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Abstract
Given its chronicity, contribution to disability and morbidity, and prevalence of more than 2%, the effective treatment, and
prevention of bipolar disorder represents an area of significant unmet medical need. While more than half a century has passed
since the introduction of lithium into widespread use at the birth of modern psychopharmacology, that medication remains a
mainstay for the acute treatment and prevention of recurrent mania/hypomania and depression that characterize bipolar disorder.
However, the continued limited understanding of how lithium modulates affective behavior and lack of validated cellular and
animal models have resulted in obstacles to discovering more effective mood stabilizers with fewer adverse side effects.
In particular, while there has been progress in developing new pharmacotherapy for mania, developing effective treatments for
acute bipolar depression remain inadequate. Recent large-scale human genetic studies have confirmed the complex, polygenic
nature of the risk architecture of bipolar disorder, and its overlap with other major neuropsychiatric disorders. Such discoveries
have begun to shed light on the pathophysiology of bipolar disorder. Coupled with broader advances in human neurobiology,
neuropharmacology, noninvasive neuromodulation, and clinical trial design, we can envision novel therapeutic strategies
informed by defined molecular mechanisms and neural circuits and targeted to the root cause of the pathophysiology. Here, we
review recent advances toward the goal of better treatments for bipolar disorder, and we outline major challenges for the field of
translational neuroscience that necessitate continued focus on fundamental research and discovery.

“I believe the brain, like any other organ, can get sick
and it can also heal.”

Dr. John F. Cade, Australian Psychiatrist [1, 2]

Inadequate nature of current treatments for
bipolar disorder

With a lifetime prevalence estimate of more than 2% [3],
BPD is a common neuropsychiatric disorder representing
one of the leading causes of disability worldwide, impacting
individuals, their families, and society as a whole [4, 5].
While episodes of mania in BPD are increasingly effec-
tively managed through a number of medications, including
antipsychotics, recurrent major depressive episodes con-
tinue to represent a significant challenge in clinical practice.
Longitudinal studies indicate that some individuals with
bipolar I and II disorder are burdened by significant
depressive symptoms, syndromal or subsyndromal, for
much of their course despite standard treatments [6, 7].
These symptoms contribute to the substantial morbidity and
mortality observed in BPD, including persistent functional
impairment [8] as well as suicide [9]. National and inter-
national treatment guidelines recognize the challenges in
treating BPD, particularly depression, as existing mood
stabilizers are only effective at reducing depressive
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symptoms in ~1/3 of patients [10–13]. Standard anti-
depressants have repeatedly failed to show benefit in ran-
domized, placebo-controlled trials [13, 14]. Lithium [1],
considered a gold standard treatment in preventing recur-
rence by all major guidelines, nonetheless does not con-
sistently show superiority to placebo for treatment of
depression. Lamotrigine also failed to separate consistently
from placebo in large acute depression monotherapy trials
[15]. While some atypical antidepressants have demon-
strated efficacy for BPD, they benefit only a subset
of individuals [16–19], while metabolic risks are substantial
[20] and rates of discontinuation are high [21]. Taken
together, there is a clear need to advance the discovery of
treatments for BPD, for acute episodes as well as prevention
of recurrence.

Challenge of modeling & target
identification for bipolar disorder

The development of therapeutics for BPD continues to be a
challenge due to the limited understanding of the mechan-
ism of action of existing therapeutics, their poly-
pharmacology, and the lack of validated cellular and animal
models that are etiologically based [4, 22, 23]. While
recognizing no nonhuman model will be able to fully cap-
ture the complexity and full range of symptoms relevant to
BPD [22], advances in three main areas seeking to develop
innovative new model systems to investigate the patho-
physiology of BPD and to discover novel therapeutic targets
have begun to turn the tide on this historical challenge for
the field of psychopharmacology.

The first is based upon the application of reprogramming
technology that now enables the generation of genetically
accurate, patient-derived, induced pluripotent stem cells
(iPSC) as novel types of “ex vivo” cellular models [24–33].
In general, 2-dimensional iPSC-derived cultures are well
suited to the identification of cell autonomous phenotypes
that depend less on cell-cell interactions, but success in
measuring network-level electrophysiological properties,
including lithium-sensitive hyperexcitability phenotypes of
BPD patients has been reported [28, 32, 34]. Recent
advances in the development of protocols for 3-dimensional
cultures of brain organoids have the potential to allow
greater investigation of cell nonautonomous phenotypes
related to higher-order properties due to the greater cell-cell
interactions inherent to tissue-like architectures [35]. These
models bring their own challenges regarding variability and
heterogeneity, but standardization of protocols has sig-
nificantly improved these features and will continue to in
the future [36]. A major limitation to date of the studies
published to date is the relatively small number of patients
that have been characterized, particularly given the

recognition that line-to-line variability can be substantial.
Multiple efforts are underway in the community to expand
to much larger sample sizes in the hundreds. For example,
one publicly-available biobank includes more than 400
patient-derived iPSC lines (among them ~80 individuals
with bipolar disorder) [37], including neurocognitive testing
and self-report battery capturing NIMH Research Domain
Criteria features [38, 39]. In conjunction with performing
detailed clinicopathological phenotyping, this generation of
a “living library” of BPD patient cells opens up new ave-
nues to elucidate the underlying neurobiology of BPD and
to aid in the discovery of novel therapeutic targets. More-
over, understanding the ex vivo response of patients as
assessed using iPSC-derived, or additionally or alternatively
other peripheral cells such as primary lymphocytes, ulti-
mately at the single cell level [40], in advance of in vivo
testing has the potential order to reveal stratified, sub-
populations of individuals likely to respond differentially
and thereby facilitate clinical investigation [41].

Second, based upon an emerging genetic understanding
of risk factors for BPD, new rodent models have begun to
be characterized with lithium and related pharmacological
agents. An excellent example of this advance that provides a
direct link to the potential etiological basis of BPD as
supported by large-scale genome-wide association studies
(GWAS) comes from studies of the ankyrin 3 gene (ANK3)
encoding the adaptor protein Ankyrin-G (AnkG). While the
precise mechanisms of the genetic association remain
unclear, BPD-associated SNPs have elevated brain-specific
expression patterns and there is emerging evidence that rare
loss-of-function, splice-site SNPs may be protective for
BPD [42–44]. Studies of AnkG in mouse models have
begun to elucidate its potential role in disease pathophy-
siology, connections to key pathways regulating neuro-
transmission and neuroplasticity, and ability of lithium to
normalize behavioral abnormalities detected upon AnkG
loss of function [45–51].

Finally, as a higher-throughput and lower cost alternative
to rodents, zebrafish are being used as vertebrate animal
model system for characterization of existing and novel
agents for BPD through both quantitative behavioral [52]
and functional imaging studies that combined the genera-
tion of large-scale brain activity maps through the use of
transgenic zebrafish with a genetically encoded calcium
indicator, utilizing machine learning for predictive analysis
[53].

