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Abstract
Alternative splicing of schizophrenia risk genes, such as DRD2, GRM3, and DISC1, has been extensively described.
Nevertheless, the alternative splicing characteristics of the growing number of schizophrenia risk genes identified through
genetic analyses remain relatively opaque. Recently, transcriptomic analyses in human brains based on short-read RNA-
sequencing have discovered many “local splicing” events (e.g., exon skipping junctions) associated with genetic risk of
schizophrenia, and further molecular characterizations have identified novel spliced isoforms, such as AS3MTd2d3 and
ZNF804AE3E4. In addition, long-read sequencing analyses of schizophrenia risk genes (e.g., CACNA1C and NRXN1) have
revealed multiple previously unannotated brain-abundant isoforms with therapeutic potentials, and functional analyses of
KCNH2-3.1 and Ube3a1 have provided examples for investigating such spliced isoforms in vitro and in vivo. These findings
suggest that alternative splicing may be an essential molecular mechanism underlying genetic risk of schizophrenia,
however, the incomplete annotations of human brain transcriptomes might have limited our understanding of schizophrenia
pathogenesis, and further efforts to elucidate these transcriptional characteristics are urgently needed to gain insights into the
illness-correlated brain physiology and pathology as well as to translate genetic discoveries into novel therapeutic targets.

Alternative splicing is an essential molecular
mechanism underlying risk of schizophrenia

Schizophrenia is a severe disabling mental illness with a
global lifetime prevalence of ~1% [1]. Accumulating

studies have indicated a strong genetic component in schi-
zophrenia pathogenesis [2], and genetic analyses including
genome-wide association studies (GWASs) have reported
multiple single-nucleotide polymorphisms (SNPs) asso-
ciated with this illness [3–5]. There is a growing consensus
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that genetic risk of schizophrenia tends to affect mRNA
expression in human brains [6–10]. During the past few
years, mRNA expression analyses using multiple approa-
ches (such as real-time quantitative PCR, microarray or
RNA-sequencing (RNA-seq)) have identified many dysre-
gulated genes associated with schizophrenia. While the
functional outcomes of altered mRNA expression related to
schizophrenia pathology are being investigated, the impact
of the much more complicated regulatory network of RNA
processing during transcription has drawn growing atten-
tion, and the role of alternative splicing in schizophrenia has
been explored [11–13]. In the human genome, majority of
the multi-exon genes are alternatively spliced during tran-
scription [14], resulting in cassette exons, microexons,
intron retention, alternative 5′ and 3′ splice sites, alternative
promoters, and alternative untranslated regions (UTRs)
(Fig. 1) [15], and thereby producing diverse transcriptomes,
proteomes, and phenomes [16]. In this perspective, we
mainly discuss the contributions of alternative splicing to
neuropathology of schizophrenia, highlighting potential
mechanisms by which miss-splicing events related to schi-
zophrenia genetic risk facilitate its pathogenesis.

Alternative splicing in brain is highly complex [17],
suggesting that essential roles of appropriate RNA splicing
in myriad neuronal development and functions [14], and
aberrant splicing of particular genes may underlie the
pathogenesis of brain disorders [18]. For example, Gomafu,
a long noncoding RNA whose expression is decreased in
postmortem brains of schizophrenia patients, acts as a
scaffold for splicing factors such as serine/arginine-rich SF
1, and knockdown of Gomafu increases the expression of
schizophrenia-associated isoforms of ErbB4 and DISC1
[19]. Similarly, compared with longer exons, alternative
microexons (i.e., a class of exons comprising 3–27
nucleotides, are strongly conserved and usually frame-
preserving [20]) are preferentially brain-enriched and reg-
ulate neuronal differentiation [21, 22], and Ganda et al.
found significant enrichment of switched isoforms with
microexons in schizophrenia patients [23]. In addition,
cumulative studies have also reported dysregulated mRNA
levels of alternatively spliced isoforms of schizophrenia risk
genes in brains of patients, which will be described in the
following sections.

Alternative splicing promotes
understanding of schizophrenia
pathogenesis

Neurotransmitter dysfunction (including dopamine, gluta-
mate, and γ-aminobutyric acid (GABA) systems) and neu-
rodevelopmental disturbances are central hypotheses of
schizophrenia pathology [24]. However, many questions

still remain regarding how genetic risks contribute to these
hypothesized models. Intriguingly, several essential genes
involving in these schizophrenia hypotheses are alter-
natively spliced (Table 1), producing different isoforms
with distinct functions, which may in part explain the dis-
ease pathogenesis. We herein briefly discuss the alternative
splicing patterns of several genes in human brains, includ-
ing DRD2 (encoding dopamine 2 receptor), GRM3
(encoding metabotropic glutamate receptor 3 (mGluR3)),
GAD1 (encoding glutamic acid decarboxylase), DISC1
(encoding the disrupted in schizophrenia 1 scaffold protein),
NRG1 (encoding neuregulin 1), and ErbB4 (encoding erb-
b2 receptor tyrosine kinase 4).

