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Alcohol misuse and alcohol use disorder (AlUD) have neurobiological consequences. This meta-analysis of proton magnetic
resonance spectroscopy (MRS) studies aimed to assess the differences in brain metabolite levels in alcohol misuse and AUD relative
to controls (PROSPERO registration: CRD42020209890). Hedge’s g with random-effects modeling was used. Sub-group and meta-
regression techniques explored potential sources of demographic and MRS parameter heterogeneity. A comprehensive literature
review identified 43 studies, resulting in 69 models across gray and white matter (GM, WM). Lower N-acetylaspartate levels were
found in frontal, anterior cingulate cortex (ACC), hippocampal, and cerebellar GM, and frontal and parietal WM, suggesting
decreased neuronal and axonal viability. Lower choline-containing metabolite levels (all metabolites contributing to choline peak)
were found in frontal, temporal, thalamic, and cerebellar GM, and frontal and parietal WM, suggesting membrane alterations
related to alcohol misuse. Lower creatine-containing metabolite levels (Cr; all metabolites contributing to Cr peak) were found in
temporal and occipital cortical GM, while higher levels were noted in midbrain/brainstem GM; this finding may have implications
for using Cr as an internal reference. The lack of significant group differences in glutamate-related levels is possibly related to
biological and methodological complexities. The few studies reporting on GABA found lower levels restricted to the ACC.
Confounding variables were age, abstinence duration, treatment status, and MRS parameters (echo time, quantification type, data
quality). This first meta-analysis of proton MRS studies consolidates the numerous individual studies to identify neurometabolite
alterations within alcohol misuse and AUD. Future studies can leverage this new formalized information to investigate treatments
that might effectively target the observed disturbances.
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INTRODUCTION
There is a clear connection between alcohol misuse, such as
binge drinking (≥5 drinks for males, ≥4 drinks for females on an
occasion) and heavy drinking (binge drinking ≥5 days/week), and
an increased risk of developing alcohol use disorder (AUD) [1, 2].
In fact, ~40% of alcohol consumers endorse heavy episodic
drinking [3], and one-third of adults in the US meet lifetime
criteria for AUD [4, 5]. The personal and societal costs of alcohol
misuse and AUD are high [3], yet efforts to prevent or treat these
behaviors have only been modestly effective [5–8], necessitating
improvement in current treatments and development of more
efficacious treatments.
One step in the treatment development process is to investigate

the neurobiological consequences of alcohol misuse and AUD.
Chronic alcohol use is associated with complex, maladaptive
neurobiological changes that contribute to the escalation and
continuation of use [5, 9, 10]. The neural effects of alcohol use
in humans can be measured through proton magnetic resonance
spectroscopy (MRS) [11], a non-invasive in vivo imaging technique
that quantifies the chemical composition of tissues (‘metabolites’)
in localized regions. MRS can routinely detect relatively concen-
trated neurometabolites, including glutamate (Glu), glutamine

(Gln), gamma-aminobutyric acid (GABA), N-acetylaspartate (NAA),
choline-containing metabolites (Cho), creatine-containing metabo-
lites (Cr), and myo-inositol (mI). Of note, the MRS signal is not
able to be separated into distinct choline metabolites (phosphor-
ylcholine, glycerophosphorylcholine, free choline, or acetylcholine)
or creatine metabolites (creatine and phosophocreatine), thus
we use the term “choline-containing metabolites” or “creatine-
containing metabolites” to refer to any metabolite that will
contribute to the choline or creatine peaks, respectively. See
Supplementary Table 1 for an overview of these MRS metabolites
and their relation to alcohol use ([11–16] for comprehensive
reviews). Derived neurometabolite information can be leveraged
when studying alcohol misuse and AUD to assist in characterizing
neurometabolic alterations and informing development of treat-
ment options that can specifically target detected abnormalities.
Future work can then be dedicated to understanding if or how
such changes in neurometabolite levels may correspond with
treatment outcomes.
To our knowledge, this is the first published meta-analysis

summarizing the extant literature on brain metabolite alterations
associated with human alcohol use, relative to controls, measured
with in vivo proton MRS. Broad inclusion criteria captured studies
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of alcohol use and AUD to comprehensively cover relevant
populations (i.e., binge drinkers, treatment-seeking and treatment-
naïve AUD individuals), brain regions, and neurometabolites. Sub-
group analyses and meta-regressions explored potential sources
of heterogeneity, including population demographics (abstinence
duration, age, sex, and treatment-seeking status) and MRS
parameters (echo time (TE), absolute versus relative quantification,
and data quality metrics).

METHODS
Search strategy and study eligibility
This meta-analysis followed the Preferred Reporting Items for
Systematic Reviews and Meta-Analysis guidelines [17]. The
protocol was pre-registered with PROSPERO (protocol number:
CRD42020209890).
Relevant extant literature assessing the differences in brain

metabolite levels between alcohol misuse/AUD groups relative
to controls was identified by systematically searching PubMed,
PsychINFO, Scopus, Google Scholar, CINHAL, and TRIP using
the terms: “magnetic resonance spectroscopy” or “MRS” and
“alcoholism”, “alcohol abuse”, “alcohol dependence”, “AUDs”,
“polysubstance use” (See Supplementary Materials). Inclusion
criteria were as follows: (1) use of in vivo proton MRS; (2) alcohol-
using group defined by DSM, ICD, or other study-specific criteria;
(3) healthy control group defined by study-specific criteria (note:
some control groups did consume alcohol, but at a lower
quantity/frequency with no history of AUD. See Supplementary
Table 3a for more details); (4) direct comparison between the
alcohol-using group and control group; (5) appropriate data to
complete meta-analysis; and (6) published in English. Exclusion
criteria were: (1) carbon or phosphorus MRS, preclinical NMR
imaging; (2) other human neuroimaging technique (e.g., fMRI);
(3) metabolite measures from body fluids (e.g., CSF, blood); and
(4) comorbid psychiatric disorder or other illness (e.g., HIV,
bipolar disorder, liver disease, Fetal Alcohol Syndrome) as the
main population of interest. Studies were not excluded based on
year published, age of participants, or metabolite quantification
method (i.e., absolute metabolite concentration and metabolite
resonance intensity relative to water or Cr). Systematic searches
were conducted by one author (BDB) on May 17, 2021. All
identified studies were then reviewed for potential inclusion by
two reviewers (BDB and AEK) using Covidence Systematic
Software (Veritas Health Innovation, Melbourne, Australia. Avail-
able at www.covidence.org; Supplementary Materials). Inter-rater
reliability was high for title/abstracts (96% agreement, Cohen’s
kappa k= 0.836) and full-text screening (92% agreement, k=
0.625).