Lithium & the GSK3 hypothesis: pathways &
probes

A long-standing hypothesis concerning the mechanism of
action of lithium relevant to the treatment of BPD is that of
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the inhibition of glycogen synthase kinase-3 (GSK3) family
of serine/threonine protein kinase comprised of the two
paralogs GSK3α and GSK3β [54–56]. GSK3 activity is
dynamically regulated through the combined effects of
activating autophosphorylation of Tyr279/216 (α and β
isoforms respectively), its inhibitory phosphorylation on
Ser21/9 (α and β isoforms, respectively) on its N-terminal
tail, and the activity of protein phosphatase that counteract
its phospho-inhibition.

At the biochemical level, lithium has been shown to
directly inhibit GSK3 kinase activity through competition
for magnesium in the ATP binding site of GSK3
[54, 55, 57]. In addition, lithium indirectly inhibits GSK3
kinase activity through activation of the AKT kinase family
of kinases leading to N-terminal, inhibitory phosphorylation
and the inhibition of phosphatases that dephosphorylate
GSK3 [56, 58–61]. Outside of cellular and rodent studies,
additional support for the relevance of GSK3 comes from
studies of peripheral blood of BPD patients treated with
lithium that also show elevated N-terminal inhibitory GSK3
phosphorylation levels [62, 63]. Furthermore, multiple
structurally distinct antipsychotics and antidepressants
indirectly modulate GSK3 activity [56, 64, 65]. Despite this
growing knowledge, since the precise mechanisms of GSK3
relevant for regulation of affective behavior remain
incompletely understood, the elucidation of lithium-
sensitive neural substrates and downstream pathways
remain an active area of investigation [56, 59, 66–72].

WNT/GSK3β/β-catenin signaling pathways

One of the early cellular pathways implicated in lithium’s
regulation of neuroplasticity as a result of GSK3 inhibition
is that of WNT/GSK3β/β-catenin signaling [54, 55, 67].
Here GSK3 inhibition leads to reduced phosphorylation and
attenuated proteasomal degradation of β-catenin, resulting
in accumulation of β-catenin in the cytoplasm, its interac-
tion with membrane-localized, cell-adhesion molecules like
cadherin [73], as well as the translocation of β-catenin to
the nucleus where it acts as an activator of transcription of
TCF/LEF-dependent genes that form the basis of canonical
WNT signaling pathway [66, 67, 71, 72, 74–76]. WNT/
GSK3β/β-catenin signaling also plays a fundamental role in
memory consolidation [77] and regulating neurogenesis
[75, 76, 78–80]. Besides GSK3 inhibition pharmacologi-
cally or genetically, the overexpression of β-catenin itself
has been shown to cause an antidepressant-like phenotype
in the forced swim test of behavioral despair in mice [70].
However, adult hippocampal neurogenesis, which occurs
over a much longer time frame, is not necessary for the
response to lithium in mouse behavioral assays like the
forced swim test in which acute lithium administration is
effective [81]. In the treatment of BPD though, the onset of

clinical benefit of lithium generally requires weeks of
administration leaving open the possibility of the con-
tribution of neurogenesis and other adaptive changes.
Finally, besides evidence that lithium can modulate WNT/
GSK3β/β-catenin signaling that may be of relevance for its
therapeutic effects in BPD, a number of rare genetic risk
factors for neuropsychiatric disorders are also known to
regulate or be regulated by WNT/GSK3β/β-catenin signal-
ing [82–84]. In particular, loss of function mutations in the
CTNNB1 gene encoding β-catenin are now recognized as a
frequent cause of intellectual disability and autism spectrum
disorder [85, 86], which further points to the fundamentally
important role of β-catenin in the neurocircuits important for
brain development and cognition.

β-Arrestin-2/AKT/PP2A-GSK3 signaling

In addition to lithium’s regulation of WNT/GSK3β/β-
catenin, elegant studies from the Caron and Beaulieu
laboratories have shown that multiple lithium-sensitive
behaviors, in particular amphetamine-induced hyper-
activity, requires the scaffolding protein β-arrestin 2,
which forms a complex with protein phosphatase 2 A
(PP2A) and AKT leading to AKT dephosphorylation and
inactivation in response to dopamine D2 receptor activa-
tion in a manner that can be antagonized by lithium
treatment [66, 71, 87]. Building off these studies, Klein
and colleagues have now shown using both pharmacolo-
gical inhibitors and in vivo genetic approaches involving
the overexpression or loss of one copy of the GSK3β gene,
that GSK3 activity is a critical regulator of the stability of
the β-arrestin-2/AKT/PP2A complex with lithium dis-
rupting this complex and GSK3β overexpression restoring
the complex in lithium treated mice [88]. Since the activity
of PP2A-mediated dephosphorylation and inactivation of
AKT can in turn lead to elevated GSK3 activity due to a
loss of reduced inhibitory Ser9/21 N-terminal tail phos-
phorylation, the disruption of the stability β-arrestin-2/
AKT/PP2A complex by lithium would serve to amplify its
direct inhibitory effects on GSK3. In line with these
findings, using acute administration of a pharmacological
inhibitor of AKT, Pan et al. [72] have demonstrated that
AKT kinase activity is required for lithium to regulate
inhibitory GSK3 phosphorylation and affective behaviors
in mice with the viral-mediated expression of activated
AKT shown conversely to confer lithium responsively
both to cultured cell lines and a strain of mice that does not
normally respond behaviorally to lithium. In contrast,
when GSK3 was inhibited directly using the selective,
ATP-competitive inhibitor CHIR099021, a requirement
for AKT activation was no longer observed for the beha-
vioral effects of lithium in either lithium responsive or
non-responsive mouse strains [72]. Collectively, while the
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precise mechanisms remain uncertain, the findings impli-
cating a key role for AKT activity and the disruption of β-
arrestin-2/AKT/PP2A complex in response to lithium
could possibly explain how such a weak direct inhibitor of
GSK3 as lithium has sufficiently robust pharmacodynamic
effects to control affective behavior in the context of BPD.
Such interwoven and specific mechanisms suggest poten-
tially important aspects of lithium’s specificity at the level
of neurocircuits since not all cell types appear to form β-
arrestin-2/AKT/PP2A complexes [71, 88]. In support of
the latter notion, studies using cell-type selective Cre-
recombinase expressing mice and floxed GSK3 alleles
[89, 90], as well as with CRISPR/Cas9-mediated genome
engineering [91], have demonstrated that the hyperloco-
motory response to amphetamine is dependent on GSK3β
activity specifically in dopamine D2 receptor-expressing
medium spiny neurons (MSNs). These MSNs mediate
neurotransmission within the indirect pathway of the basal
ganglia circuit, separate from dopamine D1 receptor-
expressing MSNs within the direct pathway where the loss
of GSK3β had no effect on the response to amphetamine.
Besides lithium, there is further evidence for the ther-
apeutic relevance of antagonizing β-arrestin-2 complexes
coming from studies of antipsychotics targeting the
dopamine D2 receptor many of which are commonly used
to treat BPD [92]. Finally, to expand this notion of neu-
rocircuits outside those formed by dopamine D2 receptor
expressing neurons, similar studies inactivating GSK3β
selectively in forebrain, pyramidal neurons of mice have
revealed enhanced social interaction and anxiolytic-like
effects [90]. These findings pointing to a broader role of
GSK3β activity in aspects of neurotransmission that are
potentially relevant to mood and anxiety symptoms in
BPD. In support of this notion, the anxiolytic-like effects
of GSK3β inhibition have been further revealed through
CRISPR/Cas9-mediated somatic knockout in medial pre-
frontal cortex neurons of adult mice [93]. These behavioral
effects occurred in concert with reduced glutamatergic
neurotransmission through reduction of AMPA-mediated
excitatory postsynaptic currents and were mimicked by
overexpression of FXR1P (fragile X mental retardation-
related protein 1), an RNA binding protein that is a known
phospho-substrate regulated by GSK3β [93, 94]. Beyond
anxiolytic effects, the cell-type-specific deletion of GSK3β
in dopamine D2 receptor-expressing neurons has been
shown to have pro-cognitive effects in a test of working
memory impairment due to N-methyl-D-aspartate
(NMDA) receptor antagonist (MK-801) treatment [95].
In concert, the resistance to cognitive dysfunction was
related to alterations of synaptic plasticity in the medial
prefrontal cortex with NMDA receptor activity increased
in layer V pyramidal neurons, enhanced dopamine-
dependent modulation of NMDA receptor currents, and