Dopamine hypothesis of schizophrenia

The dopamine hypothesis of schizophrenia is originated
from the observations that neuroleptic drugs (e.g., chlor-
promazine) could block brain dopamine receptor dates back
to the ~1960s [25–27]. Until now, many major anti-
psychotic drugs are still designed to antagonize dopamine 2
receptor and are proven effective in alleviating positive

Cassette exons

Intron retention

Alternative 5’ splice sites

Alternative 3’ splice sites

Alternative 3’ exons

Alternative 5’ exons
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Fig. 1 Alternative splicing patterns. The solid and dash V-shaped
lines represent two distinct splicing options, respectively. a Cassette
exons: the most common pattern of alternative splicing is the inclusion
or exclusion of a cassette exon in the mRNA. b Microexons: a special
type of cassette exon with 3–27 nucleotides shows enrichment in
neuron-specific transcripts. c Intron retention: the omission of intron
exclusion leaves the retained intronic sequence (shown as purple
block) in mature mRNA transcript. d, e Alternative 5′/3′ splice sites:
through selecting different combinations of the 5′ (donor)/3′ (acceptor)
splice sites, exons can be extended or shortened in length. f, g
Alternative 5′/3′ exons: different transcriptional initiation or termina-
tion sites generate alternative 5′-terminal exons or 3′-terminal exons
with alternative polyadenylation sites (shown as gray blocks).
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symptoms among schizophrenia patients. The dopamine 2
receptor is a central molecule of dopamine signaling
involved in schizophrenia and a major antipsychotic drug
target [28, 29], and SNPs spanning DRD2 showed genome-
wide associations with the illness [3]. The DRD2 gene is
transcribed primarily into two isoforms, D2-short receptor
(D2SR, skipping exon 6) and D2-long receptor (D2LR,
inclusion of exon 6) [30]. D2SR encodes a presynaptic
receptor of dopamine, whereas the protein encoded by
D2LR mainly mediates postsynaptic dopamine signaling
[30, 31], and multiple studies have examined changes of
these DRD2 isoforms in schizophrenia. A recent study
found elevated mRNA expression of D2SR and simulta-
neously reduced expression of D2LR in the dorsolateral
prefrontal cortex (DLPFC) of schizophrenia patients com-
pared with controls [32], although inconsistent results have
also been reported [33]. In addition, studies have con-
sistently found significant associations between these iso-
forms and schizophrenia genetic risk. For example, the
mRNA expression of D2SR has been found to be sig-
nificantly associated with a schizophrenia risk SNP
rs1076560 in the intron 6 of DRD2 [33, 34]. Furthermore,
Cohen et al. showed that rs1076560 affected binding affi-
nity for a splicing regulator ZRANB2 in an in vitro oligo-
nucleotide assay, and this SNP was correlated with changes
of D2SR/D2LR ratio in a minigene assay when ZRANB2
was co-expressed [34]. Intriguingly, rs1076560 was sig-
nificantly associated with activity and functional con-
nectivity of striatum/DLPFC during working memory tasks
[33, 35], as well as that of amygdala/DLPFC during emo-
tion processing [36], providing hints for the physiological
impact of D2SR. Therefore, schizophrenia genetic risk (e.g.,
rs1076560) likely modulates the balance between D2SR
and D2LR, and thereby affects D2 receptor-mediated sig-
naling and physiological consequences (Fig. 2). However,
the transcription of DRD2 is likely also affected by other
schizophrenia risk factors in addition to this SNP, as its
disease risk allele is unlikely the causal factor for the
increased DRD2 expression in schizophrenia [12].

Glutamate and GABA hypothesis of schizophrenia

Apart from the dopamine hypothesis for schizophrenia
pathogenesis, it has also been known for ~30 years that
antagonists of N-methyl-D-aspartate receptor (NMDAR),
such as phencyclidine and ketamine, could induce
schizophrenia-like negative symptoms and subtle cognitive
impairments [37, 38], promoting the formation of glutamate
hypofunction hypothesis [39, 40]. Indeed, the lost dendritic
spines in postmortem brains of schizophrenia patients were
primarily characterized as excitatory glutamatergic synapses
[41]. The mGluR3 is a type of G-protein-coupled receptor
(GPCR) modulating glutamate neurotransmission and

