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Abstract
Posttraumatic stress disorder (PTSD) is a debilitating syndrome with substantial morbidity and mortality that occurs in the
aftermath of trauma. Symptoms of major depressive disorder (MDD) are also a frequent consequence of trauma exposure.
Identifying novel risk markers in the immediate aftermath of trauma is a critical step for the identification of novel biological
targets to understand mechanisms of pathophysiology and prevention, as well as the determination of patients most at risk
who may benefit from immediate intervention. Our study utilizes a novel approach to computationally integrate blood-based
transcriptomics, genomics, and interactomics to understand the development of risk vs. resilience in the months following
trauma exposure. In a two-site longitudinal, observational prospective study, we assessed over 10,000 individuals and
enrolled >700 subjects in the immediate aftermath of trauma (average 5.3 h post-trauma (range 0.5–12 h)) in the Grady
Memorial Hospital (Atlanta) and Jackson Memorial Hospital (Miami) emergency departments. RNA expression data and 6-
month follow-up data were available for 366 individuals, while genotype, transcriptome, and phenotype data were available
for 297 patients. To maximize our power and understanding of genes and pathways that predict risk vs. resilience, we
utilized a set-cover approach to capture fluctuations of gene expression of PTSD or depression-converting patients and non-
converting trauma-exposed controls to find representative sets of disease-relevant dysregulated genes. We annotated such
genes with their corresponding expression quantitative trait loci and applied a variant of a current flow algorithm to identify
genes that potentially were causal for the observed dysregulation of disease genes involved in the development of depression
and PTSD symptoms after trauma exposure. We obtained a final list of 11 driver causal genes related to MDD symptoms, 13
genes for PTSD symptoms, and 22 genes in PTSD and/or MDD. We observed that these individual or combined disorders
shared ESR1, RUNX1, PPARA, and WWOX as driver causal genes, while other genes appeared to be causal driver in the
PTSD only or MDD only cases. A number of these identified causal pathways have been previously implicated in the
biology or genetics of PTSD and MDD, as well as in preclinical models of amygdala function and fear regulation. Our work
provides a promising set of initial pathways that may underlie causal mechanisms in the development of PTSD or MDD in
the aftermath of trauma.

Introduction

Posttraumatic stress disorder (PTSD) is among the most
common and debilitating major psychiatric disorders, with
an overall lifetime prevalence rate of 7.8% in the United
States [1]. While PTSD is approximately twice as common
in women, prevalence rates correlate with trauma exposure
rates. Prospective studies indicate that the majority of
trauma survivors experience the cardinal symptoms of re-
experiencing, avoidance, and hyperarousal immediately
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following trauma. While these symptoms abate and even-
tually disappear for most patients [2], symptoms persist and
develop into syndromal PTSD in a significant minority.

The most significant comorbidity for PTSD is major
depressive disorder (MDD) [3]. Together, PTSD and MDD
following trauma are associated with additional comorbid-
ities (e.g., substance and alcohol abuse, panic disorder) and
mortality (suicide, medical comorbidity, reduced life
expectancy) as well as disability in daily activities, reduced
vocational productivity, and increased health care utilization
[4–6]. The identification of individuals at high risk to
develop PTSD in the immediate aftermath of trauma is
crucial to design interventions that are effective in pre-
venting the development of PTSD and its associated disease
burden. Furthermore, understanding the acute biology of the
traumatized individual may lead to novel interventions,
targeting stress dysregulation, fear, and trauma-memory
consolidation processes that seem to be critical in the
pathophysiology of PTSD and MDD following trauma
exposure.

Although epidemiological studies indicate that roughly
70% of the whole population will experience a traumatic
event in their lifetimes, only a minority will develop PTSD
even after repeated exposures, pointing to a fundamental
question which trauma survivors will eventually experience
PTSD. Therefore, the development of a clinically useful
metric is critical, allowing us to predict who will suffer from
PTSD in a prospectively defined traumatized population
using a combination of biological, epidemiological, and
psychological variables. Considering the nearly universal
exposure to traumatic events and the worldwide public
health importance of PTSD, the determination of biological
risk factors is of utmost importance for both civilian and
military populations.

Several risk factors have been identified for developing
stress-related disorders following trauma, including: (i)
female sex [7, 8], (ii) pre-trauma personal and familial
psychopathology [9–11], (iii) prior trauma exposure,
including child abuse and neglect [12, 13], (iv) trauma
severity, (v) perceived life threat and peritraumatic emo-
tional response [14], (vi) lack of social support [15], and
(vii) reduced hippocampal size [16, 17]. Differential risk
that determines which patients develop PTSD is in part
genetic, with at least 30–40% risk heritability for PTSD
following trauma [18–23]. Similar to many medical dis-
orders such as cancer, diabetes, and metabolism, PTSD and
MDD are complex diseases in which gene–environment
interactions may contribute to vulnerability [24–31]. While
early studies have suggested that gene–environment inter-
actions are important in PTSD, these data, however, are
merely suggestive, indicating that definitive data have yet to
be established [12, 29–32]. Although identified alleles have
been found in a number of PTSD- and depression-related

genes, genome-wide association studies are still early in
predicting risk [33, 34].

Furthermore, the determination of dynamic differential
gene expression pathways following trauma may provide
more robust effects than heritable patterns of differential
genetic variants for determining risk [35, 36]. Combining
these different approaches—transcriptional and genetic—
may be particularly powerful, such that genetic variants that
modify brain gene expression may also influence risk for
human diseases. In fact, studying the transcriptome as a
quantitative intermediate phenotype may have greater power
for discovering risk SNPs influencing expression than the use
of discrete diagnostic categories. Such work suggests that
using transcriptional variation may lead to causal pathway
identification, and that genetic-expression effects may be
useful in determining the underlying biology of associations
with common diseases. One example of progress in this area
is in degenerative disorders and Alzheimer’s disease, as we
previously examined genotype–transcript relationships via
expression quantitative trait locus (eQTL) analysis [37–39]
and constructed regulatory networks using Alzheimer’s
samples including both transcriptomics [40, 41] and pro-
teomics [42, 43]. In particular, the analysis of genetic risk
provided robust and reproducible targets, driving known
brain pathogenesis [42]. The goal of the current study was to
apply similar genetic–transcriptional interaction approaches
to PTSD and depression.