Data extraction
Both study reviewers independently extracted data from all
eligible studies using EXCEL. Spreadsheets were compared (97%
agreement), and conflicting data entries were resolved via
consultation between reviewers (BDB and AEK, with LMS as
tiebreaker). See supplementary materials for complete list of
variables extracted. To determine methodological quality of the
studies, both reviewers independently completed the Appraisal
Tool for Cross-sectional Studies (AXIS) [18] modified for proton
MRS studies [19] within Covidence (Supplementary Table 2).

Meta-analysis statistical analyses
Comprehensive Meta-Analysis Version 3.0 [20] was used for all
analyses. Significance was set at p < 0.05.

Main meta-analytic models. The main model required at least two
distinct studies within a brain region per metabolite. For longitudinal
studies, only baseline data were included to maintain independence
of data [19]. If a study had more than 1 measurement within the

same brain region, the data were treated as independent [19].
A remove-one analysis was performed as a sensitivity analysis to
assess the impact of each study individually on the overall estimate;
additionally, this was used to check for the influence of studies with
multiple groups within the same brain region. Hedges’ g (unbiased
standardized mean difference estimate) was used as the measure of
effect size [21] with random-effects modeling [22]. Heterogeneity
within studies was assessed through the Cochran’s Q, I2, tau, and
tau2 statistics. Publication bias was assessed in models with
>2 studies by: (1) funnel plots, (2) Duval and Tweedie trim and fill
method [23]; and (3) Egger’s regression [24]. See Supplementary
Materials for more details.

Sub-group analyses. The sub-group analyses required at least two
studies within each group and ten studies between groups
[22, 25]. Random-effects modeling with pooled estimates was
used [22, 26]. Two sub-group analyses examined the potential
effects of (1) treatment-seeking status (treatment-seeking v. naïve/
non-treatment seeking) and (2) quantification type (absolute v.
relative concentration) on effect sizes. Treatment-seeking status
may be a proxy for severity of alcohol use [27–30], potentially
affecting neurometabolic alterations [31–33]. Treatment-seeking
status was applied to a study if it was explicitly described in the
text, which ranged from stating the participants were seeking
treatment to stating that participants were recruited from alcohol-
specific programs, clinics, or hospitals. If it was not explicitly
stated, studies were labeled as treatment-naïve (explicitly stated)
or non-treatment seeking samples (if not explicitly stated as
treatment-seeking or treatment-naïve).
MRS-derived metabolites can be quantified using absolute or

relative (e.g., normalized to Cr) concentrations [34, 35]. Relative
concentrations often use the Cr peak as an internal concentration
reference in calculation of metabolite ratios, assuming Cr levels
are stable and not affected by pathology. However, this
assumption can be invalid, as Cr levels vary with brain activity,
age, and different pathologic states [13, 36, 37]. (Note: Relative
concentrations can also be calculated using water as the
reference, but not many studies included used this method and
thus is not included in the sub-group analysis).

Meta-regression. Meta-regressions required a minimum of ten
studies for each model (Cochrane standard), and random-effects
modeling was used. We identified five variables assumed to
introduce major heterogeneity into our main models: duration
of abstinence (days; alcohol group only), age (years), sex as a
biological variable (SABV), MRS sequence-specific echo time (TE
in milliseconds (ms) and log-transformed TE), and coefficient of
variation (COV). Abstinence duration has been associated with
variations in neurometabolite levels (for review see refs.
[13, 16]), reflecting at least partial reversibility of metabolite
level alterations with abstinence. Most studies included middle
aged to older participants, yet a select few reported on young
adult alcohol use; thus, given that metabolite levels can be age-
dependent, age also introduces heterogeneity. Similarly, most
studies included mostly male participants, so SABV (defined as
percent of males included in the study) was assessed as clinical
research has historically over-sampled males [38], which can
have treatment ramifications [39, 40], and there have also been
SABV differences in neurometabolite levels across clinical
populations [41] and healthy control populations [42]. The TE
was included as a variable with potential impact on ability to
properly quantify metabolite signals, as its standard has
changed over the years with improvements in technical
developments [36, 37, 43]. COV is an MRS quality metric that
has been shown to moderate metabolite quantification within
clinical populations. In a recent meta-analysis, MRS studies with
lower COV (considered to be of higher quality) had reduced
heterogeneity and increased sensitivity within meta-analytic
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modeling [44]. COV was derived from the SD divided by the
corresponding group mean, calculated [1] with alcohol and
control groups combined for overall study data quality and [2]
separately for alcohol and control groups.

RESULTS
Study selection
Forty-three studies were included in the meta-analysis (Supplemen-
tary Fig. 1). The average sample size (alcohol and control groups
combined) for each study was 53 (SD= 43). Eleven studies included
only male participants (25.6%), with most studies having more male
participants than female participants. The average age of partici-
pants included in each study was 42.20 (SD= 8.33; min average
age= 21.6, max average age= 64.9). Race/ethnicity were rarely
reported, thus was not able to be reported. Approximately half (n=
22, 51.2%) of the studies explicitly reported inclusion of participants
who reported tobacco use, while other substance use was not
consistently reported. The average standard alcoholic drinks per
month for participants in the control group (reported in 37 studies)
was 15 (SD= 12) and for the alcohol group (reported in all studies)
was 318 (SD= 188). Abstinence duration ranged from active
drinking to 1.7 years (median of sample); abstinence duration was
not reported for control groups (Supplementary Table 3a).
For MRS, scanner types included Siemens (n= 27; 62.8%), GE

(n= 8;18.6%), Philips (n= 4 ;9.3%), Bruker (n= 1; 2.3%), Varian
Unity (n= 1; 2.3%), and the magnetic field strengths were 1.5 T
(n= 21; 48.8%), 2 or 2.1 T (n= 3; 7.0%), 3 T (n= 16; 37.2%), and 4 T
(n= 3; 7.0%). Twelve studies (27.9%) used magnetic resonance
spectroscopic imaging (MRSI) to cover multiple brain VOIs,
and 31 studies (72.1%) used single-voxel spectroscopy. Acquisition
sequences were PRESS (n= 19), MEGA PRESS (n= 3), STEAM

(n= 4), short echo (n= 3), J-editing sequence (n= 1), 17-slice
turbo spin-echo (n= 1), 2D JD-PRESS (n= 3), and CT-PRESS (n= 1).
Software used for analysis consisted of LC Model (n= 15), MATLAB
(n= 4), MRUI (n= 2), SITOOLS (n= 3), LUISE (n= 1), manufacturer
software (n= 2), automated spectral fitting program (n= 1), or
in-house code (n= 18). For metabolite quantification, 25 studies
(58.1%) used absolute concentration methods, 12 studies (27.9%)
used ratio-to-creatine methods, 2 studies (4.7%) used both
absolute concentration and ratio-to-creatine, 3 studies (7.0%)
used ratio-to-Water, and 1 study (2.3%) used ratio-to-NAA. Cramér-
Rao Lower Bounds (CRLB; data quality metric) cut-offs were
reported in 14 studies (32.6%) and Full Width at Half Maximum or
shimming values were reported in 2 studies (4.7%) (Supplemen-
tary Table 3b).