synaptic plasticity through enhancing glutamate uptake
[42], and previous studies have reported significant asso-
ciations between SNPs in GRM3 (e.g., rs2228595) and risk
of schizophrenia, cognition, prefrontal, and hippocampal
physiology, as well as glutamate neurotransmission [3, 43].
Several lines of evidence have also demonstrated the effects
of mGluR2/3 agonists, such as LY354740 and LY379268,
on ameliorating NMDAR antagonist-induced behavioral
defects in animals [44–47]. Corti et al. reported decreased
dimeric form of mGluR3 in schizophrenia patients [48].
Notably, abundant presence of a spliced isoform lacking
exon 4 in mGluR3 (mGluR3Δ4) was identified in human
brain. This isoform was predicted to translate into a trun-
cated protein that lacked the transmembrane domain while
contained a novel intracellular C-terminal and a partially
truncated extracellular ligand binding domain [49]. Intri-
guingly, mRNA expression of mGluR3Δ4 in human brain,
rather than mGluR3, was associated with the schizophrenia
risk SNP rs2228595 [50]. The mGluR3Δ4 also possesses
altered functions compared with mGluR3. Despite lacking
the transmembrane region, mGluR3Δ4 still locates at the
plasma membrane in cultured hippocampal neurons [49]
probably due to its heterodimerization with mGluR3. As
dimerization between some full-length GPCRs and their
truncated isoforms has been commonly seen, the resultant
complexes generally show unique subcellular localizations,
ligand binding properties, and pharmacological potentials
compared with the canonical homodimers formed by full-
length GPCRs [51–53]. Likewise, a recent study showed
physical interactions between mGluR3Δ4 and mGluR3, and
transfection of mGluR3Δ4 could cause deficits in ligand
binding availability and decreased membrane mGluR3
abundance [54]. Together, these results suggest a possible
mechanism underlying schizophrenia risk through negative
modulation of mGluR3 function by mGluR3Δ4 [50].

In addition, dysfunction of GABAergic neurotransmis-
sion has been implicated in schizophrenia through studies of
human postmortem brain tissues and in vivo levels of
GABA [55–57], and alternative splicing of GAD1 gene
likely contributes to GABA dysfunction in the brains of
schizophrenics [58]. There are two primary isoforms tran-
scribed by GAD1, a full-length isoform encoding the active
protein glutamic acid decarboxylase 67 (GAD67, 67 kDa)
and a shorter isoform GAD25 (25 kDa) encoding a protein
lacking the enzymatic domain [59]. As the most abundant
GAD1 transcript in human brain, GAD67 regulates the
synthesis of GABA [60], and the mRNA and protein levels
of this isoform were both decreased in the postmortem
brains of schizophrenia patients compared with normal
controls [58, 61–64]. Further analyses by Hyde et al. and
Tao et al. respectively demonstrated an increased ratio of
GAD25 to GAD67 in schizophrenics compared with heal-
thy controls [63, 64]. Intriguingly, the altered expression
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ratio of GAD1 isoforms could be predicted by a schizo-
phrenia risk SNP (rs3749034) within this gene. Given that
transcription of GAD25 might have jeopardized appropriate
expression of GAD67, the molecule necessary for mature
GABA signaling, this mis-splicing-mediated developmental
deficit might underlie pathogenesis of schizophrenia [64].
Remarkably, Tao et al. also discovered ten novel GAD1

transcripts in human brains, among which four of them
showed a life span trajectory expression pattern that is
anticorrelated with the expression of GAD67 [63]. These
results provided novel hints into schizophrenia pathogen-
esis, which not only highlighted potential effects of the
reduced mature isoform (GAD67), but also emphasized
influences of the truncated transcripts (e.g., GAD25).
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Neurodevelopmental hypothesis of schizophrenia

Neurodevelopmental hypothesis of schizophrenia suggests
that perturbation of early central nervous system develop-
ment may be the key etiology for later onset of schizo-
phrenia symptoms. This theory has been supported by early
epidemiological and circumstantial data as well as more
recent brain-specific molecular and genetic findings
[65–67]. It is noteworthy that some schizophrenia risk genes
related to dysregulation of neurotransmitter systems (e.g.,
GAD1) also play essential roles in regulation of neurode-
velopment [68]. In addition, there are multiple schizo-
phrenia risk genes (like DISC1 and NRG1) exerting pivotal
functions in embryonic and postnatal neurodevelopmental
processes. DISC1 gene is genetically associated with schi-
zophrenia [69, 70], and encodes a scaffold protein regulat-
ing neuron proliferation, migration, neurite outgrowth,
synaptogenesis, and integration of newborn neurons in
multidimensional pathways [71–75]. Intriguingly, Nakata
et al. reported that human DISC1 mRNA underwent
extensive alternative splicing, and expression of several
DISC1 isoforms were changed during brain development
and in schizophrenia patients [76]. Among these DISC1