increased dendritic spine density of layer V pyramidal
neurons [95]. These changes in NMDA receptor-
dependent synaptic plasticity were further related to ele-
vated expression levels of GRIN2A and GRIN2B in a
manner correlated with chromatin modifications (elevated
histone H3 Lys18 and Lys27 acetylation) in the corre-
sponding promoter regions [95]. Although the precise
causal relationship to the pro-cognitive effects of GSK3β
ablation in D2 receptor expressing neurons and mechan-
istic basis is unclear, these changes in epigenetic status of
the NMDA receptor subunits were associated with a
reduction of total levels and the specific loss at the
GRIN2B promoter of HDAC2 (histone deacetylase 2) [95],
a major suppressor of synaptic plasticity and target for pro-
cognitive and mood stabilizing therapeutic development
[96–107]. Overall, these findings further emphasize the
potential developmental- and cell-type-specific effects of
deletion of GSK3β such that the age of the mouse and
neurocircuit being targeted are important factors when
extrapolating the relevance of mouse model studies to
novel therapeutic development.

Advances in pharmacological targeting & imaging
of GSK3

To further advance the pharmacological targeting of GSK3
from a neuropsychiatric disease perspective continued efforts
have largely focused on the development of GSK3 inhibitors
with different levels of potency, selectivity (including
between the two isoforms GSK3α and GSK3β), and modes of
action [72, 82, 108–113]. For example, Wagner et al. have
reported highly selective, brain penetrant, and behaviorally
active GSK3 inhibitors that have lithium-like effects in cel-
lular assays and behavioral models of psychostimulant-
induced hyperactivity [108, 111]. Similarly, in a study
addressing neuropsychiatric symptoms of Alzheimer’s disease
and related tauopathies Griebel et al. [112] reported on a
novel, potent GSK3 inhibitor SAR502250 that reduced the
depressive-like state of mice in a chronic mild stress para-
digm, attenuated aggression in a mouse defense test and
decreased psychostimulant-induced hyperactivity. In addition,
using structure-guided drug design and an integrated panel of
cell-based assays, including ones assessing GSK3 substrate
phosphorylation in human iPSC-derived neuronal cells,
Bernard-Gauthier et al. [113] recently described the devel-
opment of a series of highly potent and selective, brain-
penetrant oxazole-4-carboxamide-based inhibitors of GSK3.
This included OCM-51, one of the most potent (picomolar
IC50) and selective (>tenfold GSK3β vs. GSK3α) GSK3β
inhibitor known to date [113]. The achievement of picomolar-
selective GSK3β inhibition, as well as demonstrating the
feasibility of achieving at least 10-fold β-isozyme specificity,
is a significant advance over mostly double-digit nanomolar

Advances toward precision medicine for bipolar disorder: mechanisms & molecules 171



inhibitors of GSK3 that lacked selectivity. To allow neuroi-
maging of GSK3, these studies also radiolabeled the lead
compound OCM-44, which showed excellent brain exposure
in rodent pharmacokinetic studies with equal partitioning
between brain tissue and plasma, and performed microdosed
positron emission tomography (PET) imaging in nonhuman
primates [113]. The continued optimization of this series of
GSK3 inhibitors as PET tracers and progression into human
studies is ongoing and may provide a critically needed tool to
help address in vivo target engagement of GSK3 inhibitors to
aid in finding appropriate doses and administration schedules.

While improvement in potency and selectivity along with
the synthesis of PET tracers for assessing in vivo target
engagement are important developments for the field’s
efforts to advance GSK3 inhibitors, a number of other cri-
tical hurdles remain to be addressed. While details of
multiple GSK3 programs that were initiated but terminated
have not been disclosed, a recent summary of studies by
AstraZeneca outlined the challenges encountered in pro-
gressing efficacious and safe compounds that had been
originally being developed for the purpose of treating
Alzheimer’s disease starting in 2003 [109, 114]. While
highly potent (Ki 5–30 nM) and orally bioactive compounds
within different structural classes were identified that
showed in vivo efficacy in preclinical models assessing tau
phosphorylation and precognitive effects, preclinical tox-
icological effects on the musculoskeletal system, as well as
histopathological changes in the gallbladder and cholecys-
titis observed in dogs and biliary hyperplasia in rats,
required abandoning clinical development of multiple
compound series [114]. This included the compound
AZD1080 that was demonstrated in a Phase I clinical trial in
healthy controls to show GSK3 target engagement in per-
ipheral cells and was reported to be well tolerated, but
without a sufficient exposure margin its further develop-
ment was forced to halt [109].

With these pre-clinical and clinical issues in mind,
numerous opportunities still exist to tackle selective GSK3
inhibition with different modes of inhibition, including
allosteric inhibitors and substrate competitive inhibitors. An
alternative approach can tackle enhancing safety by tuning
the pharmacokinetic properties, including enhanced brain to
plasma ratios and minimized peripheral target engagement.
Understanding the key substrates driving the neurobeha-
vioral effects of GSK3 inhibition provides the potential to
guide the clinical development of a new generation of
efficacious and safe GSK3 inhibitors by allowing optimi-
zation of pharmacokinetic and pharmacodynamic profiles.
In addition, since the kinetics of phosphorylation and
dephosphorylation of substrates can vary widely, having
knowledge of the pharmacodynamics will enable explora-
tion of appropriate alternative dosing regimens to maximize
efficacy and enhance safety.

