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Abstract
Major depressive disorder (MDD) is one of the most prevalent psychiatric disorders and a leading cause of disability
worldwide. Though recent genome-wide association studies (GWAS) have identified multiple risk variants for MDD, how
these variants confer MDD risk remains largely unknown. Here we systematically characterize the regulatory mechanism of
MDD risk variants using a functional genomics approach. By integrating chromatin immunoprecipitation sequencing (ChIP-
Seq) (from human brain tissues or neuronal cells) and position weight matrix (PWM) data, we identified 34 MDD risk SNPs
that disrupt the binding of 15 transcription factors (TFs). We verified the regulatory effect of the TF binding–disrupting
SNPs with reporter gene assays, allelic-specific expression analysis, and CRISPR-Cas9-mediated genome editing.
Expression quantitative trait loci (eQTL) analysis identified the target genes that might be regulated by these regulatory risk
SNPs. Finally, we found that NEGR1 (regulated by the TF binding–disrupting MDD risk SNP rs3101339) was dysregulated
in the brains of MDD cases compared with controls, implying that rs3101339 may confer MDD risk by affecting NEGR1
expression. Our findings reveal how genetic variants contribute to MDD risk by affecting TF binding and gene regulation.
More importantly, our study identifies the potential MDD causal variants and their target genes, thus providing pivotal
candidates for future mechanistic study and drug development.

Introduction

Major depressive disorder (MDD) is the most prevalent
mental disorder [1] (the lifetime prevalence is ~16% [2]) and
is characterized by loss of interest or pleasure, depressed
mood, impaired cognitive function, hopelessness, anxiety,
and sleep disturbance [3]. The high prevalence (~6% adults
are affected by MDD [4]) and mortality (the suicide rate of
MDD cases is much higher (~20-fold) than the general
population [5]) make MDD a leading contributor to the
global burden of disease [6–8] and a major leading cause of
disability worldwide [9]. The economic burden of MDD is
considerable (e.g., the costs of MDD in the USA were
estimated to be $210.5 billion in 2010 [10]). Due to the high
mortality, considerable morbidity, and substantial costs,
MDD has become a major threat to global health.

To date, the etiology of MDD remains largely unknown.
Accumulating evidence indicates that the causes of MDD
are multifactorial [3]. Environmental factors, including
stress, major life changes, and childhood physical or emo-
tional abuse, have been reported to be associated with the
risk of developing MDD [11, 12]. In addition, MDD also has
a genetic component. The heritability of MDD was esti-
mated to be ~37% [3, 13], indicating the important roles of
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genetic factors in MDD. Several genome-wide association
studies (GWAS) have been conducted during the past
decade, and multiple MDD risk loci have been identified
[14–18]. Although over 100 risk loci have been reported,
pinpointing the functional (or causal) variants at the reported
risk loci and elucidating their biological effects remain major
challenges. Considering that most of the reported risk var-
iants are located in noncoding regions, it is likely that these
identified risk variants confer risk of MDD by regulating
gene expression. Expression quantitative trait loci (eQTL)
analysis could link the identified risk variants to specific
gene (or genes). However, as each risk locus identified by
GWAS usually contains multiple SNPs that are in high
linkage disequilibrium (LD), pinpointing the functional (or
causal) SNPs from the reported risk loci remains a daunting
task. Identifying the causal (or functional) variants from the
reported risk loci and elucidating their functional con-
sequences are pivotal for dissecting the genetic mechanisms
of MDD and developing new therapeutic approaches.