Here, we apply a computational pipeline integrating and
analyzing transcriptomic, genomic, and interactomic data to
predict which trauma victim survivors may develop PTSD. In
particular, we utilize a novel approach to maximize utility of
blood-based transcriptomics to understand development of
risk vs. resilience in the months following trauma exposure. In
a two-site longitudinal, observational study we identified
subjects, obtained blood samples in the immediate aftermath
of trauma, and determined RNA expression data at the time of
trauma and symptom levels prospectively at a 6-month fol-
low-up timepoint. To maximize our power and understanding
of transcriptional pathways predicting risk vs. resilience, we
utilized gene expression sets of individuals with PTSD and/or
MDD at 6 months and control individuals without PTSD and/
or MDD at 6 months. To capture fluctuations of gene
expression in the underlying disease cases, we applied a gene
set-cover approach, allowing us to find representative sets of
dysregulated genes. Linking such genes to candidate causal
genes through an eQTL analysis, we determined the sig-
nificance of each such link by modeling information flow
through a network of molecular interactions, pointing to
causal pathways as well as genes that drive the underlying
disease phenotype.

Using such an unbiased genotype–transcript interaction
analysis we hypothesize that our approach will identify
transcriptional pathways predicting risk vs. resilience in
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subjects with symptoms of PTSD and/or MDD, pointing to
potential causal pathways for further development. In fact,
as outlined below, a number of our identified causal path-
ways have been previously implicated in the biology or
genetics of PTSD and MDD [44–47] as well as in pre-
clinical models of amygdala function and fear regulation
[48, 49]. Our approach provides a promising set of path-
ways that may underlie causal mechanisms in the devel-
opment of PTSD or MDD in the aftermath of trauma.

Results

Identification of dysregulated genes in PTSD and
depression

Our main objective was the integration of disparate gene
expression and genomics data of patients that suffer from
significant symptoms of depression, PTSD and/or both after
trauma exposure with molecular interaction data. Using a set-
cover approach [50, 51], we utilized gene expression sets of
patients with criteria PTSD or depression symptoms (“cases”)
and non-disease controls to select a set of dysregulated genes.
Normalizing the gene expression values in every patient as a
Z-score, where we considered mean and standard deviation of
gene expression values in the non-disease controls, we
defined that a gene is differentially expressed and “covers” a
given disease case if the normalized gene expression value of
the gene in question has a p value <0.01 using a Z-test in a
given disease sample. Such disease case-specific tests allowed
us to better capture fluctuations of gene expression in the
disease cases that would have been otherwise missed with
approaches that simply consider expression of a gene in all
samples at the same time. Assuming that coverage refers to
the number of differentially genes in a given patient case,
small coverage of patient samples points to most commonly
differentially expressed genes across patient samples. In turn,

increasing coverage captures genes that are specific to smaller
subgroups of affected patients. Investigating different choices
of parameters, we observed that the size of gene sets increased
with growing coverage, but were remarkably robust with
increasing numbers of outliers (Supplementary Fig. 1). To
account for such fluctuations and provide a representative,
small set (≤150) of dysregulated genes that represent most
commonly expressed genes in the underlying disease cases,
we required that all but one case was covered by at least five
differentially expressed genes (see Methods for details,
Fig. 1a). In particular, we obtained 138 dysregulated genes in
depression (BDI), 144 genes in PTSD (PSS), and 150 genes
in PTSD and/or depression (PSS×BDI) (Supplementary
Table 1). The Venn diagram in Fig. 1b indicates considerable
overlap of dysregulated gene sets.

Determination of candidate causal genes through
an eQTL analysis

In the next step, we determined genome-wide associations
between expression levels of dysregulated genes and single
nucleotide variations that point to candidate genes that are
potentially causal for the observed dysregulation. In particular,
we utilized Matrix eQTL [52], applying an additive model to
find variations that were correlated with the expression of
dysregulated genes (Fig. 2a). In particular, we considered trans-
eQTLs on a p < 10–3 level, indicating loci that were placed
outside the local genomic boundaries around coding regions of
the underlying dysregulated genes. To translate such trans
genomic loci to corresponding candidate causal genes of a
dysregulated gene, we identified all genes that harbor these
variations in their coding regions. As a consequence, we found
116,604 such links between 138 dysregulated genes and a total
of 10,640 candidate causal genes in depression, while we
obtained 113,238 links between 144 dysregulated genes and
10,535 candidate causal genes in PTSD and 101,995 such links
between 150 dysregulated genes and 10,433 candidate causal

Fig. 1 Determination of dysregulated genes in PTSD. a Outlining
our approach to select dysregulated genes in a toy model, links indi-
cate genes that are differentially expressed in a given patient, “cov-
ering” a disease case. Specifically, we stipulate that each disease case
needs to be covered by at least two differentially expressed genes.
Furthermore, we allow that one outlier case does not need to meet this
demand. Solving such a problem with a set-cover approach (see

Methods) we obtain a set of two dysregulated genes (dashed ellipse).
b Utilizing a threshold of p < 0.01 (Z-test) to determine if a gene covers
a patient and demanding that each patient case needs to be covered by
five differentially expressed genes and allowing one outlier, we found
138 genes in depression (BDI), 144 genes in PTSD (PSS), and 150
genes in PTSD and/or depression (PSS×BDI). Notably, the Venn
diagram indicates some overlap of such sets of dysregulated sets.
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genes in depression and/or PTSD. Such numbers translate to on
average of roughly 900 candidate causal genes that are con-
nected to a single dysregulated gene and allow us to strike a
balance between finding large enough sets of candidate causal
gene and avoiding associations of dysregulated genes to a large
majority of remaining genes (Supplementary Fig. 2).