Novel target discovery via lithium mimetics

As an alternative to a direct GSK3 inhibitor, one approach
to understanding the therapeutically relevant mechanism of
action of lithium is to identify pharmacological “lithium
mimetics” that recapitulate the effect of lithium on specific
molecular targets in order to determine whether such agents
have similar neurochemical and behavioral effects. Such a
screening strategy may also yield a lithium ‘enhancer’ that
improves the benefit of a lower dose of lithium, which given
its narrow therapeutic index could reduce toxicity, or restore
lithium responsivity to patients that are refractory or lose
sensitivity to lithium, thereby broadening the clinical
population that could obtain benefit. While therapeutically
lithium represents a gold standard, pharmacologically it
poses challenges as a target because of the complexity of its
effects— that is, the wide variety of effects in vitro raises
the possibility that mirroring its effects on a single target
pathway may have no therapeutic relevance. To attempt to
refute this hypothesis, a number of innovative approaches
have been taken aiming to discover pharmacological probes
with potential for clinical translation.

Targeting phospho-CRMP2

In an effort to identify lithium mimetics, Tobe et al. [30]
recently demonstrated that p-CRMP2T514, the inactivated
form of Collapsin response mediator protein 2 (CRMP2),
was elevated in lithium-responsive BPD patient iPSC-
derived neuronal models as compared with nonlithium
responsive BPD patients, as well as patients with other
psychiatric and neurological disorders. This particular
phospho-substrate of GSK3 is of interest based upon global
quantitative proteomic profiling in human iPSC-derived
neuronal cells using stable isotope labeling by amino acids
in cell culture (SILAC) methodology that showed it to be
one of the most highly regulated phosphoproteins in
response to treatment with the selective GSK3 inhibitor
CHIR-99021 [115], which has been shown to have lithium-
like effects in mouse behavioral models [72]. Previous
biochemical and cellular studies have also shown that p-
CRMP2T514 is regulated by GSK3β and not GSK3α and that
its phosphorylation levels is regulated by lithium and other
GSK3 inhibitors in rodent neurons [116, 117]. In addition,
using CRISPR/Cas9-mediated genome engineering in mice,
a double knockout of GSK3β and CRMP2 in dopamine D2
receptor-expressing MSNs was demonstrated to block the
suppression of amphetamine-induced hyperactivity that
occurs when GSK3β is knocked out in the same dopamine
D2 receptor-expressing MSN in a manner that lead to
decreased dendritic branching complexity and spine density
[91]. These data further implicate a critical role for
GSK3β’s regulation of neurotransmission in MSN within
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the indirect pathway of the basal ganglia as a critical reg-
ulator of affective behavior [89, 91].

Since these collective data strongly suggest that
CRMP2 serves as a key neural substrate downstream of
GSK3β that regulates the neurocircuitry involved in affec-
tive behaviors in mouse models, and since p-CRMP2T514

levels served as robust marker of GSK3β inhibition in
human neurons, Zhao et al. [115] performed an unbiased
screen of a chemogenomic library for novel regulators of
p-CRMP2T514. This screen yielded both known GSK3
inhibitors, many of which were previously shown to have
lithium-like effects in the amphetamine-induced hyper-
activity model, as well as a series of nondirect GSK3β
modulators that decreased p-CRMP2T514 levels, like
lithium, both in neural progenitor cells (NPCs) and post-
mitotic neurons. This latter class included both FDA-
approved drugs, which have the potential for more readily
being repurposed for testing in the clinic, as well as novel
natural products and bioactive probes not previously shown
to regulate CRMP2 activity.

In connecting ex vivo iPSC-derived assay results to
in vivo data with intact neurocircuits, systemic administra-
tion of a subset, but not all, of the CRMP2-phosphorylation
suppressors was found to mimic lithium’s attenuation
of amphetamine-induced hyperlocomotion in mice.
For example, of the class of non-GSK3β targeting
p-CRMP2T514 suppressors that were identified, NNC-711, a
reported blocker of GABA uptake via inhibition of SLC6A1
(solute carrier family 6 member 1; (GAT1)), suppressed
amphetamine-induced hyperactivity when administered on
its own to mice, but showed no additive effect in combi-
nation with lithium administration. In contrast, the known
D2 receptor antagonist sulpiride, an agent shown in a
double-blind comparative study to have equivalent anti-
depressant activity to amitriptyline in BPD patients with
recurrent depression that were being treated with lithium
[118], only suppressed hyperlocomotion when administered
in combined with lithium. An additional interesting
p-CRMP2T514 suppressor identified by this screen was the
natural product, and widely consumed nutritional supple-
ment, huperzine A, a sesquiterpene alkaloid, which sup-
pressed locomotion on its own and showed an additive
effect with lithium in the amphetamine-induced hyper-
activity assay. Mechanistically, huperzine A is known to
inhibit acetylcholinesterase and to be an antagonist of
NMDA receptors, and has been investigated as a disease-
modifying drug for dementia and shown in a series of
randomized, controlled trials as an adjunctive treatment to
modestly improve neurocognitive function in schizophrenia
patients [119]. In preclinical mouse models of Alzheimer’s
disease, huperzine A has been shown to enhance cognition
and its neuroprotective activities were linked to increased
levels of inhibitory GSK3αS21/βS9 phosphorylation [120].

Although the precise mechanism through which huperzine
A suppressed p-CRMP2T514 levels in human neurons is
unknown, given recent GWAS studies in BPD that have
implicated the GRIN2A subunit of the NMDA receptors
(see below), these findings potentially link together CRMP2
to a genetically implicated mechanism in BPD as discussed
further above in the context of Ankyrin-G (ANK3) [51].
Taken as a whole, further testing of CRMP2 modulating
agents may afford a new strategy to mimic the effects of
lithium and direct GSK3 inhibitors on affective behavior
while minimizing side effects due to the central role that
GSK3 plays in multiple levels of cellular physiology.

Targeting inositol monophosphatase

An alternative mechanism to lithium’s GSK3 inhibition that
continues to be explored is its inhibition of inositol mono-
phosphatase (IMPase) [121, 122], a key enzyme involved in
Gq-protein coupled receptor and other signaling pathways.
While selectively targeting IMPase with brain penetrant
agents has remained a challenge, recent studies seeking to
identify a lithium mimetic identified ebselen as a blood-
brain barrier-penetrant IMPase inhibitor [123]. In preclinical
mouse models, ebselen preferentially reduced motor
impulsivity over choice impulsivity through a mechanism at
least in part through inhibition of 5-HT2A receptors [124].
Given the relationship of impulsivity to potential suicide
risk, and putative suicide- and attempt-sparing ability of
lithium [125], these data support the lithium mimetic
activity of ebselen, at least indirectly. In partial support of
these pre-clinical data, acute oral ebselen was shown in a
double-blind, placebo-controlled trial with healthy partici-
pants to reduce brain myo-inositol in cortical regions and to
affect emotional processing, to decrease latency time in the
acoustic startle paradigm, and to decrease the reinforcement
of rewarding stimuli along with decreased slow-wave sleep
[126]. Other placebo-controlled randomized studies in
healthy controls also showed that ebselen treatment
decreased impulsivity and produced a positive bias in
emotional processing [127]. Future studies in BPD subjects
of ebselen alone or in combination with lithium, with
assessment of affective symptoms, will be needed to
determine whether the effects translate to meaningful ben-
efit for patients.