transcripts, the one that missing exon 3 (Δ3), or exons 7 and
8 (Δ7Δ8), as well as the one with an insertion variant in
exon 3 (extra short variant-1, Esv1) exhibited higher mRNA
levels in the brain of schizophrenics than healthy controls
[76]. Moreover, expressions of DISC1 Δ3 and Δ7Δ8 iso-
forms were associated with schizophrenia risk SNPs
(rs821616, rs6675281, and rs821597). The full-length
DISC1 protein has been found to exert functions in early
neuronal development and synapse maturation via inter-
acting with other proteins [71], whereas Newburn et al.
found that the truncated DISC1 proteins respectively
encoded by these spliced isoforms (Δ3, Δ7Δ8, and Esv1)
showed altered binding abilities with DISC1-interacting
proteins, e.g., reduced binding for NDEL1 and PDE4B, and
intact binding for FEZ1 and GSK3B [77]. Moreover, all the
truncated DISC1 proteins could be co-immunoprecipitated
with full-length DISC1, suggesting that they likely formed a
complex and modulate the biological function of DISC1
through affecting its protein interaction network [77].

NRG1-ErbB4 signaling plays essential roles in axon/den-
drite development and synapse formation/plasticity [78, 79],
and both NRG1 and its receptor ErbB4 were perturbed in
schizophrenia [80–83]. NRG1 gene is primarily transcribed
into six types of isoforms (I–VI) with distinct amino-terminal
regions via alternative 5′ flanking regulatory elements usage,
and these isoforms exhibit diverse expression patterns, prop-
erties, and features in neurodevelopment [82, 84]. For
example, the most mature NRG1 isoforms are soluble and act
as chemoattractants, but the membrane-bound NRG1-III acts
in a contact-dependent manner [82]. NRG1 has been con-
firmed as a schizophrenia susceptibility gene via linkage
analyses and early candidate studies [85–88]. Subsequently,
several risk SNPs (SNP8NRG221132, rs6994992, rs7014762,
SNP8NRG221533, and SNP8NRG241930) have been
reported to affect expression of NRG1 isoforms (NRG1-I,
NRG1-IV, and NRG1-III), suggesting their potential roles in
schizophrenia pathogenesis [89–93]. Consistently,
schizophrenia-like behavioral (e.g., deficits in social interac-
tion) and endophenotypic deficits (e.g., decreased prepulse
inhibition) shown in mice with modified expression of NRG1-
I/IV/III isoforms corroborated their involvement in schizo-
phrenia, whereas mice overexpressing different isoforms
exhibited subtly different deficits, suggesting possible
isoform-specific biological mechanisms [94–97]. Meanwhile,
four primary isoforms of ErbB4 have been characterized.
They are generated by alternative splicing at the juxtamem-
brane (JM) and cytoplasmic (CYT) locus, and are therefore
named JM-a, JM-b, CYT-1, and CYT-2 [98]. A splicing shift
from major JM-b/CYT-2 isoforms to minor JM-a/CYT-1
isoforms in schizophrenia patients was associated with
a risk haplotype containing three SNPs (rs7598440,
rs707284, and rs839523) in ErbB4 [99, 100]. This shift,
which leads to suppressed ErbB4 kinase activity and a

Fig. 2 The association between schizophrenia genetic risk and
alternative splicing of DRD2. a The schizophrenia risk allele at
rs1076560 (T-allele) facilitates the inclusion of exon 6 and is also
associated with higher mRNA level of D2LR by abolishing the
binding site of ZRANB2, while G allele has opposite effect. D2SR
mRNA lacks exon 6 comparing with D2LR mRNA, which results in a
deletion of 29 amino acids (represented by gray dash lines) at IL-3
(represented by red lines) of D2SR. b Different IL-3 structures of
D2SR and D2LR affect their binding properties with G-protein sub-
units and the downstream signaling pathways activated. Upper figure:
D2SR predominantly locates at presynaptic dopaminergic neurons and
acts as auto-receptor to provide a negative feedback for modulation of
neuron firing and dopamine neurotransmission. Activation of D2SR
reduces dopamine synthesis via regulation of TH activity, facilitates
dopamine reuptake partially through increasing the surface expression
of DAT, and represses neuron excitability. Bottom figure: D2LR
mainly locates at postsynaptic dopaminoceptive neurons. Activation of
D2LR inhibits cAMP production, thereby mediating the phosphor-
ylation state of DARPP-32, which is a major target for dopamine in
striatum and also a potent inhibitor of a multifunctional PP1. The
D2LR-triggered DARPP-32/PP1 cascade shows impacts on a wide
range of downstream effectors including neurotransmitter receptors
and ion channels in dopaminoceptive neurons, e.g., striatal medium
spiny neurons. Moreover, D2LR signaling regulates intracellular cal-
cium levels involving Gβγ activation of PLCβ-IP3-calcineurin cascade.
It is noteworthy that activation of D1-class and D2 heterodimer
receptors modulates calcium signaling mediated by Gαq and PLCβ/IP3
pathway. AC adenylyl cyclase, β, γ, α/io, αq, subunits of G-protein
complex, cAMP 3′,5′-cyclic adenosine monophosphate, DA dopa-
mine, DAG diacylglycerol, DARPP-32 dopamine- and cAMP-
regulated phosphoprotein 32 kDa, DAT dopamine transporter, GTP
guanosine triphosphate, IL-3 third intracellular loop, IP3 inositol 1,4,5-
trisphosphate, p phosphorylated, PKA protein kinase A, PKC protein
kinase C, PLC-β phospholipase C-β, PP1 protein phosphatase 1, TH
tyrosine hydroxylase.
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subsequent reduction of excitatory synapses on parvalbumin-
containing GABAergic interneurons, likely contributes to
defects in synapse pruning and cognitive deficits in schizo-
phrenia [101, 102].