Determination of causal genes for each
dysregulated gene

As the previous step allowed us to find a set of candidate
causal genes for each dysregulated gene, we determined the
significance of such links by modeling information flow
from dysregulated to causal genes by a variant of a circuit
flow algorithm. In particular, this step allowed us to identify
candidate causal genes that showed significantly different
characteristics when we compared disease to control cases.
Our circuit flow algorithm is based on the well-known
analogy between random walks and electric networks where

the amount of current entering a node or an edge is pro-
portional to the expected number of times a random walker
will visit the node or edge. Specifically, we constructed a
network of molecular interactions by utilizing the Pathway
Commons database [53] that collects interaction data from a
variety of human protein–protein interactions and pathway
databases. In particular, such interaction data allowed us to
consider undirected interactions such as protein–protein and
protein complex interactions as well as directed interactions
including transcription factor–target and kinase–substrate
interactions. As a result, we obtained 753,239 interactions
between 12,614 human proteins. Considering gene expres-
sion correlation as a proxy of resistance, we fed a unit of
electrical current to a dysregulated gene and simulated the
flow of electric current to the corresponding candidate
causal genes through the molecular interaction network.
Thus, we ensured that non-correlated nodes posed con-
siderable resistance to the current flow. Specifically, such a
step allowed us to find candidate causal genes that received
most current, indicating increased causality (Fig. 2b).
Comparing current values in the disease and control cases,
we largely observed strong correlations in all disease states
(Fig. 2c), suggesting that most pairs of dysregulated and
candidate causal genes shared similar current flows in dis-
ease cases and controls. Considering the difference of such
currents that a candidate causal gene received from a dys-
regulated gene when we compared disease and non-disease
patients, we observed normal distributions in all disease
states (Fig. 2d), suggesting that a small minority of pairs of
dysregulated and causal genes showed large differences. To
assess the statistical significance of the observed difference,
we randomly sampled current values from the empirical
distributions of all pairs of dysregulated and causal candi-
date genes in the disease and controls and considered the
flow difference of a pair of dysregulated and causal genes to
be significant if the corrected p value from a Z-test was
FDR < 0.01 [54]. Notably, we obtained 11,224 links
between 137 dysregulated genes and 3670 causal genes in
depression, 9645 links between 144 dysregulated genes and
3278 causal genes in PTSD, and 9022 links between 150
dysregulated genes and 3100 causal genes in PTSD and/or
depression. Determining the number of dysregulated genes
that were connected to a single causal gene, we observed a
small minority of causal genes that were significantly causal
for a large number of dysregulated genes and vice versa in
all disease states (Fig. 2e and Supplementary Table 2).

Driver causal genes for PTSD and depression
symptoms

As the previous step allowed us to annotate each dysregu-
lated gene with a set of causal genes that showed significant
differences to current flow when we compared the disease

Fig. 2 Determination of sets of causal genes. a We determine
genome-wide associations between expression levels of dysregulated
genes and single nucleotide variations. Accounting for genomic char-
acteristics in the (non-)coding gene region, we assume that correspond-
ing genes may be causal candidates for the dysregulation of the
underlying disease gene. b Modeling an electric circuit that connects a
dysregulated gene with its candidate causal genes through a network of
molecular interactions we use expression correlation levels of interacting
proteins as resistance. Specifically, such a step allows us to find candi-
date causal genes that receive most current, indicating increased caus-
ality. In c we compare currents that were received by causal candidates
using expression values in the disease cases and controls, pointing to
strong correlations in all disease states. d Determining the difference of
currents that candidate causal genes received in the disease cases and
controls, we found normal distributions in all disease states. Such an
observation indicates that candidate causal genes can either receive less
or more current in the disease compared to the control cases. In e, we
annotated each dysregulated gene with causal genes that showed sig-
nificant differences in received current in disease and control cases using
a Z-test (FDR< 0.01). Notably, we observed that a small minority of
genes exist that are significantly causal for a large number of dysregu-
lated genes and vice versa in all disease states.
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to the control cases, we aimed to find a subset of causal
genes that potentially drove the underlying dysregulation of
genes. In particular, we focused on the identification of a
subset that explained a majority of disease cases, by
defining that a causal gene explained a disease case if there
was a nonempty set of corresponding dysregulated genes
that were differentially expressed in the given case. In other
words, we constructed a bipartite graph, where links
between causal genes and disease cases were weighted by
the number of corresponding differentially expressed dys-
regulated genes in the given disease case. We aimed to
explain the majority of disease cases (allowing a few out-
liers) with a minimum number of causal genes, where we
defined a patient’s case as explained if the total weight
covering the case exceeded a certain threshold. Specifically,
we applied a greedy approach to determine a subset of
“driver” causal genes [50, 51] (see Methods for details,
Fig. 3a). While the choice of the number of outliers hardly
influenced results, we observed that the obtained sets of
driver causal genes remained unchanged when we deman-
ded that each case was explained by at least ten dysregu-
lated genes. In particular, we obtained 11 driver causal
genes in depression cases, 13 genes in PTSD, and 22 genes
in PTSD and/or depression. In the Venn diagram in Fig. 3b,
we observed that all disease states shared ESR1, RUNX1,
PPARA, and WWOX as driver causal genes. Considering
links between causal and dysregulated genes, we deter-
mined the difference of electric current that arrived at the
corresponding dysregulated gene when we compared dis-
ease and control cases. As a gene can be causal for many
different dysregulated genes, we counted the number of
times where the corresponding current difference was
positive or negative in the disease cases. In Fig. 3c, we
observed that most driver causal genes sent more current to
corresponding dysregulated genes in the disease cases in all
disease states (Supplementary Table 3A–C).

As a corollary of finding driver causal genes, we deter-
mined causal paths from driver genes to corresponding
dysregulated genes. In particular, we found 343 paths in
depression, 458 paths in PTSD, and 409 paths in depression
and/or PTSD (Supplementary Table 4A–C). Furthermore,
we counted the number of times a gene appeared in the
paths (Supplementary Table 5A–C), suggesting that pro-
minent genes such as MYC and TP53 tend to appear
frequently.