Novel targets & mechanisms emerging from
human genetics

Twin studies of BPD indicate that it is highly heritable
(~80%); children with an affected parent are at increased
risk for a variety of symptoms and neurobiological
abnormalities [128, 129]. In agreement with twin and family
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studies, recent data from large-scale GWAS have confirmed
the risk for developing BPD is highly polygenic in nature
[129]. This polygenicity overlaps incompletely with schi-
zophrenia and other major neuropsychiatric disorders [130].
The incomplete overlap is consistent with the diagnostic
challenge of distinguishing these disorders clinically, as
well as the differences in prognosis as well as apparent
pharmacological specificity. That is, mainstays of treatment
in one disorder may be entirely ineffective in a genetically
related disorder. Lithium is not an effective antipsychotic
for treatment of schizophrenia; standard antidepressants
remain largely ineffective as monotherapy for bipolar
depression and may even worsen disease course in some
individuals.

Simply identifying tens or hundreds of risk loci does
not necessarily identify BPD treatment targets. Indeed,
even largely monogenic diseases such as Alzheimer’s
disease or Huntington’s disease have required substantial
work to move from a risk variant to a therapeutic strategy.
This work may entail intersecting risk loci with knowl-
edge of changes in the transcriptome, epigenome, and
proteome from patient-derived cell models and post-
mortem tissue [131] – particularly if only common var-
iants, rather than “smoking gun” functional variants, have
been identified. As of the end of 2019, the most recent
GWAS of 20,352 cases and 31,358 controls of European
descent, with follow-up analysis in an additional 9,412
cases and 137,760 controls identified 30 loci as genome-
wide significant [129]. Subsequently pathway analysis
identified nine pathways that were significantly enriched
for genes with BPD associations, including ones impli-
cated in endocannabinoid signaling, regulation of insulin
secretion, and motor control [129]. While any of these
represent potential therapeutic targets [23], more work is
required to understand the way in which these pathways
may contribute either to neurodevelopmental effects, or to
acute symptomatology, or both.

When considering formulating a therapeutic hypothesis
on the basis of these data, the complex genetic architecture
of BPD presents a number of formidable challenges. First,
the nature of linkage disequilibrium amongst associated
polymorphisms means that the index variant may not be the
causal variant. Hence, what gene or set of genes to follow
up on remains unclear in many if not all cases. Resolving
the causal variant requires additional fine mapping to be
performed along with analysis of functional data from
transcriptomic studies and epigenomic studies in order to
link the variant to specific cell types, transcripts, or genomic
regulator elements. On the basis of these data, it may be
possible in the future to more clearly assign the direction-
ality of the effect in terms of the “gain” or “loss” of a
particular biological function to guide a clear therapeutic
hypothesis. Here, inspirational examples come from other

areas of medicine where the experiments of nature that
genetic studies represent have been highly informative
through the elucidation of an allelic series that points to a
clear directionality of the effect and informs a therapeutic
hypothesis in terms of what the expected physiological
result should be by increasing or decreasing the target
function by a specified amount [132]. The second major
challenge comes from the fact that the effect size of the
majority of the associated loci across the genome are small.
Recognizing that the effect size is a statistical metric derived
from a population level analysis the modulation of the
function encoded by single genetic risk factor may not
produce sufficient change to a complex biological system
when considered in one particular individual’s cells. In
addition, given the robustness of biological systems that are
often buffered from change and subject to constraints for
dynamic change in response to perturbations, the identifi-
cation of central, highly connected nodes in networks of
interaction may be required to ultimately impact the system.

A number of these BPD-associated genes, including
GRIN2A, CACNA1C, SCN2A, and HDAC5 [129], have
available pharmacological probes, including some of which
are FDA-approved drugs with a history of investigation in
the context of bipolar disorders. Most notable in this context
are the L-type calcium channel antagonists that target the
α1c subunit encoded by the CACNA1C gene discussed
above as a focus of rodent model systems to investigate
BPD pathophysiology. Prior to any of the present genetic
observations concerning L-type calcium channels in BPD,
as reviewed recently [133, 134], multiple clinical studies of
different classes of L-type calcium channel antagonists were
performed starting in the late 1980s. These agents were
either investigated as monotherapy or in combination with
lithium, an antipsychotic or anticonvulsant, with the
majority of studies having been performed with verapamil.
The overall results have been mixed with challenges to the
interpretation of the findings due to the varied doses used
and absence of clear data demonstrating in vivo target
engagement in the brain, for example from a PET tracer,
and mixed pharmacology particularly in the case of ver-
apamil that limits precise conclusions regarding contribu-
tions of the L-type channel to efficacy as compared with
other mechanisms [134]. For example, despite promising
initial results with the dihydropyridine nimodipine, either as
a monotherapy or in combination with lithium or the
anticonvulsant carbamazepine on mania in BPD [135–138],
the Phase IIa study of MEM-1003, a dihydropyridine of the
same class that was defined to exhibit reduced peripheral
side effects, especially blood pressure lowering, was found
to be ineffective as a monotherapy for acute mania in BPD.
A preliminary study with the dihydropyridine isradipine
showed promise for this class of pharmacological agents
[139].
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Recent efforts are seeking to overcome these short-
comings of the earlier studies, for example with the Oxford
study of Calcium channel Antagonism, Cognition, Mood
instability and Sleep [140], which is a randomized, double-
blind, placebo-controlled study on the effect of the dihy-
dropyridine LTCC nicardipine in healthy young adults with
mood instability with a battery of psychiatric, cognitive,
circadian, physiological, biochemical, and functional mag-
netic resonance imaging (fMRI) and magnetoencephalo-
graphy neuroimaging parameters being collected over a 4-
week period with subjects stratified by the CACNA1C risk
single-nucleotide polymorphism (SNP) rs1006737. While
the benefit of such a study is premised upon the direction-
ality of the risk variant in the CACNA1C locus causing
increased L-type calcium channel activity, this mechanistic
detail remains unclear, with published data from pre-clinical
studies supporting both directionalities. Ultimately, ongoing
human clinical studies combined with genetic markers
stratified based upon risk SNPs within the CACNA1C may
provide the most relevant, definitive answer to whether
selective L-type calcium channel antagonists versus poten-
tiators are desired since these will address the complex role
that such channels play in different cell types of the nervous
system.

Another example of a putative risk gene for BPD from
the most recent large-scale GWAS studies that is of high-
interest is the identification of HDAC5 encoding a member
of the class II histone deacetylase family, though at this
stage it has more limited pharmacological investigation and
there is a need for fine mapping to pinpoint the true causal
variant within the locus. In previous functional studies in
rodent models, Tsankova et al. [141] had shown that viral-
mediated HDAC5 overexpression in the hippocampus
blocked imipramine’s ability to reverse depression-like
behavior and found that chronic imipramine was associated
with a selective downregulation of HDAC5. Studies by
Renthal et al. [142] also showed that chronic but not acute
exposure to stress decreased HDAC5 function in the
nucleus accumbens, a brain region that plays a critical role
in brain reward response, and loss of HDAC5 caused
hypersensitivity to chronic but not acute stress, suggesting
its regulation may play a causal role in the response to
stress. Such observations point to the importance of eluci-
dating the particular regions of the brain relevant to BPD
pathophysiology that a putative genetic risk factor like
HDAC5 may be important for, since the functional con-
sequences of gain and loss of function may be distinct in
different brain regions, thereby presenting a challenge for
conventional pharmacological modulation that may lack
brain region or cell type specificity. These observations,
along with preclinical mouse model data looking at both
antidepressant-like and antimanic-like activity of selective
HDAC inhibitors [96–105], as well as the advent of the PET

radiotracer [11C]Martinostat [143] that allows for “neuroe-
pigenetic” imaging of HDAC levels in the living human
brain of psychiatric disease patients [144], support the
notion that histone modifications may play a key role in the
pathophysiology and future treatment of affective disorders.