Overall results from main model
Data were organized by metabolite and volume-of-interest (VOI)
(Supplementary Fig. 2), and the overall findings are presented in
Fig. 1. Specifically, in alcohol-users compared to controls, lower
NAA and Cho metabolite levels were found in many regions of
the brain. Lower Cr levels were found in temporal and occipital
GM regions, with higher levels only in midbrain/brainstem GM.
Lower GABA levels were restricted to the anterior cingulate
cortex (ACC). There were no significant differences for mI or
glutamate-related (Glu, Gln, or their combination [Glx]) neuro-
metabolite levels. Only significant findings are discussed within
the metabolite-specific sections below, with full results detailed
in Table 1.

N-acetylaspartate (NAA)
Cortical GM. Altered NAA levels were found within the
ACC [32, 45–53] and frontal GM [33, 45, 47, 50, 54–61].

Fig. 1 Overall significant results across all brain regions and metabolites. ACC Anterior cingulate cortex. NAA N-acetylaspartate. Choline
Choline-containing metabolites. Creatine Creatine-containing metabolites. Figure created in BioRender.com.
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Both models indicated lower levels of NAA associated
with the alcohol-using group (ACC: k= 14; g=−0.38;
95% CI −0.67 to −0.08; p= 0.02; I2 = 70.6%. Frontal GM: k=
15; g=−0.48; 95% CI −0.76 to −0.20; p= 0.001; I2= 68.8%)
(Fig. 2).

White matter. Alcohol use also affected NAA levels within the
frontal and parietal WM, with both models indicating significantly
lower NAA levels within the alcohol-using group (Frontal WM: k= 17;
g=−0.53; 95% CI −0.75 to −0.32; p= 0.000; I2= 52.7%. Parietal
WM: k= 7; g=−0.34; 95% CI −0.58 to −0.10; p= 0.005; I2= 41.4%)
(Fig. 2).

Subcortical GM. Altered levels of NAA were noted within the
cerebellum (combined VOIs from cerebellar cortex
[56, 57, 59, 62, 63], vermis [47, 54, 55, 57, 61, 64], and dentate
nucleus [57]) and the hippocampus [65, 66]. Both models indicated
lower NAA levels within the alcohol-using group (Cerebellum: k=
12; g=−0.36; 95% CI −0.65 to −0.07; p= 0.015; I2= 66.6%.
Hippocampus: k= 2; g=−1.79; 95% CI −3.28 to −0.30; p= 0.018;
I2= 80.4%) (Fig. 2). The model for the thalamus approached
significance (k= 7; g=−0.25; 95% CI −0.53 to 0.02; p= 0.068)
(Table 1). Removing the only study in treatment-naïve individuals
[33] during the remove-one sensitivity analysis yielded a significant
model for thalamic NAA.

Choline-containing metabolites (Cho)
Cortical GM. Cho levels were lower in alcohol-using groups
compared to controls in the frontal [33, 45, 47, 50, 54–60, 67] and
temporal GM [45, 55] (Frontal GM: k= 15; g=−0.26; 95% CI −0.46
to −0.05; p= 0.016; I2= 44.6%. Temporal GM: k= 2; g=−0.49; 95%
CI −0.83 to −0.11; p= 0.010; I2= 0.0%). The effect of alcohol use on
lower parietal GM Cho levels was marginal (k= 5; g=−0.27; 95% CI
−0.04 to 0.59; p= 0.089; I2= 45.7%) (Fig. 2).

White matter. Main models for frontal [33, 47, 51, 54, 55,
57, 60, 62, 68–72] and parietal WM [33, 54, 55, 70, 71, 73] were
significant, indicating lower levels of Cho associated with the
alcohol-using group (Frontal WM: k= 16; g=−0.30; 95% CI −0.52
to −0.07; p= 0.009; I2= 51.6%. Parietal WM: k= 6; g=−0.28; 95%
CI −0.52 to −0.04; p= 0.024; I2= 28.0%) (Fig. 2). For parietal WM,
the remove-one sensitivity analysis resulted in an insignificant
model when four effects were individually removed from the
model [54, 55, 70, 73]. Therefore, as the significance of this model
is strongly influenced by individual studies, parietal WM Cho loss
should be interpreted with caution.

Subcortical GM. The cerebellum (combined VOIs from
cerebellar cortex [56, 57, 59, 62, 63], vermis [47, 54, 55, 57, 64],
and dentate nucleus [57]) and thalamus models also indicated
lower Cho in alcohol-using groups (Cerebellum: k= 12; g=−0.54;
95% CI −0.83 to −0.25; p= 0.000; I2= 62.2%. Thalamus: k= 8;
g=−0.29; 95% CI −0.53 to −0.05; p= 0.016; I2= 15.7%) (Fig. 2).
For the cerebellum, the trim and fill method indicated two
additional effects would correct funnel asymmetry from
publication bias (adjusted effect size g=−0.41). The model for
the striatum approached significance (k= 5; g=−0.21; 95%
CI −0.44 to 0.01; p= 0.061; I2= 0.0%), becoming significant
when one effect [54] was removed in a follow-up sensitivity
analysis.

Creatine-containing metabolites (Cr)
Cortical GM. Both occipital [54, 74] and temporal GM [45, 55]
models resulted in significanlty lower levels of Cr within
alcohol-using groups than controls (Occipital GM: k= 2; g=
−0.46; 95% CI −0.87 to −0.05; p= 0.027; I2= 0.0%. Temporal GM:
k= 2; g=−0.42; 95% CI −0.77 to −0.06; p= 0.022; I2= 0.0%)
(Fig. 2).Ta
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White matter. There were no significant alterations in Cr levels
associated with alcohol use in white matter VOIs (Fig. 2).

Subcortical GM. Within the midbrain/brainstem VOIs [33, 54,
55, 75], the main model indicated significantly higher Cr levels in
alcohol-using groups relative to controls (k= 4; g= 0.83; 95% CI
0.25 to 1.41; p= 0.005; I2= 66.0%) (Fig. 2).

Myo-Inositol (mI)
There were no significant models with any VOI (Supplementary
Fig. 3).

Glutamate, Glutamine, Glx (Glu, Gln, Glx)
The meta-analytic models for Glu, Gln, and Glx were all insignificant
(Supplementary Fig. 4). Possible reasons for this are considered in
the Discussion section.

GABA
The only significant model for GABA was from the ACC
[31, 32, 45, 50, 76, 77]; GABA levels were lower in the alcohol-
using group than controls (k= 6; g=−0.35; 95% CI −0.64 to
−0.06; p= 0.016; I2= 21.6%) (Fig. 3). The remove-one sensitivity
analysis resulted in an insignificant model when three studies
were individually removed [31, 32, 77]. Each of these studies
investigated younger, treatment-naïve samples, suggesting that
age and symptom severity affect GABA levels.