Discussion

There is a critical need to identify early biomarkers for risk
vs. resilience in the aftermath of trauma. Such biomarkers
would both provide utility in predicting those most at risk
and in need of early interventions, and identify novel and

potentially robust mechanisms for targeting biological
processes to prevent the development of PTSD, depression,
and other pathological outcomes of psychological trauma
exposure.

The current study examined peripheral blood RNA
expression from the time of trauma and 6-month follow-up
symptoms from 297 individuals enrolled from two large
Level I trauma centers in Atlanta and Miami. We utilized
gene expression sets of PTSD or MDD patients and non-
PTSD or depressed controls, applying a gene set-cover
approach. In particular, we expected that gene expression
profiles of patients with complex diseases were not clear cut
and indicated few genes that generally differed in disease
compared to controls. As a consequence, we used raw p
values to find differentially expressed genes in each patient
case to not only capture fluctuations of gene expression in

Fig. 3 Determination of causal driver genes. a We aim to identify a
minimum subset of causal “driver” genes that covers a maximum
number of disease cases as our approach provides sets of causal genes
for each dysregulated gene. In particular, we define that a gene
“covers” a disease case if the gene was differentially expressed (p <
0.01, Z-test) in the underlying patient case. In our toy model, we
demand that each disease case is covered by at least two differentially
expressed genes allowing one outlier case, pointing to a set of two
driver causal genes (dashed circles). b Solving such a weighted multi-
set cover problem with a greedy algorithm, we found 11 driver genes
in depression cases (BDI), 13 in PTSD cases (PSS), and 22 genes in
PTSD and/or depression (PSS×BDI). Notably, the Venn diagram
indicates some overlap of such driver gene sets. c Each link between a
causal gene and a dysregulated gene is annotated with a current dif-
ference when we compare the disease cases to controls. Assuming that
a gene can be causal for many different dysregulated genes, we
determined the number of times corresponding differences were
negative or positive in the disease cases. In all disease states, we
observed that driver causal genes were mostly connected to dysregu-
lated genes that received more current in the disease cases in all dis-
ease states.
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the underlying disease cases through the set-cover approach
but also to broaden the spectrum of potential disease-
relevant genes.

To find genes that were potentially causal for the
observed dysregulation of genes in the patient cases, we
determined eQTL associations between their expression
levels and single nucleotide variations. Note, that this step
dealt with raw p values as well, as its purpose is to anno-
tated each dysregulated gene with a relatively large port-
folio of genes that may significantly influence the observed
dysregulation. We made the explicit assumption that causal
genes harbor genomic alterations that were associated with
the expression of dysregulated genes, allowing us to utilize
genes in these genomic regions as causal candidates.

To establish significance that a candidate gene is indeed
causal for a dysregulated gene, we modeled the propagation
of information from such candidate causal genes to a dis-
ease gene as the flow of electric current through a network
of molecular interactions. In particular, we assumed that
causality for the observed dysregulation of a given disease
gene is not merely the consequence of an individual eQTL.
Instead, we surmised that a set of candidate genes can be
causal for the observed dysregulation of a given disease
gene that are embedded in a network of molecular inter-
actions as reflected by high levels of electric current as a
measure for their causal importance. Weighting interactions
according to their gene expression as a proxy of electric
resistance, we determined genes that were causal for the
observed dysregulation if the flow of information into a
gene significantly differed when we compared disease and
control cases. While we used lenient p value cut-offs in the
previous steps to better capture gene fluctuations and
broaden the portfolio of candidate causal genes, we estab-
lished final sets of causal genes for each disease gene
through statistically significant differences of received cur-
rents comparing disease and control cases with an adjusted
p value threshold to curb spurious signals and obtain rela-
tively small causal gene sets.

Annotating each dysregulated gene with a final set of
causal genes, we further determined a subset of causal genes
that mostly drove the underlying disease phenotype. Despite
using largely lenient thresholds to find sets of dysregulated
genes and eQTLs, consecutive steps to determine causal
genes through a current flow and set-cover approach
allowed us to obtain robust, meaningful, and statistically
significant results as shown in our previous work on this
topic [50, 51]. Furthermore, the flow of information also
indicated paths through the network of molecular interac-
tions that connect dysregulated and causal driver genes. As
a consequence, our pipeline points us to molecular key
players and novel paths in the underlying disease states,
results that otherwise would be inaccessible through simple
analysis of differentially expressed genes and enrichment of

predefined, known molecular pathways and gene sets that
pertain to cellular and molecular functions.

Utilizing this novel approach, we obtained a final list of
11 driver causal genes in depression cases, 13 genes in
PTSD, and 22 genes in PTSD and/or depression. We
observed that all disease states shared ESR1, RUNX1,
PPARA, and WWOX as driver causal genes. In addition, a
number of other gene pathways appeared to be driver causal
genes in the PTSD only or MDD only cases. Because
previous work has found increased power and unique risk
factors when considering PTSD and depression together as
outcomes [55], we analyzed these two primary outcomes
both together and separately. A number of these identified
causal pathways have been previously implicated in the
biology or genetics of PTSD and depression, as well as in
preclinical models of amygdala function and fear regulation.
A summary of some of the top genes implicated in the
driver causal gene analyses from Fig. 3 is listed in Table 1
with additional information as to their function and possible
relationship to PTSD and depression outcomes following
trauma. Below, we focus in more detail on three of the gene
pathways (ESR1, RUNX, and PPARA) that are shared by
both PTSD and MDD symptoms, as they all are supported
by robust pre-existing literature suggesting that they may be
particularly interesting targets for further understanding the
development of trauma-related risk vs. resilience.