To systematically identify the functional variants from
each of the risk loci and to explore how these functional risk
variants exert their biological effects on MDD (i.e., the
regulatory mechanisms of these functional variants), we
performed functional genomics and eQTL analysis, fol-
lowed by serial functional validations. We first processed 34
ChIP-Seq experiments conducted on neuronal cells or brain
tissues and derived the binding motifs of 30 transcription
factors (TFs). By comparing the derived motifs with the
well-characterized binding motifs from the position weight
matrix (PWM) databases (JASPAR, TRANSFAC, Unip-
robe, and HI-SELEX) (compiled by Whitington et al. [19]),
matched motifs were obtained. We then mapped the MDD
risk SNPs (including the index (or lead) SNPs and SNPs in
LD (r2 ≥ 0.3) with the index SNPs) to the matched motifs to
investigate whether the MDD risk SNPs are located in the
binding motif of a specific TF (or TFs) and if the different
alleles of a risk SNP disrupt the binding of a specific TF (or
TFs). We identified 34 regulatory SNPs that disrupt the
binding of 15 TFs. We validated the regulatory effects of
these TF binding–disrupting SNPs with reporter gene
assays, allele-specific expression (ASE) analysis, short
hairpin RNA (shRNA)-mediated knockdown of the corre-
sponding TF, and CRISPR-Cas9-mediated genome editing.
eQTL analysis identified the potential target genes regulated
by these regulatory (i.e., TF binding–disrupting) SNPs.
Finally, we found that NEGR1 (regulated by the TF
binding–disrupting SNP rs3101339) was dysregulated in
brain tissues (hippocampus and nucleus accumbens (NAc))
of MDD cases compared with controls, implying that the
identified functional variant may confer MDD risk through
modulating NEGR1 expression. Our study identified 34
potential functional SNPs (i.e., TF binding–disrupting
SNPs) from the reported MDD risk loci and elucidated the

regulatory mechanisms of MDD risk variants (including
frequent disruption of CCCTC-binding factor (CTCF)
binding). Our findings demonstrate the complex genetic
regulatory architecture of MDD risk variants and provide
new target genes. Further functional study and mechanistic
investigation of these target genes will help understand the
etiology of MDD and develop new therapeutic approaches.

Methods

Processing of ChIP-seq data

To identify the binding motifs of the selected TFs, we
downloaded ChIP-seq data (raw data) of 34 TFs from
ENCODE [20] (http://www.encodeproject.org). As pre-
vious studies have shown that MDD is mainly attributable
to brain dysfunction [21, 22], only ChIP-seq assays con-
ducted using human brain tissues or neuronal cells
(including neuronal cell lines) were included in this study.
More detailed information about the included TFs, ChIP-
seq assays, and processing procedures can be found in
our previous study [23]. Briefly, quality control and filtering
of raw ChIP-seq reads were conducted with FastQC
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc)
and Btrim [24]. Cutadapt was utilized to filter the over-
represented sequences, such as adapters, primers, and other
sequences [25]. We then aligned the processed ChIP-seq
reads to the human reference genome (GRCh37/hg19) using
Bowtie [26], and peak calling was conducted with MACS
[27]. We selected a control ChIP-seq assay that had the
largest size (i.e., with the largest data content) of the bam
file if there were biological replicates. If there were biolo-
gical replicates in ChIP-seq experiments, we conducted
peak calling by combining the bam files from different
biological replicates.

Motif discovery and identification

The called peaks were used for identifying DNA binding
motifs (i.e., PWM sequence) enriched (or overrepresented)
in the genomic sequences surrounding the ChIP-seq signals.
The top 500 ChIP-seq peaks (±20 bp, ranked by peak
height) were used for motif discovery with MEME [28]
(with following parameters: “-minw 6, -maxw 20” and
-nmotifs 5) program. The ChIP-seq peaks of a specified TF
were compared with the peaks of the corresponding control
sample, and peaks that had FDR > 5% were excluded. In
total, ChIP-seq peaks of 30 TFs (4 TFs were excluded due
to low quality) were retained for further analysis. We then
examined the binding specificity of the 30 included TFs by
comparing the motifs from ChIP-seq with the PWM data
from Whitington et al. [19]. By compiling PWMs from the
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Uniprobe, JASPAR, Hi-SELEX, and ChIP-seq data, Whi-
tington et al. [19] collated a PWM database with 7699 high-
quality PWMs. The DNA binding motifs (i.e., PWM)
derived from the ChIP-seq assays were then compared with
the PWMs from the PWM database compiled by Whi-
tington et al. [19], and the matched PWMs (i.e., the one that
matched the best (the most statistically significant)) were
utilized to investigate whether the MDD risk SNPs were
located in the binding motif of the studied TFs.