Sub-group analyses
Treatment v. treatment-naïve studies. There was one significant
effect for treatment-seeking status, where studies including only

treatment-seekers had significantly lower levels of NAA within
frontal WM of alcohol groups compared to controls (treatment
seeking k= 14, g=−0.63, p < 0.001, non-treatment seeking k= 3,
g=−0.02, p= 0.953; Q= 4.73, p= 0.03; Table 2).

Absolute concentration v. relative concentration (Ratio-to-Cr). Sub-
group analysis found a significant difference for metabolite
quantification type within frontal GM NAA. Only ratio-to-Cr studies
showed significantly lower NAA levels in alcohol groups compared
to controls, whereas the absolute concentration studies were only
marginally different from controls (absolute concentration k= 11,
g=−0.28, p= 0.06, ratio-to-Cr k= 4, g=−1.16, p < 0.001; Q=
7.92, p= 0.005; Table 2).
Corresponding exploratory sub-group analyses (when k < 10)

were conducted for parietal GM NAA; occipital GM NAA, Cho, and
mI; and cerebellar NAA and Cho. Analyses for occipital GM Cho
and cerebellar NAA indicated that only ratio-to-Cr studies were
significantly different from controls, while the corresponding
absolute concentration studies were not. This is particularly
consequential for occipital GM, where the main model resulted
in significantly lower levels of Cr for alcohol-using groups, as
compared to controls. The possibility that Cr levels in the brain are
affected by alcohol use demands caution when interpreting
reports of ratio-to-Cr group differences.

Meta-regression
Abstinence duration, age, and SABV (% Male). Abstinence duration
(reported only for alcohol groups; Table 3) showed a significant
positive association (longer abstinence duration, greater positive
study effect size) with frontal WM NAA levels (k= 17; β= 0.01, p=
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Thalamus Overall Effect
Durazzo 2004 
Meyerhoff 2004
Abé 2013b
Bloomer 2004
Mid/Brainstem Overall Effect
Bauer 2013 
Abé 2013b
Durazzo 2004* 
Abé 2013b*
Durazzo 2004* 
Durazzo 2006
Striatum Overall Effect 
Gazdzinski 2008
Frischknecht 2017
Hippocampus Overall Effect 

0.41±0.28
0.15±0.59

-0.07±0.51
-0.10±0.61
-0.13±1.12
-0.13±1.17
-0.47±0.86
-0.51±0.52
-0.55±0.58
-0.59±0.68
-0.69±0.58
-0.73±0.4

-0.95±0.94
-1.27±0.76

-0.38±0.30*
0.41±0.60
0.13±0.77
0.02±0.57

-0.01±0.39
-0.02±0.70
-0.31±0.46
-0.50±0.49
-0.55±0.41
-0.58±0.56
-0.59±0.54
-0.69±0.87
-0.78±0.53
-0.89±0.90
-1.70±1.14
-2.54±0.97

-0.48±0.28***
0.53±0.86
0.37±0.58
0.17±0.40

-0.25±0.09
-0.31±0.65
-0.34±0.56
-0.37±0.54
-0.38±0.46
-0.11±0.23
-0.15±0.55
-0.49±0.46
-0.35±0.36
5.15±2.20
0.38±0.83

-0.22±0.86
-0.36±0.46
-3.01±0.68
0.12±1.59

-0.09±0.59
-0.13±0.67
-0.63±0.52
-0.32±0.36
1.03±1.21
0.22±0.76

-0.08±0.65
-0.09±0.59
-0.19±0.66
-0.38±0.48
-0.42±0.40
-0.42±0.46
-0.58±0.88
-0.65±0.56
-0.66±0.54
-0.70±0.57
-0.74±0.53
-1.09±1.27
-1.13±0.76
-1.2±0.44

-1.21±0.64
-0.53±0.23***

0.07±0.59
0.00±0.40

-0.15±0.39
-0.46±0.56
-0.55±0.47
-0.70±0.50
-0.72±0.56

-0.34±0.24**
-0.18±0.46
-0.29±0.55
-0.40±0.56
-0.28±0.30
-0.16±0.55
-0.17±0.46
-0.25±0.54
-0.19±0.30
0.55±0.60
0.00±0.40

-0.08±0.46
-0.14±0.50
-0.15±0.55
-0.23±0.51
-0.27±0.51

-0.53±-1.19
-0.59±0.52
-0.72±0.82
-1.13±0.98
-2.17±0.91

-0.36±0.29*
0.17±1.17
0.05±0.39

-0.17±1.21
-0.22±0.46
-0.34±0.56
-0.77±0.62
-1.31±1.25
-0.25±0.27
0.11±0.55

-0.13±0.39
-0.35±0.46
-0.55±0.99
-0.17±0.25
0.18±0.52
0.03±0.46

-0.09±0.55
-0.14±0.46
-0.64±0.57
-0.76±0.57
-0.22±0.29
-1.02±0.97
-2.54±0.90

-1.79±1.49*
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Schweinsburg 2000 #
Thoma 2011 #
Prisciandaro 2019
Yeo 2013 
Hermann 2012 
Durazzo 2010 #
Thoma 2011 #
Abé 2013
Bauer 2013 
Durazzo 2010 #
Mon 2012 
Schweinsburg 2000 #
Lee 2007
ACC Overall Effect 
Durazzo 2010 #
Meyerhoff 2004 #
Schweinsburg 2003 #
Meyerhoff 2004 #
Mon 2012 
Abé 2013 
de Souza 2018**
Schweinsburg 2003 #
Durazzo 2010 #
Abé 2013b
Jagannathan 1996 
Durazzo 2004
Ende 2005 ##
Bendszus 2001 
Ende 2005 ##
de Souza 2018 ##
Frontal GM Overall Effect 
Durazzo 2004 
Abé 2013 
Meyerhoff 2004 #
Mon 2012 
Abé 2013b 
Parietal GM Overall Effect
Durazzo 2004
Abé 2013b
Temporal GM Overall Effect
Bagga 2014 
Modi 2011 
Abé 2013b
Mason 2006
Occipital GM Overall Effect 
Durazzo 2010 #
Lee 2007
Durazzo 2010 #
Insula Overall Effect 
Ende 2013 
Schweinsburg 2003 #
Wang 2009
Zahr 2016 
Durazzo 2010 #
Schweinsburg 2001 
Meyerhoff 2004 #
Abé 2013b 
Schweinsburg 2003 #
Gazdzinski 2010 
Schweinsburg 2000 #
Schweinsburg 2000 #
Parks 2002 
Durazzo 2010 #
Durazzo 2004 
Ende 2005 
Frontal WM Overall Effect 
Schweinsburg 2001 
Meyerhoff 2004 #
Gazdzinski 2010 
Abé 2013b 
Durazzo 2006 
Durazzo 2004 
Parietal WM Overall Effect 
Gazdzinski 2010 
Abé 2013b
Durazzo 2004 
Temporal WM Overall Effect 
Gazdzinski 2010 
Abé 2013b
Durazzo 2004
Occipital WM Overall Effect 
Abé 2013B
Durazzo 2004 
Durazzo 2010 #
Jagannathan 1996 
Durazzo 2010 #
Ende 2005 ##
Ende 2005 ##
Martin 1995
Seitz 1999
Bendszus 2001
Ende 2005 ##
Parks 2002 
Cerebellum Overall Effect 
Schweinsburg 2000 #
Meyerhoff 2004 #
Schweinsburg 2000 #
Abé 2013b
Durazzo 2004 
Durazzo 2006 
Zahr 2016 
Jagannathan 1996 
Thalamus Overall Effect 
Durazzo 2004 
Meyerhoff 2004 #
Abé 2013b 
Bloomer 2004 
Mid/Brainstem Overall Effect 
Abé 2013b #
Bauer 2013
Abé 2013b #
Durazzo 2004 #
Durazzo 2004 #
Striatum Overall Effect 