A leading causal driver gene pathway was marked by the
estrogen receptor (ESR1) network. This observation is very
interesting because a well-replicated finding across numer-
ous epidemiological studies is that females have an
approximately two-fold increased risk for PTSD, depres-
sion, and other stress-related disorders compared to males.
Understanding the biological mechanisms of this differ-
ential risk is of critical importance, and many of these
findings have been thought to be related to estrogen reg-
ulation in females. Increasing evidence suggests that a
number of cellular and molecular pathways are regulated by
both stress and estrogen modulation and may provide an
important window into understanding mechanisms of sex
differences in the stress response, and one of the best
understood neural pathways related to stress effects has
recently been shown to be estrogen receptor mediated
[56, 57]. Specifically related to PTSD, estrogen has been
associated with differential levels of fear responding and
retention of fear extinction [44, 45, 58, 59]—critical inter-
mediate phenotypes of PTSD and other stress-related dis-
orders. Additional recent work has demonstrated estrogen
regulation of epigenetic processes that underlie fear acqui-
sition and possibly PTSD following trauma exposure [46].
While estrogen receptor effects are most commonly asso-
ciated with females, the conversion of testosterone to
estrogen in the brain via steroid reductase enzymes indicates
the relevance of this process for both sexes [60]. In fact,
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estrogen and estrogen-related genetic effects have been
identified in males in PTSD as well as animal models of
stress [58, 61, 62]. Finally, the role of estrogen regulation
and ESR1-related genomics is also appreciated as likely
critical for premenstrual dysphoric disorder, premenopausal
depression, and postnatal depression [47, 63], which may be
closely related to sex-specific differences in trauma-related
PTSD and depression examined here.

While primarily associated with epithelial cell biology
and blood formation [64, 65], RUNX1 is also clearly
involved in nervous system development [66] and a critical
mediator of both Wnt/Beta-catenin pathways and Notch
pathway regulation of cell function and development. Our
labs and others have demonstrated critical roles for both of
these pathways in fear and extinction processing, suggesting
that there may be an important role for RUNX1 causal gene
driver function in a host of stress- and trauma-related
pathways, including regulation of fear formation in the
aftermath of trauma exposure. Previous work has shown
that during fear memory formation in the amygdala, many
Wnt-signaling genes are dynamically regulated during
threat memory consolidation. Furthermore, Wnt modulators
prevented long-term fear memory consolidation without
affecting short-term memory [49]. Additional work has
shown that another RUNX-regulated pathway, Beta-catenin
modulation, is also critically involved in fear memory
processing [49, 67]. Such observations suggest that
dynamic modulation of Wnt/β-catenin signaling, perhaps
via RUNX1 regulation, during fear and trauma-memory
consolidation is critical for long-term memory formation.
RUNX1 has also been shown to regulate Notch signaling
during development. Similar to Wnt/B-catenin, Notch has
been implicated to causally regulate synaptic plasticity in
the adult amygdala [68], suggesting that Notch regulation is
important for the consolidation of fear and trauma-related
memory. Together, this prior work expands the hypothesis
that developmental molecules, such as the RUNX1-
regulated Wnt, B-catenin, and Notch signaling pathways,
have roles in adult behavior and trauma-memory formation,
and that existing interventions targeting them hold promise
for treating trauma-related neuropsychiatric disorders.

PPAR-alpha is a member of the peroxisome proliferator-
activated receptor (PPAR) family. Studies in different fields
have illustrated that PPARs are nuclear receptors that par-
ticipate in a variety of metabolic functioning, along with
cell development and cell growth [69]. Furthermore, recent
data suggest that PPARs also play other roles in inflam-
mation, neuropsychiatric diseases, and cancer. PPAR may
be an important target for neuroprotection in stroke and
neurodegenerative diseases such as Alzheimer’s disease
[70]. Preclinical work in mouse models of neurodegenera-
tion, stress, and memory dysfunction has suggested
that PPARa may be an important substrate that mediatesTa
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neuronal health and plasticity. Specifically, very recent data
have suggested that PPAR-mediated cellular autophagy
reduces Alzheimer’s-related neuropathology and improves
cognitive decline [71]. Additional work indicates that
PPARa is a critical target mediating the effects of both
aspirin and HMG-CoA reductase inhibitors in improving
neural plasticity and memory formation in mouse models
[72, 73]. Finally, recent work implied that PPARa knockout
mice show enhanced fear learning in the passive avoidance
test [48]. Together, these data suggest that PPARa may be a
causal gene pathway driving networks related to resilience,
neuronal plasticity, and cognitive functioning in the after-
math of trauma exposure.

Limitations to this work include a relatively limited sample
size for this unique type of cohort with combined “omic”
datasets, lack of a well-powered replication cohort, whole-
blood level RNAseq analyses, transdiagnostic approach
including PTSD and/or MDD affected individuals, inclusion
of subjects based on symptom severity across diagnoses and
not limited to validated DSM diagnostic groups or utilization
of gold-standard diagnostic interviews, and insufficient power
for sex- or race/ethnic-specific stratification of analyses. Fur-
thermore, examining a number of other potential differences
at baseline, including childhood trauma exposure, differential
medication history, and other possible pre-trauma confounds,
was outside of the scope of the current study. Despite these
limitations, there were a number of strengths including novel
analytic approaches combining genotype–transcript inter-
actome approaches with causal network analyses, multisite
data collection, broad inclusion criteria, rapid enrollment in
the post-trauma period in EDs with long-term follow-up data
collection, and a transdiagnostic, intermediate phenotype
approach to gene discovery.

In conclusion, we have examined the integration of
peripheral gene expression in the immediate aftermath of
trauma with molecular interaction data, from patients who
go on to suffer from depression, PTSD, and/or both
6 months following trauma. Utilizing a set-cover approach
[50, 51], we utilized gene expression sets of patients and
non-symptomatic controls to select a set of dysregulated
genes. This approach leads to a final list of over 40 driver
causal genes across depression, PTSD, or the combined
phenotypes at the 6-month timeframe following trauma
exposure. In addition to a number of interesting and well-
known genes related to stress-regulation with individual
phenotypes, we observed that all disease states shared
ESR1, RUNX1, and PPARA as driver causal genes—all
three of which have substantial prior association with
pathways known to be involved in stress- and trauma-reg-
ulation, as well as with preclinical models of neuronal
function and plasticity that underlies fear- and threat-
processing. Future studies are required to both replicate and
validate these specific findings. Furthermore, identifying

whether these driver causal gene pathways will lead to
particular predictive biomarkers remains to be determined.
Finally, a further understanding of the biology of these gene
networks, and how they may lead to novel insight into
systemic and central nervous system pathology, and
potential future therapeutic targets, will be critical toward
the goal of understanding and predicting outcomes in the
aftermath of trauma.