Alternative splicing analyses are urgently
needed in the current omics era post GWAS

While earlier candidate risk gene studies have significantly
strengthened the understanding of schizophrenia pathogen-
esis, the panorama of alternative splicing in schizophrenia
remains less clear. With the advancements in high-
throughput genetic analyses of schizophrenia, the number
of potential disease risk loci has also rapidly grown. Unlike
the previously defined genes with well-characterized func-
tionality and clinical applications, many of these newly-
identified disease risk loci have been less-studied, let alone
their transcription and splicing patterns that are potentially
essential in schizophrenia pathogenesis. Therefore, further
endeavors defining schizophrenia risk transcripts within
these loci are urgently needed to interpret the current mas-
sive genetic data at the post GWAS era.

To reveal additional schizophrenia risk genes and their
disease-associated isoforms, multiple methods have been
developed to uncover disease relevant transcriptomic char-
acteristics on gene-, isoform-, exon-, junction- to single
base-levels using the high-throughput RNA-seq approach
[103]. Gandal et al. recently conducted gene-level and
annotation-guided isoform-level analyses using the RNA-
seq data from DLPFC tissues of schizophrenia patients and
normal controls [23]. Both methods highlighted generally
similar pathways and cell-type enrichment in schizo-
phrenics compared with controls, despite that isoform-level
analyses identified multiple differentially expressed tran-
scripts that were not significant in gene-level analyses.
Intriguingly, these transcripts exhibited significant overlap
with excitatory neuron clusters and enrichment for neuron
projection development, mRNA metabolism, and synaptic
pathways. In addition, networks built by the differentially
expressed isoforms exhibited increased resolution in the
disease-specific biological insights [23], and isoform-level
changes likely provided extra clues for the neuronal and
synaptic characteristics of schizophrenia. Therefore, they
concluded that changes at the isoform level, compared with
the gene level, showed larger effect sizes and genetic
enrichment and a greater disease specificity. Another
advantage of isoform-level analyses compared with gene-
level analyses is the consideration of potentially distinct
impact of certain isoforms in different illnesses. Although
GWAS has identified multiple shared genetic risk genes
across psychiatric disorders, different alternatively spliced
isoforms of a single risk gene might exert unique functions

in each illness, probably resulting from their specific
expression pattern in distinct developmental stages and
brain regions/cell types [104]. This speculation is con-
cordant with the isoform-level analyses in Gandal et al.
study [23], which emphasized the importance of splicing
and isoform-level gene regulatory mechanisms in defining
cell type and disease specificity. A study by Yang et al.
further implied that isoforms of a single gene could function
like different genes through interacting with extremely
different protein networks [105]. Adding more complexity
to the functional impact of alternative splicing in schizo-
phrenia, developmental stage-specific expression patterns of
isoforms have been implicated by several studies as well.
For example, Jaffe et al. compared the human cortex tran-
scriptome differences across developmental stages, and
found that genes with developmental stage-related isoforms
shifts were more likely to locate at schizophrenia GWAS
risk loci than those without isoforms shifts [106]. In addi-
tion, Walker et al. conducted splicing QTL analyses using
mid-gestational human brain and found that schizophrenia-
associated SNPs were significantly enriched for prenatal
splicing QTL loci [107]. Therefore, future endeavors are
called to reveal potential effects of schizophrenia genetic
risk on splicing events in developing brains, as current
studies are mainly based on adult postmortem brain tissues.