0.71±1.21
0.69±0.92
0.49±0.62
0.16±0.28
0.13±0.37
0.11±0.59
0.06±0.85

-0.18±0.57
-0.25±0.52
-0.43±0.51
-0.50±0.71
-0.68±1.16
-1.12±0.72
-0.07±0.24
0.49±0.60
0.25±0.41
0.10±0.86
0.09±0.39
0.06±0.77
0.06±0.57

-0.02±0.62
-0.20±0.70
-0.27±0.51
-0.28±0.46
-0.28±1.00
-0.42±0.56
-0.53±0.49
-0.77±0.75
-0.89±0.56
-1.00±0.66

-0.26±0.21*
0.65±0.57
0.60±0.58
0.37±0.40

-0.01±0.64
-0.09±0.46
0.30±0.29

-0.39±0.56
-0.52±0.47

-0.47±0.36**
1.96±0.57
1.05±0.87

-0.22±0.46
-0.75±0.89
0.52±1.26

-0.12±0.51
-0.38±0.67
-0.42±0.60
-0.28±0.34
1.08±0.81
0.12±0.70
0.07±0.47

-0.07±0.65
-0.13±0.59
-0.17±0.59
-0.25±0.40
-0.25±0.46
-0.30±0.86
-0.38±0.55
-0.39±1.13
-0.41±1.18
-0.52±0.66
-0.79±0.53
-0.94±0.58
-1.02±0.55

-0.30±0.23**
0.17±0.59
0.00±0.39

-0.32±0.55
-0.40±0.46
-0.52±0.49
-0.65±0.57

-0.28±0.24*
-0.11±0.54
-0.24±0.46
-0.41±0.56
-0.25±0.30
0.12±0.54

-0.09±0.46
-0.42±0.56
-0.12±0.30
0.18±0.46
0.18±0.55

-0.21±0.59
-0.26±0.91
-0.39±0.51
-0.48±0.50
-0.81±0.53
-0.82±0.90
-0.86±0.83
-1.00±0.76
-1.08±0.55
-1.31±0.71

-0.54±0.29***
0.17±1.17
0.05±0.39

-0.17±1.21
-0.22±0.46
-0.34±0.56
-0.49±0.49
-0.71±0.68
-1.31±1.25

-0.29±0.24*
0.30±0.55
0.13±0.39

-0.10±0.46
-0.84±1.02
0.02±0.32

-0.06±0.46
-0.21±0.51
-0.22±0.46
-0.29±0.55
-0.36±0.56
-0.21±0.22
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Hermann 2012
Durazzo 2010 #

Yeo 2013
Prisciandaro 2019
Bauer 2013 

Thoma 2011 #
Durazzo 2010 #
Thoma 2011 #
Abé 2013 
Mon 2012 
Lee 2007
ACC Overall Effect 
Durazzo 2010 
Mon 2012 
Meyerhoff 2004
Abé 2013 
Ende 2005 ##
Schweinsburg 2003 #
Schweinsburg 2003 #

Durazzo 2010 #
Durazzo 2004 
Abé 2013b
Ende 2005 ##
Frontal GM Overall Effect 
Meyerhoff 2004 

Abé 2013
Durazzo 2004 
Mon 2012 
Abé 2013b
Parietal GM Overall Effect 
Durazzo 2004 
Abé 2013b 

Temporal GM Overall Effect 
Abé 2013b 
Mason 2006
Occipital GM Overall Effect 
Durazzo 2010 #
Durazzo 2010 #
Lee 2007

Insula Overall Effect 
Durazzo 2010 #
Parks 2002
Ende 2013 
Zahr 2016 
Wang 2009
Meyerhoff 2004

Schweinsburg 2003 #
Schweinsburg 2003 #
Gazdzinski 2010 
Abé 2013b 
Durazzo 2010 #
Schweinsburg 2001
Ende 2005

Durazzo 2004 
Frontal WM Overall Effect
Meyerhoff 2004
Schweinsburg 2001 
Durazzo 2004 
Gazdzinski 2010 

Abé 2013b
Parietal WM Overall Effect 
Durazzo 2004
Gazdzinski 2010 
Abé 2013b
Temporal WM Overall Effect 
Abé 2013b

Durazzo 2004
Gazdzinski 2010 
Occipital WM Overall Effect
Durazzo 2010 #
Durazzo 2004 
Ende 2005 ##
Abé 2013b

Ende 2005 ##
Parks 2002 
Durazzo 2010 #
Ende 2005 ##
Martin 1995 
Cerebellum Overall Effect 
Meyerhoff 2004

Abé 2013b
Durazzo 2004
Zahr 2016 
Thalamus Overall Effect 
Abé 2013b 
Bloomer 2004
Durazzo 2004 

Meyerhoff 2004
Mid/Brainstem Overall Effect 
Durazzo 2004 ##
Abé 2013b #
Abé 2013b #
Bauer 2013 

Durazzo 2004 ##
Striatum Overall Effect 

0.38±0.39
0.50±0.60

0.38±0.28
0.36±0.61
0.12±0.51

0.11±0.90
-0.03±0.51
-0.16±0.85
-0.62±0.58
-0.85±0.74
-0.95±0.71
-0.02±0.29
0.66±0.61
0.40±0.78
0.12±0.39
0.08±0.57