Beyond specific targets implicated by the peak SNPs in
large-scale BPD GWAS, the implication of the endo-
cannabinoid system as a potentially important pathway
determining risk, and most notably the implication of the
gene FAAH as one of the key drivers of this association, is
of potential relevance for therapeutic development [129].
FAAH encodes fatty acid amide hydrolase, an enzyme that
along with monoacylglyercol lipase (MAGL), breaks down
endocannabinoids in the brain that serve as endogenous
ligands of the principal cannabinoid receptors CB1/CB2. As
reviewed in Arimand et al. [145], inhibition of FAAH and
MAGL is the focus of ongoing efforts to develop new
treatments for pain and neuropsychiatric disorders, includ-
ing in BPD. Of note, whereas CB1 receptors are localized
both pre- and post-synaptically on neurons throughout the
nervous system, CB2 receptors are located largely periph-
erally in immune system cells and microglia with evidence
that CB2 receptor agonist may have anti-neuroinflammatory
properties through the ability to suppress microglial acti-
vation and cytokine release [146]. This has led to the sug-
gestion that potentiating CB2 receptor activity, either
directly or through modulating the endocannabinoid system,
may produce a novel pharmacotherapy that targets neu-
roinflammatory dysfunction in BPD [145]. Last, the impli-
cation of the regulation of insulin secretion in the pathway
analysis with a broad set of potentially key driver genes
[129], including calcium channel subunits (CACNA1C,
CACNA1D), the dopamine receptor D2 (DRD2) that
encodes the primary target of multiple atypical anti-
psychotics already clinically used to treat BPD, cyclic AMP
regulated kinase and regulatory enzymes (PRKCA, ADCY2,
PDE3B), and potassium ion channel subunits (KCNB1,
KCNC2, KCNS3, KCNG2), is of interest given the existing
and potential for novel pharmacological agents targeting
these factors. Moreover, previous double-blinded, con-
trolled trials of intranasal insulin on neurocognitive function
in euthymic BPD patients suggests the potential for inves-
tigating this pathway more systematically in conjunction
with the new knowledge of genetic variation that may
determine response and thus be used to stratify patients
[147].

Novel targets & mechanisms emerging from
classical neuropharmacology

Since the findings from human genetics of BPD have only
recently begun to resolve themselves into recognizable
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pathways, and multiple steps are still required to translate
these findings into a clear therapeutic hypothesis [132],
another path to continue to discover potential new therapies
for BPD is to advance human experimental therapeutic trials
with novel mechanism of action medications that have
emerged from classical neuropharmacology, often inter-
ventions that are first FDA-approved for other indications.

A recent example of this effort is that of lurasidone,
which was first approved as an antipsychotic for treatment
of schizophrenia in 2010 with the desire of minimizing
undesired side effects, namely extrapyramidal and meta-
bolic effects, that plague first- and second-generation anti-
psychotics, respectively. Rather than pursuing mania as an
indication, typically the path for preceding antipsychotics,
lurasidone was approved in 2013 for the treatment of
bipolar depression in adults as a monotherapy and as an
adjunct therapy with either lithium or valproate [148] and
then most recently in 2018 for bipolar depression in
pediatric patients (aged 10–17) [149]. Lurasidone exhibits a
mixed pharmacology showing high affinity binding as an
antagonist to the dopamine D2, 5-HT2A, 5-HT7, and α2c
adrenergic receptors, along with partial agonism of the 5-
HT1A receptor [150]. Intriguingly, besides efficacy for
treatment of bipolar depression, preliminary, randomized,
open-label studies of cognition in euthymic patients with
BPD suggest lurasidone is able to ameliorate cognitive
impairment [151], and a 3-week, a double-blind, controlled
study in schizophrenia patients also reported pro-cognitive
effects for lurasidone whereas the atypical antipsychotic
ziprasidone did not [152]. These observations, along with
preclinical studies in rodent models showing that lur-
asidone, but not other antipsychotics such as ziprasidone,
risperidone, aripiprazole, clozapine and haloperidol can
suppress MK-801-induced cognitive deficits and shown
other procognitive properties [150, 153, 154], point to
potentially unique properties of this compound. Exploration
of the underlying molecular and cellular mechanisms of the
pro-cognitive effects of lurasidone could open up a critically
needed new path to agents for BPD and related neu-
ropsychiatric disorders. To this end, studies in patient-
derived iPSC models and related systems are now underway
with promising findings pointing to differences in pathways
critical for synaptic plasticity (SJH, RK, unpublished
observations). More generally, work with lurasidone high-
lights efforts to find treatments that improve cognition in
BPD, a complex set of impairments that may represent trait
markers of the disease, compounded by state effects and
particularly by other medications [155]. Such impairments
contribute to the functional consequences and chronicity of
bipolar disorder but have previously been underappreciated
in light of the more evident mood symptoms.

Outside of lithium and atypical antipsychotics, BPD is
often treated with anticonvulsant agents such as lamotrigine,

valproate, and carbamazepine. While the mechanistic ratio-
nale for the efficacy of some anticonvulsants but not others
remains unclear, the proven clinical efficacy of such antic-
onvulsant agents suggests the value of continuing to explore
the potential for repurposing new mechanism of action
anticonvulsants as adjunctive or monotherapy. An exemplar
of this strategy is recent studies being pursued in the context
of BPD with lacosamide. Here, Cuomo et al. [156] have
reported results of an open-label study of more than 100
individuals with acute BPD treated with lacosamide compared
with a retrospective analysis of a BPD sample treated with
other antiepileptics. While the study design limits firm con-
clusions, lacosamide was suggested to be well-tolerated and
effective in reducing mania, depression, and anxiety and in
improving global functioning, at doses of lower than those
typically used in epilepsy [156].

Mechanistically, lacosamide is thought to target voltage-
gated sodium channels, but unlike other anticonvulsants it
does so through a unique mechanism of enhancing the slow
inactivation of voltage-gated sodium channels rather than
through affecting their fast inactivation. While the
mechanism through which this slow inactivation of sodium
channels is not fully understood, of potential relevance is
the fact that lacosamide has also been recently shown to
modulate CRMP2 [157]. As discussed above, CRMP2 has
emerged as a neural substrate sensitive to lithium and
GSK3β inhibitors and appears to be differentially regulated
in BPD iPSC-derived neuronal models [30, 115]. Since
CRMP2 can regulate microtubule dynamics [157], which
may be involved in the regulation of the slow inactivation of
voltage-gated sodium channels, future studies on lacosa-
mide’s mechanism of action and testing of CMRP2 mod-
ulating small molecules, along with larger, placebo-
controlled randomized trials may yield a new mechanism
for BPD pharmacotherapy.

