor in this meta-analysis.

In addition to ASD, it has been suggested that abnormalities in
the neurometabolites in the brain are implicated in the
pathophysiology of other neurological diseases such as MDD,
Alzheimer's disease, and schizophrenia. Previous meta-analyses
have demonstrated that Glx levels are significantly decreased in
patients with major depressive disorder [70], which was not
observed in our meta-analysis assessing Glx levels in patients with
ASD. Another meta-analysis showed that there was a decrease in
NAA levels in patients with schizophrenia [71]. Together with our
findings of decreased NAA levels in the brains of patients with
ASD, this supports the hypothesis that there is a strong association
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Glu in PFC
Study name Statistics for each study Hedges's g and 95% CI
Hedges's Lower Upper
g limit  limit  Z-Value p-Value
Horder et al. 2018 0299 -0.207  0.806 1.159 0.247
Cochran et al. 2015 0.000 -0732 0732 0.000 1.000
Joshi et al. 2013 2313 1010 3615 3481  0.000
Naaijen et al. 2017 0486 0098 0873 2458 0014
Jiménez et al.2021 0300 -0210 0811 1154 0249
0461 0043 0880 2161  0.031
-1.00 -050 0.00 050  1.00
Decreased Increased
C GABA/Cr ratio in Temporal cortex
Study name Statistics for each study Hedges's g and 95% CI
Hedges's Lower Upper
g limit limit  p-Value
Rojas et al. 2014 -0.965 -1.661 -0.270 0.007 -
Gaetz et al. 2014 -1.666 -2.573 -0.759 0.000
Port et al. 2017 -2.959 -3.706 -2.212 0.000 -
-1.862 -3.086 -0.638 0.003
-4.00 -2.00 000 200 4.00

Decreased Increased

GABA in Frontal cortex
Study name Statistics for each study Hedges's g and 95% CI
Hedges's Lower  Upper
g limit limit p-Value
Harada et al. 2011 -1.609 -2.546 -0.672 0.001
Goji et al. 2017 -0.582 -1.146 -0.018 0.043
Carvalho et al. 2018 -0423 -1.097 0.252 0.219
Horder et al. 2018 -0.043  -0.547  0.461 0.868
Brix et al. 2015 -0.385 -1.052 0.282 0.257
Puts et al. 2017 -0.094 -0.552 0.363 0.687
-0.418  -0.773  -0.064 0.021
4.00 -0.50 0.00 0.50 1.00
Decreased Increased
D GABA/Cr ratio in Frontal cortex
Study name Statistics for each study Hedges's g and 95% Cl
Hedges's Lower  Upper
g limit limit p-Value
Cochran et al.2015 -0646 -1.398  0.106 0.092
Gaetz et al. 2014 -0.894 -1.605 -0.182 0.014 —
Brix et al. 2015 -0.275 -0.939  0.388 0.416 L
Kubas et al.2012 -1.124  -1.908  -0.340 0.005 —
-0.702  -1.064 -0.340 0.000 —
-1.00 -0.50 0.00 0.50 1.00

Decreased Increased

Fig. 4 Forest plot for random-effects meta-analysis for Glu, Glx and GABA in various brain regions. Forest plot for random-effects meta-
analysis on differences in various brain neurometabolite (A, Glu in prefrontal cortex; B, GABA in frontal cortex; C, GABA/Cr ratio in temporal
cortex; GABA/Cr ratio in frontal cortex) concentrations between autism spectrum disorder patients and healthy controls. The sizes of the
squares are proportional to the study weight. The diamond marker indicates the pooled effect size. Cl Confidence interval.

between ASD and schizophrenia [72]. Interestingly, the present
meta-analysis revealed alterations in Cho, Cr, Glu, and GABA levels
in different brain regions between patients with ASD and HCs. It is
very likely that patients with ASD have a unique neurometabolite
factor profile compared to those with other neuropsychiatric
diseases, which may partially explain the pathogenesis of ASD.

NAA is a reliable marker of mitochondrial activity and is often
used as a chemical marker of neuronal integrity [73]. Autopsy
reports suggest that a decrease in NAA may activate and increase
astroglia with an increased inflammatory response [74, 75] thus
negatively affecting tissue damage and nerve repair in the brain
[26], which is consistent with our findings of NAA reductions in the
brains of children with ASD using 'H-MRS. Additionally, metabolite
differences associated with NAA and the NAA/Cr ratio were found
to be age-dependent. A significant decrease in both NAA levels
and the NAA/Cr ratio was observed only in the frontal cortex of
children with ASD. Children with ASD have an enlarged frontal
cortex in their infancy [76] with the presence of inflammation or
hypoperfusion, as suggested by signs, including decreased serum
levels of adhesion molecules and a correlation with their head
circumferences [74, 77]. As a key region of the human brain for
communication and cognitive function, the frontal cortex
contributes to early developmental defects in children with ASD,
including glial activation, migration defects, and abnormal
apoptosis [78]. Therefore, it is reasonable to conclude that NAA
abnormalities in ASD are age-dependent. This result is consistent
with previous studies suggesting premature aging and neurode-
generative processes in autistic brain, as Ivashko-Pachima et al.
discovered a genomic autism activity-dependent neuroprotective
protein mutation in postmortem Alzheimer's disease brains
correlating with increasing tauopathy [79], and data from Grigg
further suggested that tauopathy may explain brain imaging
results of atrophy in ASD children [80]. Nevertheless, future
research should examine NAA longitudinally over the life course,
both in humans and rodent models of ASD, to determine the
complete profile of the NAA system in ASD.