Methods

Diagnosis and definitions

Many different datatypes were collected within the cohort
that included, but were not limited to, demographic data,
syndromal psychiatric definitions, measures of depression,
anxiety and PTSD symptoms, current and childhood
trauma, immediate stress response, additional treatment
inventory, and self-report medication/drug use as well as
urine drug analysis. As two main groups, we classified our
cohort into controls and positive cases. Controls never met
criteria for either PTSD or MDD throughout the year of
longitudinal follow-up. In turn, transitioners were classified
as meeting criteria for at least two timepoints during the
year-long follow-up. Note that throughout we are focused
on subjects with significant symptoms of PTSD and/or
MDD, utilizing this combined definition to capture patients
who were most at risk for transdiagnostic symptoms in the
aftermath of significant trauma exposure. Of specific inter-
est to the work at hand are the following.

PTSD symptoms

The PTSD Symptom Scale, Interview Version (PSS-I) was
employed to assess PTSD [74] symptoms that correspond to
the 17 DSM-IV PTSD symptoms, each rated on a 0–3 scale.
Specifically, alpha for the full scale PSS-I is 0.91, re-
experiencing 0.78, avoidance 0.80, and arousal 0.82. One-
month test-retest reliability is 0.80. Inter-rater reliability is
excellent for both diagnosis (kappa= 0.91) and symptom
severity (intraclass correlation= 0.97). The PSS-I is highly
correlated with the CAPS, and has a short administration
time (20 min) [75]. The PSS was administered during the
follow-up appointments to assess PTSD symptoms specifi-
cally in response to the index, study-related trauma that
precipitated ED admission.

Depression symptoms

The Beck Depression Inventory, Second Edition (BDI-II)
was used to assess depression symptom severity [76]. The
BDI-II is a 21-item self-report that is summed for a single
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score assessing the existence and severity of depression
symptoms. Individuals were assessed regarding the past
2 weeks thus corresponding to DSM-IV timeframe criteria
for major depression.

Trauma exposure

Standardized Trauma Interview (STI) [77] was used to
assess the index trauma. The STI was modified for this
study, optimized based on prior work [78–80] from this
group, and used to gather information on history of past
adult traumas as well as details of the current trauma,
including intensity, level of fear, interpersonal components,
feelings of helplessness, and horror. To assess childhood
trauma, the Childhood Trauma Questionnaire (CTQ) was
employed [81], which is a 28-item and psychometrically
validated, self-report inventory that assesses child abuse and
neglect.

Inclusion criteria

Our inclusion criteria included the following: trauma in the
past 24 h, meeting DSM-IV diagnostic criterion A in which
both of the following were present: the person experienced,
witnessed, or was confronted with an event that involved
actual or threatened death or serious injury, or a threat to the
physical integrity of self or others. The person’s response
involved intense fear, helplessness, or horror. For our
transdiagnostic approach to symptom severity inclusion, at
least two timepoints within a year of follow-ups where the
PSS-I score was >21 were required to be classified as
having likely PTSD. At least two timepoints where the BDI
score was >18 were required to be classified as having
likely depression.

Exclusion criteria

Inclusion and exclusion criteria were determined via self-
report during the initial interview in the ED, examining past
medical, and psychiatric history. Exclusion criteria were a
history of mania, schizophrenia, other psychosis, current
suicidal ideation or suicidal ideation in the last month,
suicide attempt in the previous 3 months and current
intoxication. Participants were excluded for respiratory
distress or if they were medically unstable or hemodyna-
mically compromised.

Demographics

Out of 297 subjects included in the genome and tran-
scriptome analyses, there were 193 MDD and 189 PTSD
controls while there were 104 MDD and 108 PTSD cases.
Furthermore, we accounted for 133 cases with MDD and/or

PTSD and 164 controls that had no indication of MDD and
PTSD. Note that the total of controls and cases in these four
groups is >297 because individuals could be in more than
one category, e.g., low BDI and PSS symptoms counting as
controls for both PTSD and MDD, or high BDI and PSS
symptoms counting as cases in both categories. In more
detail, there were 25 MDD cases without PTSD, 29 PTSD
cases without MDD, and 79 cases that were diagnosed with
both MDD and PTSD, pointing to a total of 133 cases with
PTSD and/or MDD.

Out of the 297 individuals, 43% were female and 57% were
male. The average age was 34.9 years (SD= 12.7). In all,
69.9% self-identified as black or African American, 24.4%
identified as Caucasian, and 14% identified as Hispanic or
Latino, while 22% were unemployed, >53% had some college
experience, and >83% graduated from high school.

Samples

Blood samples were collected from living subjects at Emory
University (Grady Memorial Hospital) and the University of
Miami (Jackson Health Systems). Participants were enrolled
in the emergency room an average of 5.3 h (0.5–12 h) after
experiencing a DSM-IV-TR Criterion A trauma as pre-
viously described [82–84]. We screened a total of over
10,000 individuals, with final inclusion counts of 525
individuals from Emory and 177 from Miami. Diagnoses
were collected over multiple timepoints up to a year of
follow-up for most individuals for the DNA-RNA cohort.
Out of the inclusion set of 702 samples, 366 individuals had
both DNA genotypes and RNA profiling. After removing
subjects whose DNA/RNA did not pass QC, who had
missing demographics or outcomes data, a total of
297 subjects were included in the multi-omics profiling
defined below. All study procedures were reviewed and
approved by the Emory Institutional Review Board (IRB),
the Grady Hospital Research Oversight Committee, and the
University of Miami IRB.