Local splicing analysis of RNA-seq data

To gain more comprehensive insights into the expression
patterns of known and unknown isoforms in schizophrenia,
the “local splicing” analysis, which circumvents the lim-
itations of imputation and assembling from short reads
guided by existing transcriptomic annotations (e.g., inac-
curate quantifications, incomplete annotations [108], loss of
sequencing coverage, statistical analysis bias, etc.), is also
adopted for RNA-seq analysis. For example, Gandal et al.
investigated “local splicing” events using de novo aligned
RNA-seq reads of human DLPFC [23], and they observed
multiple types of “local splicing” changes in schizophrenia,
such as exon skipping, alternative 5′ exon inclusion, and
alternative 3′ splice-site usage. They found that genes with
altered “local splicing” in schizophrenia showed significant
enrichment for cell communication, actin cytoskeleton,
synapse and neuronal development, as well as guanosine
triphosphatase receptor activity [23]. In addition, Jaffe et al.
detected numerous previously unannotated splice junctions
tagging potential transcripts with alternative exonic
boundaries or exon skipping using brain DLPFC RNA-seq
samples, suggesting the incomplete annotations of human
brain transcriptomes in existing databases [109]. They also
identified numerous schizophrenia GWAS risk SNPs asso-
ciated with these novel junctions (or unannotated tran-
scribed sequences) [106]. Takata et al. analyzed RNA-seq
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data of DLPFC tissues [110], and identified many alter-
native splicing events including exon skipping, alternative
usage of splice sites, and intron retentions. Their further
analyses of these splicing events revealed that the splicing
QTL SNPs were significantly enriched at schizophrenia
GWAS risk loci [110]. Similarly, using RNA-seq data of
postmortem samples across 13 brain regions, Ma et al.
investigated the exon–exon splice junctions (for exon
skipping events), and found that some schizophrenia
GWAS risk SNPs were significantly associated with the
expression of exon skipping junctions in several genes
including CYP2D6 and SNX19 [111]. Notably, the exon
skipping junction in SNX19 has also been detected in
independent brain RNA-seq samples [112]. We herein also
briefly summarize several representative “local splicing”
events associated with schizophrenia GWAS risk SNPs
that were retrieved from two DLPFC RNA-seq studies
(Table 2) [106, 110].

Despite identifying “local splicing” events associated
with risk of schizophrenia through RNA-seq analyses,
experimental validations using molecular approaches are
necessary to verify such “local splicing” events in organ-
isms. For example, Li et al. conducted RNA-seq analysis
followed by experimental validations and identified a
human-unique isoform within the AS3MT gene, which lacks
exon 2 and 3 (named AS3MTd2d3) compared with the full-
length AS3MT transcript (AS3MTfull) [113]. Briefly, to
explore the potential mechanisms underlying the schizo-
phrenia GWAS locus at 10q24.32, which contains numer-
ous genome-wide significant risk SNPs spanning multiple
genes, Li et al. performed junction analysis of RNA-seq
data in human DLPFC tissues. They showed that the
junction skipping exon 2 and 3 of AS3MT (referred as
AS3MTd2d3) was significantly associated with the schizo-
phrenia risk SNP rs7085104 [113]. This eQTL association
was further confirmed in independent studies [114, 115].
The mRNA level of AS3MTd2d3 isoform was elevated in the
DLPFC of schizophrenia patients compared with normal
controls [113], and overexpression of AS3MTd2d3 in neurons
resulted in a significant reduction of mushroom dendritic
spine density [114], mimicking the endophenotypes
observed in the brains of schizophrenia patients [116–119].
Cai et al. also found that the variable number of tandem
repeat in high linkage disequilibrium with rs7085104
regulated the mRNA expression of AS3MTd2d3 using an
in vitro minigene splicing assay [114]. Altogether, these
studies have identified an alternatively spliced isoform
AS3MTd2d3, which likely accounts for (at least part of) the
molecular mechanisms underlying genetic risk of schizo-
phrenia in the 10q24.32 GWAS locus.

Besides exon skipping, other types of alternative splicing
events, such as alternative 5′ exon inclusion, have generated
transcripts associated with schizophrenia risk in human

brains. For example, Tao et al. discovered a novel spliced
transcript in the schizophrenia risk gene ZNF804A in human
brains [120]. This novel isoform arises from a new 5′ UTR
in the intron 2 of this gene and lacks the first 2 exons
compared with the wild-type ZNF804AFull transcript
(named ZNF804AE3E4). Predictive analysis suggested that
ZNF804AE3E4 might encode a protein lacking the zinc finger
domain, the vital functional element in ZNF804AFull [121].
Intriguingly, the schizophrenia risk SNP rs1344706 was
significantly associated with lower mRNA expression of
ZNF804AE3E4 rather than ZNF804AFull in human fetal brains,
corroborating the reduced ZNF804AE3E4 mRNA in brains of
schizophrenia patients relative to healthy controls [120]. It
has been reported that ZNF804A protein is present in den-
drites and synapses, and knockdown of the aggregated iso-
forms reduces dendritic spine density and inhibits neurite
formation [122, 123]. Surprisingly, overexpression of
ZNF804AE3E4 in cultured neurons provokes more mushroom
dendritic spines than overexpression of ZNF804AFull, sug-
gesting a pronounced and specific functional effect of this
isoform on mature spines compared to wild-type transcript
[124]. Therefore, decreased ZNF804AE3E4 expression during
early brain development likely explains the molecular
mechanism underlying genetic risk of schizophrenia in this
GWAS locus.