Following a similar line of reasoning, besides lacosa-
mide, additional novel anticonvulsant agents in the cate-
gory that merit further investigation in BPD for benefit
include: (1) rufinamide, an agent approved for treatment
of Lennox-Gastaut syndrome whose use in BPD is sup-
ported by two case reports of potential mood stabilizing
effects with a mechanism of action not conclusively
known but may involve antagonism of voltage-gated
sodium channels [158]; and (2) ezogabine (retigabine)
[159], an opener of voltage-gated KCNQ/Kv7 potassium
channels approved as an add‐on medication to treat sei-
zures associated with epilepsy, which has been shown by
in an open-label trial to have an acute antimanic effect in a
subset of BPD patients [160], as well as demonstrated to
have antimanic like activity in both the amphetamine plus
chlordiazepoxide-induced hyperactivity model and repe-
ated sensitization amphetamine-induced hyperactivity
model [161–163].
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Targeting trace amine-associated receptors

Outside of ideas for novel BPD pharmacotherapies
emerging from consideration of anticonvulsants, recent
studies have suggested Trace Amine-Associated Receptor
1 (TAAR1) activation as a potential novel class of anti-
psychotics [164]. While not dependent on dopamine D2
receptor antagonism for efficacy, mechanistic evidence
indicates the activation of TAAR1-D2R heterodimers
induces biased signaling through β-arrestin-mediated
mechanisms leading to a reduction of GSK3β signaling
[165], providing evidence independent from that of
lithium for the importance of β-arrestin-mediated regula-
tion of GSK3 [71, 88]. Previous studies in both C. elegans
and mice have also suggested that trace amine pathways
signaling through TAAR1 are important for clozapine’s
behavioral effects [166]. Together, these data suggest that,
in addition to their current development as novel
mechanism of action antipsychotics, there may be utility
in considering TAAR1 agonists as BPD treatments. In
particular, combinations of TAAR1 agonists and lithium
may yield an effective therapeutic and one that would
enable lowering of the lithium dose, along with potential
restoration of lithium sensitivity among otherwise non-
responsive patients.

Omega-3 fatty acids

Another example of pharmacological agents outside of the
anticonvulsants and more traditional ion channel and
monoamine receptors that are the targets of current agents
and ones in development, an intriguing example of a class
of natural product supplements of potential interest for BPD
therapeutic development are the long-chain omega-3 fatty
acids eicosapentaenoic acid (EPA) and docosahexaenoic
acid (DHA). Deficits in these omega-3 fatty acids have
long been associated with the pathophysiology of BPD
[167, 168]. Studies in preclinical animal models support the
notion that omega-3 fatty acids promote synaptic maturation
and plasticity in developing cortical brain circuits and their
deficiency can lead to aberrant network connectivity. For
example, a preclinical study in a nonhuman primate model
using resting-state functional connectivity MRI demon-
strated that lower levels of omega-3 fatty acids were asso-
ciated with decreased functional connectivity in cortical
regions critical for cognitive function [169].

In terms of treatment trials using omega-3 fatty acids as a
dietary supplements in BPD, as reviewed in Saunders et al.
[168], a total of five nonrandomized and open-label studies
of omega-3 supplementation in bipolar disorder that con-
sisted of administration of either of mixture of DHA and
EPA or EPA alone found beneficial effects on clinical
measures related to mood in four of the five studies. In

contrast to these encouraging results, randomized, double-
blind, placebo-controlled trials of omega-3 fatty acid sup-
plementation have been more varied with benefit observed
in only two of the seven studies. However, multiple meth-
odological differences in potentially critical variables such
as the dose of the supplement, the exact nature of the ratio
of EPA to DHA (and other fatty acids), concurrent phar-
macotherapy, design of trials in addition to heterogeneity of
diagnosis make this comparison of studies problematic, thus
leaving open the question of the benefit of omega-3
fatty acids.

With these issues in mind, Zhao et al. [170] recently
described the results of studies of DHA using human
iPSC-derived NPCs and post-mitotic neurons to gain
insight into the molecular and cellular mechanisms that
may underlie the potential beneficial therapeutic effect of
DHA on synaptic plasticity and neuronal connectivity, as
well as to develop functional biomarkers that could be
used to guide future experimental therapeutic trials in
terms of optimal dosing and schedule of administration.
These studies demonstrated, for the first time in the con-
text of a living human neuron, that exposure to DHA at
physiologically relevant levels led to a dose-dependent,
significant upregulation of both CREB and WNT signal-
ing pathways along with a dose-dependent gene-expres-
sion signature. Using live-cell imaging, they also showed
that DHA treatment enhanced viability of proliferating
NPCs and the complexity of axonal and dendritic
branching on differentiating iPSC-derived neurons [170].
These studies provided direct experimental evidence that
exposure of human neuronal cells to DHA can have a
potentially beneficial effect on critical pathways regulat-
ing neuroplasticity. With the growing number of approved
prescription omega-3 fatty acid products being used to
treat hypertriglyceridema [171] it may be possible in the
near future to leverage epidemiological data from BPD
patients taking these agents and be beneficial to perform
trials with purified omega-3 fatty acids, alone or in com-
bination with other agents, rather than more complex
mixtures derived from marine sources.

Peroxisome proliferator-activated receptors (PPARs)

An additional target of potential relevance for BPD phar-
macotherapy that connects to a different area of neuro-
biology through metabolism and mitochondrial function is
that of the family of peroxisome proliferator-activated
receptors (PPARs) and their regulation by peroxisome
proliferator-activated receptor gamma coactivator-1 alpha
[172]. As PPAR agonists have been developed and are
clinically used as anti-diabetic agents in the case of the
thiazolidines and anti-triglyceride fibrates (PPAR agonists),
this has allowed both open-label and randomized,
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double-blind, placebo-controlled trials with promising
results [173, 174]. An additional proof-of-concept trial of
bezafibrate for bipolar depression coupled with resting state
fMRI analysis as a marker of neuronal changes is currently
being performed [172].

Psilocybin and psychedelics

The use of psilocybin, a functionally selective, serotonin 5-
HT2A receptor agonist (with additional effects on other
serotonin receptors), which occurs naturally in over 200
known mushroom species through biosynthesis from L-
tryptophan, is an area of growing interest in the context of
treatment-resistant, unipolar depression, along with a range
of other neuropsychiatric conditions, including alcohol
dependence and anxiety [175]. Early, albeit still small,
studies suggest have shown the safety and rapid efficacy of
psilocybin in patients with unipolar treatment-resistant
depression [176, 177]. The psychedelic effects of psilocy-
bin have been shown to correlate with 5-HT2A receptor
occupancy [178]. Plasma levels of the pharmacologically
active psilocin derived from dephosphorylation of the pro-
drug psilocybin, and blood oxygen-level dependent resting-
state functional connectivity measured with fMRI have
shown changes in depressed patients upon psilocybin
administration [176]. Hence, psilocybin and its derivatives
may be of interest to investigate in the context of safety and
placebo-controlled, randomized trials in BPD, particularly
those with depression. Interestingly, earlier placebo-con-
trolled, randomized studies in acute BPD mania with
L-tryptophan [179], the biosynthetic precursor for both
serotonin (5-hydroxytryptamine) and psilocybin, suggested
a beneficial effect, as did similar studies examining dietary
L-tryptophan on affective behavior where decreased
depressive and anxiety symptoms were observed [180].