Data collection

DNA and RNA collection and preparation

Venous blood samples were collected in EDTA tubes
(DNA) and Tempus Tubes (RNA, Applied Biosystems) in
the emergency department after trauma exposure (mean
time elapsed between trauma and blood sampling, 201 min)
by medical staff using standard techniques. Within 6 h of
collection, tubes were centrifuged at 4 °C, aliquoted into
500 mL samples and frozen at 280 °C until time of assay.
Tempus tubes were mixed and stored overnight, per man-
ufacturer’s instructions at 4 °C prior to processing and
freezing.
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DNA was extracted from 200–500 μL of whole blood
using the Genfind v2 kit (Beckman Coulter Genomics,
Danvers MA), utilizing automation methods on the Biomek
NX (Beckman Coulter Inc., Brea, CA). All DNA for gen-
otyping was quantified using PicoGreen (Invitrogen Corp.,
Carlsbad, CA) and normalized to a concentration of 5–10
ng/μL. DNAs that fell below 5 ng/μL were not used in
downstream applications. DNA samples were analyzed on
the Genome-Wide Human PsychArray (Illumina Inc. San
Diego, CA) according to the manufacturer’s protocols.

RNA samples were isolated from peripheral blood,
mRNA libraries created using the TrueSeq sample pre-
paration kit, and sequenced using sequenced using paired-
end read procedures on the Illumina HiSeq 2000 (Illumina
Inc. San Diego, CA). One round of redos was performed for
six samples within the cohort.

DNA: data were normalized as before in [40, 42, 85].
Samples were checked for gender-discord, missingness,
heterozygocity, and relatedness errors using PLINK v1.07
[86]. Samples with PIHAT scores >0.185 were excluded as
in [87]. SNP calls were examined for missingness and
Hardy–Weinberg equilibrium as well as non-random miss-
ingness using PLINK v1.07 [86]. Pedigree files were pruned
using PLINK v1.07 to exclude SNPs with pairwise LD
threshold of r2 > 0.5 using a sliding window of 50 SNPs and
a shift of 5 SNPs at each step. Ancestry was checked via
EIGENSOFT [88] and PC1, 2, and 3 were retained and used
in downstream analysis. Plots of a principal component
analysis of eigenvalues are shown in Supplementary Fig. 3.

Genotypes were phased with SHAPEIT v2.r790 [89],
and missing genotypes were imputed with Impute2 v2.3.2
[90] using the reference panel from the 1000 Genomes
Project Phase 3 [91]. Markers with high imputation quality
(INFO > 0.5 [90]), minor allele frequency over 1% and
Hardy–Weinberg p value <10–6 were retained for down-
stream analysis.

RNA: raw TruSeq counts were exported, and reads were
aligned to GRCh37 using STAR v2.5.2b. [92]. Gene counts
were computed with FeatureCounts v1.5.1 that were pro-
cessed with DESeq2 1.12.4 [93]. Raw counts were nor-
malized using the median-ratio method. An initial principal
component analysis identified three additional low count
outliers, which were removed. Principal component analysis
of Log-transformed remaining counts indicated no strong
batch effects (Supplementary Fig. 4). Furthermore, sample
data were adjusted for several biological/environmental
covariates (education, income, gender, living status, CTQ
score, current job, employment, number of dependents, and
age) and methodological covariates (site, number of visits,
batch, number of times the PSS or BDI score was collected,
and library quantification). Overall, the largest explanatory
covariate was gender (Supplementary Fig. 5). Residuals
from this correction were then used in downstream analysis.

Transcriptomic data

To correct for potential biological or technical confounders,
the contribution of every covariate of transcriptional varia-
bility was characterized using the variancePartition method
[94]. This method partitions the total variance into the
contribution of each variable in the experimental design
(e.g., age, sex, batch), plus the residual variance. The
sample data were adjusted for several biological covariates
(gender, age) and several methodological covariates (insti-
tute source of sample, post-mortem interval, detection and
hybridization date). The residuals from this correction were
then used in downstream analysis.

Determination of dysregulated genes using patient
and control cases

We utilized gene expression sets of patients and non-
disease controls to select sets of dysregulated genes. In
particular, we normalized gene expression values of a
gene i in a given patient’s case D by ZD

i ¼ eDi �μC

σC , where
we considered mean μC and standard deviation σC of
gene expression values in the set of controls C. Using a
Z-test, we considered a gene differentially expressed,
thereby “covering” a given disease case if the normalized
gene expression value of the gene in question had a p
value <0.01 in a given disease sample. Such disease
case-specific tests allowed us to capture fluctuations of
gene expression in the underlying disease cases. Pro-
viding a representative set of dysregulated genes in the
underlying disease, we required a minimum level of
coverage and demand that each gene covers as many
disease cases as possible (Fig. 1a). Formulating this
problem as a minimum multi-set cover problem, we
defined a bipartite graph B(T, S) between genes T and
disease cases S. We added edges between gene g and
case s if gene g was differentially expressed in case s. We
constructed a multi-set cover instance SC = {B(T, S),α,
β} where α represented the number of times that a dis-
ease case needed to be covered, and β was the maximum
number of outliers. In other words, all but β cases needed
to be covered at least α times with differentially
expressed genes in the output cover. Specifically, we
solved this problem with a greedy algorithm that we
introduced in [50, 51] (Fig. 1a).

Determination of candidate causal genes

To examine the genetic contribution to gene expression for
our set of dysregulated disease genes and 1,049,614 alleles,
we utilized an additive eQTL model provided by Matrix
eQTL [52], where the first three principle components
obtained via EIGENSOFT [88] were included to correct for
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any allelic effects due to ethnicity and race stratifications.
To detect cis-eQTLs we used a threshold of ±1Mb from the
gene’s coding region. In turn, we determined trans-eQTLs
when associated loci were placed outside these boundaries.
Subsequently, we identified all genes that harbor such
associated variations in their coding regions that we
extended to 10 kb at the 3’ and 5’ end (Fig. 2a).