Another neurometabolite that was significantly decreased in
the frontal cortex was GABA, which is consistent with the decrease
in GABAergic interneuron subtype cells found in the prefrontal
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cortex of postmortem autistic brains [81]. Notwithstanding a
previous meta-analysis suggesting that GABA levels are lower in
patients with ASD than those in controls [82], our findings further
revealed the specific areas of the brain with dysregulated GABA
levels in patients with ASD and analyzed the absolute and relative
GABA levels. Consistently, various animal models have revealed a
correlation between low GABA levels and ASD (for a review, refer
[82]). Furthermore, an examination of ASD in post-mortem studies
indicated the downregulation of enzymes involved in GABA
activation [83, 84]. Clinical studies have demonstrated that the
density, number, and protein subunits of GABA receptors are
decreased in patients with ASD [85-87]. The low frontal cortex
GABA system in ASD could be a result of the loss of GABAergic
interneurons [88], indicating that impaired GABA processing could
become a novel therapeutic target for autism [89]. Consistent with
this hypothesis, we found a significant decrease in the GABA/Cr
ratio in the temporal cortex of children with ASD. However, due to
the limitations of the included literature, the relationship between
GABA and other brain regions requires further study.

Excitatory neurotransmission in the brain is primarily mediated
by glutamatergic neurons. The correlation between dysfunction of
the glutamatergic system and ASD is widely recognized.
Glutamatergic receptor expression, along with its function, is
altered in patients with ASD, which is in line with a growing body
of evidence from various animal models of ASD (for a review, refer
[90]). Glu is a major excitatory neurotransmitter widely distributed
throughout the CNS. A meta-analysis suggested that blood Glu
levels are higher in patients with ASD than those in controls [91],
which is consistent with our results of increased Glu levels in the
prefrontal cortex of patients with ASD, suggesting that Glu
dysfunction may be regionally specific in ASD. Because GABA
levels are decreased in the frontal cortex of patients with ASD, the
increase in Glu in these patients may be due to the reduced levels
of glutamic acid decarboxylase in the brain that converts Glu into
GABA [84, 92]. Therefore, our findings support Fatemi’s hyperglu-
tamatergic hypothesis of autism [93]. Genetic studies have
suggested that mutations in the GRIN gene encoding the N-
methyl-d-aspartate receptor are associated with ASD [94, 95].
Thus, further research is needed to explore whether the Glu level
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can be used as a potential biomarker for diagnosis in the future.
However, Glu and GIn are difficult to separate; therefore, GIx has
been used instead in most studies. Our findings revealed low Glx
levels in the white matter of children with ASD, and the decrease
in GIx may not simply be reflected as a decrease in Glu or GIn
because the ratio of Glu to GIn in these patients is unknown.

The strength of this work is that it is the most comprehensive
study of neurometabolites in patients with ASD to date.
Furthermore, the between-study heterogeneity was not high,
suggesting the robustness of our meta-analysis. The potential
moderators that we analyzed included the brain region source,
magnetic field strength, sample size, publication year, age, and
sex. Some unexplained heterogeneity may be due to other
variables that were not analyzed, such as medication status,
disease severity, and lifestyle. Importantly, our analyses showed a
specific decrease in the NAA levels in the frontal and temporal
cortices of individuals with ASD, which was not reported in a
previous meta-analysis of NAA levels in patients with ASD
published in 2012 due to the limited sample size [96].

This meta-analysis has some limitations. First, although we
categorized ROIs into different brain areas, the classification might
have been oversimplified considering the functional variability
within each subarea. Voxel sizes also varied among the studies,
and these differences might have skewed the results of the ROI
analyses. Second, the field strength was < 3T, which limited the
accurate differentiation of homologous neurometabolites. For
example, GIx is composed of both Glu and GIn, but Glu accounts
for approximately 80% of Glx levels at 1.5 T or 3 T [97]. Moreover, it
is difficult to differentiate N-acetyl-aspartyl-glutamate from N-
acetyl-aspartate and Glu using in vivo '"H-MRS because of the
similarity in their structures and spectra [98]. Moreover, 'H-MRS
does not provide information regarding cell types. Future studies
should increase the field strength to improve the separation of
individual signal spectra. Third, most studies included in the meta-
analysis did not consider food or smoking information as potential
confounders. Food intake can influence neurometabolic levels in
the brain, and a study showed decreased Glx, Cho, NAA, and Cr
levels in the human brain after food intake and that the frontal
cortex is the most affected by neurometabolite levels [99].
Furthermore, smoking has been reported to directly or indirectly
affect Glu and Cho levels in the frontal cortex [100]. Finally, due to
the limited number of studies and small sample sizes assessing
neurometabolite levels in the DLPFC and occipital and parietal
cortices, we did not perform subgroup analyses on these brain
regions.

In conclusion, the results of our meta-analysis suggest that
compared with HCs, patients with ASD have lower NAA and Cho
levels and NAA/Cr ratios in the gray matter, and ASD is associated
with decreased levels of NAA in the DLPFC and frontal, occipital,
parietal, and temporal cortices. Low levels of Glx were observed in
the white matter of children with ASD, whereas Glu levels were
found to be increased in the prefrontal cortex. Our study further
revealed decreased frontal cortex GABA/Cr and NAA/Cr ratios as
manifestations of ASD. These results strengthen the clinical
evidence of an abnormal neurometabolite profile in the brains
of patients with ASD.
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