Long-read sequencing analysis

Despite the recent enlightening discoveries of alternative
splicing in schizophrenia using RNA-seq data, short-read
sequencing has also brought challenges to accurate assem-
bling and quantification of isoforms since certain sequences
are likely shared by multiple transcripts of a single gene
[103]. Meanwhile, although RNA-seq supplemented with
molecular characterizations have identified novel schizo-
phrenia risk isoforms, these analyses usually require
extensive efforts. Therefore, feasible strategies for effi-
ciently characterizing more target genes and isoforms, e.g.,
long-read sequencing, are needed.

Long-read sequencing allows increased sequencing
resolution and transcript assembling accuracy that are
required for deciphering the alternative splicing profiles. A
recent nanopore long-read sequencing analysis character-
ized the alternative splicing of CACNA1C in human brains
[125], a psychiatric risk gene encoding the CaV1.2 voltage-
gated calcium channel alpha1 subunit [3]. The authors
applied two complementary approaches, exon-level analysis
and splice-site-level analysis, which incorporated novel
exons, novel junctions between annotated exons, and new
combination of known junctions, and they identified 241
novel transcripts within the CACNA1C gene. Notably, many
of the novel transcripts were abundant in human brain and
were predicted to have functional impact on CaV1.2. These
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transcripts might reveal novel mechanisms of schizophrenia
pathogenesis that were previously hidden by the incomplete
annotation of CACNA1C transcripts [125].

The schizophrenia risk gene NRXN1 can be transcribed
into NRXN1-α and NRXN1-β depending on the usage of two
alternative promoters [126–128], and Jenkins et al. pre-
viously found that mRNA levels of NRXN1-β were sig-
nificantly higher in the DLPFC of schizophrenia patients
compared with controls, whereas NRXN1-α levels were
consistent between diagnostic groups [129]. Intriguingly, a
recent PacBio long-read Iso-seq analysis has described
alternatively spliced NRXN1 isoform patterns in the induced
pluripotent stem cell (iPSC)-derived neurons from psy-
chiatric patients with non-recurrent NRXN13′/5′ hetero-
zygous deletions [130]. Apart from the altered mRNA
levels of some known NRXN1-α isoforms, there were
dozens of novel isoforms identified in the iPSC-derived
neurons carrying the mutant allele in 3′-NRXN1+/−. The
authors then performed comparative analysis of the novel
and conventional isoforms, and found generally similar
exon inclusion patterns except for exons encompassed by
the 3′-deletion. As a result, the NRXN1 deletion perturbs
NRXN1-α isoform repertoire, which might alter the protein
expression profile of this gene and thereby participate in
psychiatric illnesses [130].

Functional analyses of alternatively spliced
isoforms in brain and in schizophrenia

So far, transcriptomic analyses have identified numerous
schizophrenia-relevant alternative splicing events, majority of
which occur in genes playing key roles in neurodevelopment,
synaptic plasticity, and cognition. Therefore, it is of great
importance to uncover the functional complexity of these
diverse alternative splicing events and relevant isoforms in
schizophrenia. Although many of these isoforms are yet to be
functionally characterized, several groups have reported
inspiring findings highlighting specific roles of disease-
associated isoforms (distinct from the full-length transcripts)
in brain development aberrations linked with schizophrenia.
We herein briefly summarize the functional analyses of two
alternatively spliced isoforms with critical roles in brain
development and potentially schizophrenia pathogenesis.

Alternatively spliced isoforms encoding proteins
with unique functional characteristics

KCNH2 encodes the human ether-a-go-go-related voltage-
gated potassium channel controlling neuronal firing patterns
with characteristic electrophysiological properties: slow
activation, fast inactivation, and slow and voltage-dependent
deactivation [131, 132]. Huffaker et al. reported that SNPs in

the KCNH2 gene were significantly associated with risk of
schizophrenia, cognition, as well as brain structure and
physiology [133], but the risk SNPs did not affect expression
of KCNH2-1A (full-length transcript) or KCNH2-1B (a
minor isoform). Notably, they identified a primate-specific
and brain-enriched isoform (KCNH2-3.1) lacking the first
two exons but containing a previously undescribed 5′
extension from exon 3 compared with KCNH2-1A. More-
over, KCNH2-3.1 mRNA expression was associated with
schizophrenia risk alleles and was significantly increased in
patients, suggesting that its elevated expression likely con-
fers risk of the illness [133]. Intriguingly, individuals car-
rying schizophrenia risk alleles associated with increased
KCNH2-3.1 expression showed better response to anti-
psychotics [134, 135], indicating the potential of this iso-
form in clinical applications.