-0.07±0.52
-0.10±0.86
-0.18±0.70

-0.28±0.51
-0.30±0.55
-0.32±0.46
-0.50±0.54
-0.07±0.19
0.59±0.40

0.35±0.58
0.01±0.55

-0.10±0.64
-0.27±0.46
0.13±0.35

-0.33±0.56
-0.47±0.46

-0.42±0.36*
-0.36±0.46
-0.84±0.90

-0.46±0.41*
0.11±0.51
0.11±0.59

-0.16±0.67

0.04±0.33
0.49±0.60
0.41±0.66
0.38±0.77
0.36±0.66
0.33±0.48
0.30±0.40

0.11±0.86
0.02±0.70

-0.13±0.54
-0.14±0.46
-0.23±0.51
-0.27±0.59
-0.28±0.52

-0.54±0.56
0.04±0.18
0.33±0.40
0.27±0.59

-0.10±0.55
-0.15±0.55

-0.38±0.46
0.00±0.29
0.18±0.55
0.00±0.54

-0.17±0.46
-0.02±0.30
-0.03±0.46

-0.21±0.55
-0.04±0.54
-0.09±0.30
0.44±0.60
0.11±0.55
0.10±0.5

0.09±0.46

-0.07±0.51
-0.08±0.66
-0.24±0.51
-0.33±0.51
-0.39±0.87
-0.02±0.18
0.11±0.39

-0.06±0.46
-0.21±0.55
-0.66±0.67
-0.12±0.28
1.93±0.99
0.83±1.02
0.68±0.57

0.34±0.40
0.83±0.58**

0.72±0.57
0.00±0.46

-0.08±0.46
-0.16±0.50

-0.37±0.56
0.01±0.33
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CREATINE-CONTAINING METABOLITES (CR))C)B)A

ACC
Frontal GM
Parietal GM
Temporal GM
Occipital GM

Frontal WM
Parietal GM
Temporal WM
Occipital WM
Cerebellum
Thalamus

Striatum
Mid/Brainstem

Hippocampus

Insula

Fig. 2 Forest plots for three of the major neurometabolites measured with proton MRS. A N-Acetylaspartate (NAA) findings across all
volumes-of-interest (VOIs). B Choline-containing metabolites (Cho) across all VOIs. C Creatine-containing metabolites (Cr) across all VOIs. Circle =
individual study effect. Diamond = overall effect size. # same study with >1 alcohol groups. ## same study with >1 VOI in brain region. *p < 0.05,
**p < 0.01, ***p < 0.001.
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0.045; R2= 0.21). Conversely, abstinence duration showed a
negative association (longer abstinence, greater negative study
effect size) for ACC Glu levels (k= 15; β=−0.004, p= 0.036; R2=
0.26). Both models became insignificant when an outlying long-term
abstinent group was removed (mean time= 260 days from ref. [51];
mean time= 365 days from ref. [52], respectively; Supplementary
Figs. 5 and 6).
Age (average across alcohol and control groups) was positively

correlated with effect sizes for cerebellar NAA (k= 12; β= 0.13, p=
0.01; R2= 0.38) and Cho levels (k= 11; β= 0.15, p= 0.000; R2= 0.95)
(Table 3; Supplementary Fig. 7).
SABV (defined as percent of males included in the study) was

negatively associated with effect sizes for Cho levels in the ACC (k=
13; β=−0.02, p= 0.01; R2= 0.68) and positively associated with
effect sizes for Cho levels in the cerebellum (k= 12, β= 0.03, p <
0.001; R2= 1.00) (Table 3; Supplementary Fig. 7).

MRS specific TE and data quality variables (COV). The log-
transformed TE was found to affect study effect sizes within GM
(Table 4, Supplementary Fig. 8). Positive associations (largest
positive study effect size at longer TE) were found between log-
transformed TE and study effect sizes for ACC Glu (k= 12, β=
1.40, p= 0.002, R2= 0.66) and Cr (k= 10, β= 1.14 p= 0.039, R2=
0.42). Negative associations (largest negative study effect size at
longer TE) were found between log-transformed TE and study
effect sizes for frontal GM NAA (k= 14, β=−1.07, p= 0.004, R2=
0.29) and Cho (k= 15, β=−0.71, p= 0.004, R2= 0.77); and
cerebellar Cho (k= 12, β=−0.90, p= 0.005, R2= 0.68). Meta-
regressions with the raw TE (ms) support these results, except for
the meta-regression within ACC which became insignificant
(Supplementary Table 4).
MRS data quality (COV; lower number reflects higher quality

data) had no significant effects when the alcohol and control
groups were combined (Table 3). When looking at COV within
alcohol and control groups separately, the alcohol group had a
negative association between COV and study effect sizes for Cr
within the ACC (k= 11, β=−5.91, p= 0.005, R2= 0.65). This
suggests lower-quality data (higher COV) within the alcohol group
was related to more negative effect sizes. For the control group,
there as a positive association (higher-quality data related to more
positive effect sizes) between COV and study effect sizes for NAA
in the frontal GM (k= 15, β= 9.01, p= 0.019, R2= 0.18). See

Supplementary Materials for tables and figures (Supplementary
Tables 4, 5; Supplementary Fig. 9).

DISCUSSION
The objective of this meta-analysis was to assess the difference in
MRS-determined brain metabolite levels in alcohol misuse and AUD
groups relative to controls. Combining studies allowed for identifica-
tion of significant neurometabolite alterations above and beyond the
individual study level, providing better consolidated insights for
future neuroscience-informed alcohol treatment development. The
main findings reflect alcohol-related alterations in systems repre-
senting neuronal/axonal/mitochondrial function (NAA), membrane
synthesis and structure (Cho), bioenergetics (Cr), and inhibitory
neurotransmission (GABA). Neither brain regions nor metabolites
were affected ubiquitously, supporting the idea that we are not
capturing generalized toxic effects of alcohol misuse. NAA and Cho
had the most alcohol-related aberrations throughout the brain. In
alcohol users compared to controls, lower levels of NAA were
observed in GM (ACC, frontal, temporal, hippocampal and cerebellar
VOIS) and WM (frontal and parietal VOIs). Lower Cho levels were also
observed in GM (frontal, temporal, and thalamic VOIs) and WM
(frontal and parietal VOIs). Lower Cr levels were detected in temporal
and occipital GM cortices, whereas Cr levels in midbrain/brainstem
GMwere higher. Alterations in GABA were restricted to the ACC, with
(mostly younger, treatment naïve) alcohol users having lower levels
of GABA than controls. There were no significant group differences
for myo-inositol or Glu-related metabolite levels; the latter may be
due to uncontrolled factors affecting Glu levels across studies.
This meta-analysis is the first to provide formalized evidence that
alcohol and AUD-related neurobiological alterations measured by
MRS are present in many brain regions and tissues, affecting specific
metabolites typically measured by MRS.
Importantly, some main models in this meta-analysis revealed

significant neurometabolite alterations related to alcohol use above
and beyond the individual study findings. This was particularly
apparent for Cho (thalamus, frontal and parietal GM and WM), NAA
(ACC), and Cr (occipital, temporal, and midbrain/brainstem GM),
highlighting the importance of meta-analytic applications. Recog-
nizing the influence of alcohol misuse on these metabolites may
open new research lines into direct (e.g., pharmacotherapy) or
indirect (e.g., efficacy markers) treatment targets.