Current flow algorithm

As each dysregulated gene is associated with a set of
candidate causal genes, we screened such candidate causal
genes through a variant of a circuit flow algorithm that we
introduced in [50, 51]. In particular, we modeled the pro-
blem of finding a pathway through a molecular interaction
network from a dysregulated gene to its candidate causal
genes as current flow in an electric circuit (Fig. 2b). In
other words, we screened for causal genes that received
significant amounts of electric current from their dysregu-
lated gene. The circuit flow algorithm is based on the well-
known analogy between random walks and electric net-
works where the amount of current entering a node or an
edge is proportional to the expected number of times a
random walker visits the node or edge. Let G = (N, E)
represent a network where N is a set of genes and E is a set
of molecular interactions. Let vector I ¼ I eð Þ 8e 2 E½ �
denote current passing through the edges, while vector V ¼
V nð Þ 8n 2 N½ � holds variables of voltage at the nodes. Let
C be the set of candidate causal genes. Vector X ¼
X cð Þ 8c 2 C½ � holds the current leaving the candidate causal
genes. For an edge e = (u, v) that connects genes u and v,
we calculate the gene expression correlations pr(u, d) and
pr(v, d) between both interacting genes and dysregulated
gene d, where pr is Pearson’s correlation coefficient. Pre-
liminarily, we define the conductance of edge e, w(e) as the
mean of pr(u, d) and pr(v, d). Thus, we ensure that a single
non-correlated node reduces but not completely interrupts
the current flow, while a cluster of non-correlated nodes put
a considerable resistance to the current flow. Ohm’s law is
defined as

Id � I þ P� V ¼ 0

where Id is an |E|×|E| identity matrix, and O is a zero matrix. P
is a |E|×|N| resistance matrix, and P(e, n)= w(e) if n= v,−w(e)
if n= u, and 0 otherwise. Kirchhoff’s current law is

Q� I þ R� X ¼ T

where Q is a |N|×|E| matrix, and Q(n, e)= 1 if n= u, −1 if
n= v, and 0 otherwise. R is an |N|×|C| matrix where R(n,c)= 1
if n= c, and 0 otherwise. T is an |N|×1 vector where T(n)= 1
if n is the dysregulated gene d, and 0 otherwise. Finally, we set
the voltage of all genes in C to be 0 so that all current flows
into the candidate genes, while there was no current flow

between them, defined as

S� V ¼ 0

where S is a |S|×|N| matrix and S(c, n)= 1 if n= c, and 0
otherwise. Specifically, we solved this system of linear
equations through a series of matrix operations. In
particular, we calculated vector V that holds the electric
current that was applied at a given dysregulated gene and
ended up at the candidate causal genes.

The setup of such a linear system implicitly considers all
interactions as undirected and stipulates that each interac-
tion can have a regulatory effect on the expression of a
dysregulated gene. However, accounted for the direction of
molecular interactions such as transcription and phosphor-
ylation events by implementing a simple heuristic. After
solving the linear system, we removed edges that were used
in the wrong direction. We repeated this procedure until no
directed edge was used in the wrong direction [50, 51].

Statistical significance of causal genes

Because a dysregulated gene may have hundreds of causal
genes the amount of current flowing to candidate genes
from a dysregulated gene cannot be directly compared.
Therefore, we empirically estimated a p value for each pair
of a dysregulated and causal gene by calculating the dif-
ference of the current flow in the disease and control cases.
We estimated the statistical significance of the current dif-
ference by randomly sampling current values from the
empirical distributions of all pairs in the disease cases and
controls. We considered the flow difference of a pair of
dysregulated and causal gene significant if the corrected p
value from a Z-test was FDR < 0.01 [54].

Determination of “driving” causal genes

Based on the profile of significant causal genes of each
dysregulated genes, our approach focuses on the identifica-
tion of a subset that explains a majority of disease cases. We
defined that a causal gene ck explained a case si if there
existed a nonempty set of corresponding dysregulated genes,
D(ck, si), that are differentially expressed in case si. The
weight between a causal gene and a case was defined as
w ck; sið Þ ¼ D ck; sið Þj j. A weighted bipartite graph WB(C, S)
between a set of causal genes C and disease cases S was
constructed by adding an edge between gene ck and case si if
and only if gene ck explained a case si. In other words, we set
a link between a causal gene and a case if there existed at
least one dysregulated gene that was differentially expressed
in the underlying disease case. In particular, we defined that
a gene is differentially expressed in a given disease case if
the normalized gene expression value of the gene in question
had a p value <0.01 in a given disease sample. For a subset
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of candidate causal genes C0 and a case s, letW(C0, s) be the
total number of dysregulated genes covering s by the genes
in C0, W Co; sð Þ ¼ Uc2C0Dðc; sÞj j. We considered a patient’s
case explained if the total weight covering the case exceeded
a certain threshold and want to explain the majority of cases
(allowing a few outliers) with a minimum number of causal
genes. We previously formulated such a problem as a variant
of a minimum weighted multi-set cover problem [50, 51].
Considering an instance WSC ¼ fWBðC; SÞ; γ; δg where
WB(C, S) is a weighted bipartite graph between causal genes
C and cases S, we want to choose a subset of genes C’ from
C such that for each case s except δ cases, WðC0; sÞ � γ.
Since a very simple version of the multi-set cover problem is
NP-hard, we used a greedy approach to determine a subset
of “driver” causal genes [50, 51].

Determination of causal paths

After we identified sets of causal genes that received sig-
nificant amounts of current from a dysregulated gene, we
determined causal paths that connect pairs of causal and
disease genes in the disease cases. Based on our previous
work [50, 51], we determined a maximum current path from
dysregulated gene d to causal gene c, defined as a simple
path P ðd; cÞ ¼ ðd; g1; g2; ¼ ; cÞ such that mingi∈P(d, c)I(gi)
was maximized where I(gi) was the total current passing
through gene gi. Our rationale was that we need to find the
bottlenecks in such paths, suggesting that the path with the
biggest bottleneck was the most causal path.

Molecular interaction data

As for a reliable source of molecular interactions between
human proteins we utilized the Pathway Commons database
[53] that collects data from a variety of well-curated path-
way databases such as KEGG [95], Reactome [96], and PID
[97] as well as protein–protein interaction databases such as
HPRD [98], BioGRID [99], and BIND [100]. Specifically,
such interaction data allowed us to obtain 753,239 (un-)
directed interactions between 12,614 human proteins.
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