Accordingly, a transgenic mouse model that mimics the
increased expression of KCNH2-3.1 in schizophrenia
patients was used to interrogate the functional impact of
KCNH2-3.1 on cortical and hippocampal circuit [136, 137].
Electrophysiological recordings revealed faster ERG chan-
nel deactivation kinetics and increased firing rate in neurons
of prefrontal cortex slices prepared from KCNH2-3.1
overexpressed mice compared with wild-type mice [136].
Interestingly, in KCNH2-3.1 transgenic mice, long-term
potentiation induced in hippocampal CA1 synapses by theta
burst stimulation is impaired, which is in accordance with
the hippocampal-dependent memory deficits measured in
object location task [136]. These data suggest that KCNH2-
3.1 isoform might regulate information processing in pre-
frontal cortex and hippocampal microcircuit. Moreover,
KCNH2-3.1 transgenic mice display impaired synaptic
connectivity and transmission in ventral hippocampus-
medial PFC long-range projection [137].

Alternatively spliced isoforms exerting noncoding
function

While many spliced isoforms encode proteins with sig-
nificant physiological impact, some are also found to exert
functions in a coding-independent manner, such as Ube3a1.
Ube3a1 refers to an alternatively spliced transcript of the
UBE3A gene in the chromosome 15q11.2 locus, and
duplications of this genomic region confer risk of schizo-
phrenia in diverse populations [138–142]. Ube3a originally
encodes a ubiquitin E3 ligase that plays an important role in
dendrite and spine development, synaptic plasticity, and
excitatory/inhibitory imbalance [143–145]. There are three
isoforms identified for Ube3a. Both Ube3a2/3 transcripts
are translated into the full-length protein, while Ube3a1
contains a unique 3′UTR producing a truncated isoform due
to the alternative polyadenylation [146]. Interestingly,
Valluy et al. found that Ube3a1 and Ube3a2/3 transcripts

106 C.-Y. Zhang et al.



have opposite effects on dendrite complexity. Knockdown
of Ube3a1 with shRNA specifically targeting its 3′UTR in
cultured neurons increased dendritic complexity, whereas
knockdown of Ube3a2/3 RNA reduced dendritic com-
plexity. In addition to increasing dendrites complexity,
Ube3a1 RNA knockdown reduced sizes of dendritic spines
and amplitude of miniature excitatory postsynaptic currents,
suggesting that Ube3a1 could promote spine maturation but
prevent the overgrowth of dendrites [146]. Surprisingly,
only the mRNA form of Ube3a1 has been detected in
neurons, and the unique 3′UTR of Ube3a1 RNA might
contain signals for localization at the dendritic compart-
ments. Intriguingly, further investigations indicated that
Ube3a1 RNA acted as a competing endogenous RNA and
sequestered miR-134 from its natural target dendritic genes,
resulting in abnormal translation and function of these genes
[146]. Therefore, the coding-independent functionality of
spliced isoforms are also of potentially great significance in
schizophrenia.

Conclusions and perspectives

So far, as the importance of alternative splicing in patho-
genesis of multiple diseases, such as autism, amyotrophic
lateral sclerosis, and Parkinson’s disease, has been
acknowledged, and therapeutic strategies based on correct-
ing splicing defects are being investigated. For example, the
clinical usage of antisense oligonucleotides or CRISPR/
Cas9 that could recognize specific RNA splicing regulatory
elements has been extensively studied [147]. However, such
therapies are likely more effective for Mendelian diseases
than for complex disorders such as schizophrenia. As the
polygenic nature of schizophrenia requires intervention of
hundreds or thousands of genes involved in its pathogen-
esis, treatment with oligonucleotides or CRISPR/Cas9-
based methods is not feasible currently. Hence, novel phe-
nomics strategy might offer new insights into the complex
interaction network between risk genes and clinical features
of schizophrenia patients, and thereby revealing potential
hub pathways underlying the endophenotypes in schizo-
phrenia pathology. Although intervention of altered alter-
native splicing in schizophrenia is impractical, targeting the
spliced mRNAs or proteins of schizophrenia-associated
isoforms might be possible with a handful of new techni-
ques. For example, Liu et al. recently developed a genetic
method called “isoTarget” for in vivo isoform functionality
characterization, which could knock out or tag an isoform in
a cell-type-specific manner through inserting a cassette
sequence into an exon [148]. It is of great interest to explore
the possibility of applying this technique to agonize or
antagonize GPCRs (e.g., DRD2, mGluR3, etc.) to amelio-
rate schizophrenia symptoms while reduce side effects and

declined effects during chronic treatment [39, 149]. Con-
sidering the splicing diversity of these genes, better under-
standing of the structure and expression patterns of their
isoforms in vivo could benefit the discovery of compounds
specifically targeting the pharmacologically effective sites
without activation elsewhere [150]. Overall, greater atten-
tions into altered alternative splicing of schizophrenia risk
genes are necessary for efficient translation of genetic dis-
coveries into the understanding of controlling of the illness.
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