Fig. 3 Forest plot of GABA results across all VOIs. Circle= individual study; diamond= overall effect size. # same study with >1 alcohol
groups; ## same study with >1 VOI in brain region. *p < 0.05, **p < 0.01, ***p < 0.001.
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While the lack of Glu-related metabolite findings may surprise
at first glance, considering the well-studied relationship between
alcohol use and glutamatergic neurotransmission (e.g., [78–80],
many factors may explain the non-significant Glu-related models.
Glutamate and Gln levels are intrinsically dynamic, related to
highly regulated Glu homeostasis across different phases of
consumption, withdrawal, recovery, and relapse [78–80]. In
addition, there are known methodological factors influencing
the ability to quantify Glu and low-intensity Gln multiplets reliably
with MRS (e.g., TE, magnet strength) [81]. Together, they may
account for the null findings. The detection of substantial
heterogeneity across the Glu-related models was not surprising,
and our exploration of potential sources of heterogeneity
provided some insights for Glu within the ACC (the only region
with enough data to complete analyses). In contrast with existing
longitudinal studies measuring Glu in treatment-seekers after
alcohol cessation [48, 50, 52], we did not find a strong association
between abstinence duration and levels of Glu across studies.
While the meta-regression with all studies indicated a negative
association between study effect size in the ACC and abstinence
duration (longer abstinence, lower Glu levels in the alcohol
groups v. controls), this was driven by one study that included
individuals abstinent for at least 365 days [52] and became
insignificant during a sensitivity analysis. This finding is consistent
with varying Glu levels across different phases of alcohol use and
remission. Most studies assessing Glu levels were between 0 and
14 days of abstinence, so this relationship may be better
understood with the inclusion of future cross-sectional and
longitudinal studies across varying levels of abstinence. Signifi-
cant meta-regressions were found for TE, suggesting an influence
of echo time Glu metabolite levels. This finding speaks to the
importance of using sequence parameters optimized for meta-
bolites of interest, which are often updated through expert
consensus recommendations (see refs. [36, 37, 82]). Taken
together, the demographic and methodological heterogeneity
may contribute to the difficultly to understand the relationship
between alcohol misuse/AUD and Glu and its intermediates with
the available cross-sectional MRS studies since the low number of
effects limited further investigation (meta-regression or sub-
group analysis) into such heterogeneity. Future conduct of
longitudinal studies together with standardization of MRS
parameters and quantification methods, or the adaptation of
novel imaging techniques (i.e., GluCEST[83, 84]), may provide
more meaningful insights on glutamatergic alterations in AUD.
Eight studies reported on GABA levels across four cortical brain

regions, revealing significant differences between alcohol users
and controls in the ACC only. As indicated by the remove-one
analysis, younger adults with relatively short abstinence duration
appear to drive the lower GABA levels, an observation that
warrants follow-up. The measurement of GABA via MRS is
relatively difficult given its low concentration and spectral overlap
with other resonances [82]. All but two studies reporting GABA
levels used an appropriate edited sequence (MEGA-PRESS or 2D J-
PRESS) increasing the confidence in the findings [82, 85]. As with
glutamatergic metabolites, the small number of studies (com-
pared to NAA, Cho, Cr, and mI) and methodological complications
may limit the current findings; thus, future standardized clinical
MRS studies should further clarify alcohol effects on both Glu and
GABA levels.
Heterogeneity is a common concern in meta-analyses. In the

current work, 35.8% (24/69) of the main models showed moderate
to substantial heterogeneity determined by I2 (Table 3). This type
of data heterogeneity could be based in variations of alcohol- and
control group inclusion criteria, demographics, MRS parameters,
and MRS quality metrics. Heterogeneity is an important limitation
to consider when interpreting findings within this meta-analysis,
particularly within models with small number of effects (k < 10).
Sub-group analyses and meta-regressions were included to probeTa
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at potential sources of demographic and MRS-specific hetero-
geneity across the models.
Most MRS studies included in this meta-analysis were within

treatment-seeking individuals (74.4%), a group known to differ in
demographic, clinical, and alcohol consumption variables from their
treatment-naïve counterparts [27–30]. The sub-group analysis
found an effect of treatment-seeking status on frontal WM NAA
effects (lower levels in studies of treatment-seekers), and the
remove-one sensitivity analysis also indicated a significant thalamic
NAA model for studies in treatment-seekers only. Whereas most
AUD research has been conducted with individuals seeking
treatment [27, 28], the majority of individuals with problematic
drinking do not seek treatment [86]. Relying on treatment-seeking
status as a proxy for alcohol use severity is also limited, which is
further complicated by the variety of healthcare systems, treatment
options, and diagnosis criteria available in different countries. This
creates a problem of generalizability of research findings to the
much larger untreated AUD population and future studies might
consider this disparity appropriately.
Meta-regressions were conducted to explore other potential

sources demographic heterogeneity, including abstinence duration
and age. Some longitudinal studies in treatment-seekers have noted
corresponding changes in brain metabolites after variable lengths of
abstinence [48, 50, 56, 57, 87]. Abstinence duration does not appear
to be consistently related to differences in metabolite levels
between alcohol and control groups based on the current meta-
regressions, yet there were two significant models of note. First, as
previously discussed, there was a negative association between
abstinence duration and Glu in the ACC (longer abstinence, lower
levels of Glu in alcohol groups). Second, there was a significant
positive effect of abstinence duration on frontal WM NAA study
effect sizes (longer abstinence, higher levels of NAA in alcohol
groups v controls). Thus, the meta-regressions were able to highlight
metabolites that are potentially sensitive to abstinence based on the
current studies available. Studies providing increased granularity of
abstinence duration will help to clarify this finding, as both models
became insignificant when the study with the longest duration was
removed. There was also an age effect on cerebellar NAA and Cho
study effect sizes. While the age range was very narrow (average age
41–53), the age association might suggest specific cerebellar
vulnerability in younger individuals who misuse alcohol. Future
properly powered longitudinal studies will be able to provide a more
specific timeframe of abstinence-related changes in different
populations and better address the importance of alcohol-related
alterations across the lifespan.
We also investigated the impact of MRS quantification type in a

sub-group analysis and of MRS-specific TE and data quality (COV)
in meta-regressions. MRS metabolite levels can be expressed as
absolute concentrations [88–90] or relative concentrations (e.g,
ratio-to-Cr or to-water); the latter assumes Cr or water levels as a
stable internal concentration for reference [35]. Almost one-third
of the included studies used ratio-to-Cr when reporting metabolite
levels. The ratio-to-Cr approach, representing an internal calibra-
tion in attempts to reduce variance from uncontrolled sources of
signal variability, works well when the Cr signals are invariant. If
alcohol affects regional Cr levels, normalization to Cr may lead to
erroneous interpretation of metabolite levels, calling into question
this quantification method in this population. Indeed, we found
that absolute Cr levels in alcohol-users were significantly altered in
several brain regions investigated. These findings suggest that
future studies should, if possible, avoid using ratio-to-Cr methods
within alcohol misuse and AUD populations and be cautious of
results using it may lead to erroneous conclusions.
Our results, and those of other [36, 44], show that TE influences