Chronotherapeutic targets regulating
biological rhythms

Disturbed sleep appears to be an early symptom of bipolar
disorder [181], and growing evidence suggests that changes
in sleep and daytime activity that are characteristic features
of mania and depressive states are core features of BPD
[182–184]. This is of clinical relevance as changes in sleep
have been shown to be highly predictive of impending
affective instability [185]. Although large-scale human
genetic studies have failed to date to provide robust support
for direct involvement of classical circadian genes (e.g.,
PER2), these clinical observations, on top of the evidence
that lithium can have a beneficial effect on circadian
abnormalities in BPD, in particular delaying sleeping-wake
phase rhythms, suggests a potentially important area of

investigation is the development of “chronotherapeutics”
that seek to normalize abnormalities in biological rhythms
that may be at the core of the disease pathophysiology
[186–188].

Support for the notion that stabilizing circadian rhythms
may be therapeutically beneficial in BPD has emerged from
efforts to target melatonin MT1 and MT2 receptors. In a
small, open-label, adjunctive study with the MT1/MT2
agonist agomelatine, within a week of treatment there was a
beneficial response to more than 80% of the subjects,
although multiple patients over an extended time period of
one year experienced adverse effects and 4 patients who
were on lithium at the same time experienced manic or
hypomanic episodes [189]. These findings have been
extended in additional open-label trials with similar bene-
ficial response rates [190]. However, a more recent placebo
controlled trial of adjunctive agomelatine in BPD patients
with depression on either lithium or valproate failed to show
benefit [191], and another randomized controlled trial was
unable to demonstrate any efficacy of ramelteon, another
M1/M2 agonist, as an adjunctive maintenance therapy for
BPD [192]. These mixed results suggest that alternative
mechanisms for modulating melatonergic transmission may
need to be explored with heterogeneity of the circadian
abnormalities in BPD potentially providing a barrier to
translation without appropriate patient stratification.

Challenging a purely pharmaceutical-centric view to
developing BPD therapeutics, but also potentially highly
valuable when considered as an adjunctive treatment or for
use with treatment-resistant patients, are recent advances in
noninvasive approaches to BPD therapy that have come
through consideration of the impact of light on depressive
aspects of the disorder [188]. Most notably, exposure to
morning bright light treatment for BPD depression, often as
an adjunct to mood stabilizers, has been repeatedly shown
to be efficacious and safe, including in two recent rando-
mized placebo-controlled trials, as well as with studies that
have extended the time period of efficacy of bright light
administration the midday period [193, 194]. While there is
need for careful consideration to prevent a switch to mania
and there are facets that remain to be understood regarding
the optimal light intensity, wavelength spectrum, duration
of exposure and mechanism of action in terms of effects on
the circadian system and specific neurotransmitter path-
ways, the noninvasive nature of such modality, the rapid
onset of benefit of less than a week, and the potential for
personalizing the treatment for individuals based upon their
personal physiology holds much promise [186, 188].

As an alternative nonpharmacological, chromother-
apeutic strategy to stabilize circadian and sleep abnormal-
ities in BPD, efforts are underway to create virtual darkness
chronotherapy involving the blocking of blue light at cri-
tical periods in the night [187, 195]. Blue light in the
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wavelength of 400–500 nm has been shown to activate
intrinsically photosensitive retinal ganglion cells that
respond to blue light due to the expression of the photo-
pigment melanopsin that upon interaction with light signals
through G-proteins to activate phospholipase C leading to
opening of TRPC-type ion channels resulting in depolar-
ization of the neuron [196]. These neurons project to neu-
rons located within the suprachiasmatic nucleus along with
other brain regions [197], and through their activity are able
to block the production of melatonin [198]. Thus, following
the rationale that augmenting melatonin production at cri-
tical periods may normalize the circadian and sleep
abnormalities in BPD, and with the pharmacology of the
melanopsin receptor encoded by the OPN4 gene at a nas-
cent stage [199], a particularly promising strategy that has
been advanced involves simply the wearing of amber
colored glasses that block blue light from entering the eye.
In early studies with this concept, blue light blocking
glasses improved sleep in BPD patients [200]. More
recently, in a pioneering study, a randomized trial in BPD
patients comparing the adjunctive use of blue-light blocking
glasses compared with clear glasses for a 1-week period
during the evening hours that entailed use of continuous
demonstrated a rapid onset of antimanic effects within
3 days [201]. In addition to the low cost (~$7.00/pair) of the
glasses, and the minimal harm that could come from their
use, the notion of blue light blocking glasses opens up the
possibility of potential new personalized strategy for pre-
vention of BPD through stabilizing an individual’s biolo-
gical rhythm disturbances, along with other options to
reduce one’s exposure to blue light [195].

Reporting summary

There remains much to be learned regarding the neuro-
biology of BPD, along with a clear and present need for
innovation by the next generation of neuroscientist, che-
mical biologist, biochemists, geneticists, computational
scientists, and clinicians to address this challenge. Tech-
nological developments on a number of fronts ranging from
genome sequencing, patient-derived iPSC models,
CRISPR/Cas9 and related genome editing and epigenome
editing techniques, and novel PET imaging probes are
examples of unprecedented strategies to validate novel
neurotherapeutic targets to advance the treatment and pre-
vention of BPD. Balanced against the long-term promise of
these approaches is the immediate need for better ther-
apeutic strategies: waiting for future breakthroughs in neu-
roscience is simply not an option for patients, families, and
clinicians seeking treatment today. The elegance of these
new approaches cannot distract from the clinical imperative.

When contemplating the future, and specifically in
weighing the role that technical versus conceptual

innovation will have in revolutionizing the treatment of
complex neuropsychiatric disorders like BPD, it is worth
pondering lessons from the past in fields outside that
of psychiatry. One such case is a field far from psychiatry,
but one that underwent the type of revolutionary change
that may be needed to seriously transform our under-
standing and treatment of neuropsychiatric disorders:
astronomy. Here, individuals like Galileo Galilei were
pivotal figures for the development of the foundations of
modern astronomy in embracing the new technology of
the telescope to discover a seemingly infinitely expansive
groups of stars and a set of planets. The long-term
impact of Galileo and his contribution to society at large,
however, was not that he continued to map the skies in
ever-increasing detail with the latest technical advances in
telescopes. Rather, it was Galilelo’s scientific challenge to
geocentricism and long-standing superstitions that ulti-
mately were the catalyst for the change in understanding
our place in the cosmos. By analogy, researchers in psy-
chiatry should carefully consider the opportunities pro-
vided by new ‘telescopes’ to overturn outdated dogma and
realize the full promise of precision medicine.
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