effect size, making it a critical issue when designing new clinical
studies. MRS-specific TE parameters specifically influenced GM
study effects in the ACC (Cr and Glu), frontal GM (NAA and Cho),
and cerebellum (Cho) (note: these models used log-transformedTa
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TE and all except ACC Cr meta-regressions were replicated with
the raw TE). The effects of TE were consistently positive in the ACC
(longer TE associated with higher levels of metabolites in alcohol
groups) and consistently negative in the frontal GM and
cerebellum (longer TE associated with lower levels of metabolites
in alcohol groups). While the number of effects for some
metabolites with relatively long TEs were limiting, the findings
likely reflect the ability to measure peak areas in the presence of
overlapping resonances. Imaging techniques and user expertize
improve over time; therefore, it is important for future work to
use the expert consensus recommendations for MRS sequence
parameters, processing techniques, and data reporting to
standardize the field and reduce heterogeneity among studies
[36, 37, 82].
There are limitations to the current work. First, several variables

of interest, such as additional data quality metrics (e.g., spectral
linewidth, metabolite CRLB, or signal-to-noise ratio) and alcohol
intake (better characterization of alcohol use severity on
metabolite levels across the brain) were not able to be included
in sub-group or meta-regressions due to the inconsistency in
reporting across studies. Field strength was also not able to be
assessed due to the majority of studies being either 1.5 T or 3 T,
limiting the ability to run sub-group analyses or meta-regressions.
Second, most of the studies available were comprised of older and
overwhelmingly male populations, making both the percent male
and the age meta-regressions limited in scope. Significant findings
for both age and SABV indicates the need for future studies to be
mindful of age and SABV when recruiting, as these factors could
impact the generalizability of findings. Other important variables,
such as race/ethnicity, or other substance use were rarely
reported. Third, there were various processing pipelines and
software used, which were not always described well enough to
ensure reproducibility. As with other imaging techniques, the
effects of software and various modeling choices is becoming
increasingly more apparent within MRS data [91–93]. Fourth, there
was not a “true” control for each model as the inclusion criteria

varied from study to study; thus, some studies allowed alcohol
consumption within the control group at a low frequency and
quantity while others did not. Lastly, a limitation of MRS is that
signals are derived and averaged over large voxels within the
brain with varying tissue composition, precluding the ability to
understand what is happening at a cellular level. The type of voxel
(i.e., gray or white matter) was determined based on the
description within the study, yet the actual percentage of various
tissues were rarely reporting limiting the ability to cross check the
VOI name with actual tissue composition. More studies are needed
to better understand regionally specific mechanisms associated
with alcohol specific MRS findings to optimize the translation
value, as well as to investigate if “normalization” of metabolite
levels corresponds with a significant treatment effect and
improved AUD symptomology. These limitations highlight the
need for standardization in data reporting; inclusion of partici-
pants across sex, age, and race/ethnicity to better generalize
results; and further research to translate the MRS-derived findings
to neurobiological mechanisms to support treatment develop-
ment and assessment for AUD.

CONCLUSION
Above and beyond individual studies, this meta-analysis provides
formalized evidence that MRS can help identify the brain location(s)
and types of metabolite(s) impacted by alcohol misuse and AUD for
the first time. Future studies can leverage this new information to
investigate specific pharmacological or other (e.g., behavioral,
neurostimulation) treatments that might directly or indirectly
effectively target the observed meta-neurometabolic disturbances.
Region-specific alterations were detected for certain metabolites,
with most significant models in cortical or subcortical GM.
Specifically, lower levels of NAA and Cho were the most pervasive
alcohol-related alterations throughout brain regions. Lower NAA
levels likely indicate a decrease in neuronal (GM) and axonal (WM)
viability or function, and changes in Cho metabolites may indicate

Table 4. Meta-regression results: MRS specific characteristics.

logTE (ms) COV: groups combined

Metabolite K β Z p R2 K β Z p R2

ACC

Glu 12 1.397 3.17 0.002 0.66 14 0.304 0.12 0.904 0.00

NAA 13 0.450 0.59 0.556 0.00 12 −1.999 −0.46 0.646 0.00

Cho 12 0.557 1.09 0.275 0.08 11 −2.203 −0.69 0.490 0.00

Cr 10 1.135 2.07 0.039 0.42 11 −3.808 −1.40 0.162 0.23

mI – – – – – – – – – –

FRONTAL GM

NAA 14 −1.073 −2.86 0.004 0.29 15 1.917 0.48 0.628 0.00

Cho 15 −0.713 −2.86 0.004 0.77 15 −0.370 −0.10 0.922 0.00

Cr 11 −0.398 −1.40 0.163 0.34 11 2.920 0.81 0.415 0.00

FRONTAL WM

NAA 17 0.423 0.96 0.338 0.00 14 5.886 1.57 0.117 0.36

Cho 16 0.472 0.26 0.798 0.00 13 −3.169 −0.61 0.541 0.00

Cr 14 0.072 0.20 0.839 0.00 13 5.758 1.69 0.091 0.59

mI 13 1.539 1.40 0.162 0.53 10 1.179 1.21 0.226 0.15

CEREBELLUM

NAA 12 −0.753 −1.87 0.062 0.10 12 −1.152 −0.34 0.736 0.00

Cho 12 −0.898 −2.84 0.005 0.68 12 0.127 0.05 0.957 0.00

All other VOIs and metabolites did not reach the inclusion criteria of ≥10 effect.
Bold= significant (p < 0.05), Italicized= trending (p > 0.05 but < 0.10).
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altered cerebral cell synthesis and membrane turnover related to
alcohol misuse. Thus, having been shown to be vulnerable to
chronic alcohol use, these metabolites may constitute important
targets for treatment or markers of treatment efficacy. Models for
Glu/Gln/Glx were not significant, potentially reflecting the highly
dynamic behavior of glutamatergic tone with treatment status and
duration of abstinence and/or technical challenges in reliably
measuring these metabolites [44, 81]. In addition, the few GABA
studies conducted showed significantly lower levels of GABA within
the ACC, suggesting that GABA-ergic treatment targets may
continue to be of interest for future clinical trials. Overall, beyond
surveying the extant literature, summarizing the chronic brain
effects of AUD and highlighting specific needs for future studies,
this work exemplifies the importance and potential translational
value of using neuroscience-based approaches toward the devel-
opment of new treatments for individuals with neuropsychiatric
disorders.
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