MDD risk SNPs used in this study

MDD risk SNPs identified by Wray et al. [17] were used in
this study. Briefly, to identify risk variants for major
depression, Wray et al. conducted a large-scale GWAS
meta-analysis using 135,458 cases and 344,901 controls. By
combining the subjects from PGC2 [14], deCODE [14],
GenScotland [29], GERA [30], iPSYCH [31], UK Biobank
[32], and 23andMe [16], Wray et al. identified 44 inde-
pendent genome-wide significant (P < 5 × 10−8) risk loci for
major depression. For each risk locus, a lead (or index)
variant was selected to represent the association signal.
Although 44 genome-wide significant loci (P < 5 × 10−8)
were identified by Wray et al., only 40 lead SNPs were used
in this study (as the lead variants were insertions/deletions
(indels) for 4 risk loci). More detailed information about the
MDD GWAS can be found in the study by Wray et al. [17].

Extraction of SNPs in LD with the reported index SNPs

Genotype data of 379 Europeans from the 1000 Genomes
Project [33] (Phase I data, phase1_v3.20101123) were used
to extract the SNPs that were in LD with the 40 index (or
lead) SNPs (r2 > 0.3) reported by Wray et al. [17]. The LD
values (r2) between the index SNPs and SNPs in LD with
the index SNPs were calculated with PLINK [34]. In total,
8005 SNPs (including with the index SNPs) were obtained
for downstream analysis.

Identification of risk SNPs that disrupt binding of TFs

We investigated whether the index SNPs (or SNPs in LD
(r2 ≥ 0.3) the index SNPs) were located within ±50 bp of all
processed ChIP-Seq peak summits (FDR ≤ 0.05). The
genomic sequence containing a given SNP was scanned
with the Find Individual Motif Occurrences (FIMO) soft-
ware [35] (with the parameter “–thresh 0.001”) to identify
the occurrences of a given PWM. The sequences sur-
rounding (±20 bp) each studied SNP were extracted, and
every genomic position in which the studied SNP over-
lapped with the matched PWM by at least one base pair was
scored. If one or more alleles of a SNP have a FIMO log-
likelihood ratio P value < 0.001, this SNP was defined as a

TF binding–disrupting SNP (i.e., disrupts the PWM). More
detailed information about defining and identifying the TF
binding–disrupting SNPs and FIMO algorithm can be found
in our previous study [23] and FIMO [35] website (http://
mccb.umassmed.edu/meme/doc/fimo.html).

Brain eQTL annotation

To identify the target genes whose expression might be
regulated by the TF binding–disrupting SNPs, we examined
the associations between these TF binding–disrupting SNPs
(i.e., with potential functional consequences) and gene
expression in four brain eQTL datasets (including Common
Mind Consortium (CMC) [36], Lieber Institute for Brain
Development (LIBD) brain eQTL [37], brain quantitative
trait locus (xQTL) [38], and Genotype-Tissue Expression
Project (GTEx) [39]).

The CMC collected brain tissues from over 1150 indi-
viduals. Gene-level eQTLs (gene eQTL) used in this study
were derived from the postmortem dorsolateral prefrontal
cortex (DLPFC) of 467 Caucasian-inferred individuals [36]
(including 209 schizophrenia cases, 206 controls, and 52
cases with affective disorder). Genotyping was conducted
using the Illumina Infinium HumanOmniExpressExome
array, and the gene expression level was measured with
RNA sequencing (RNA-Seq). eQTL analysis was per-
formed with the MatrixEQTL R package [40] (with the
additive linear model). Detailed information about the
included subjects, brain tissue collection, genotyping, gene
expression quantification, quality control, and statistical
analyses can be found in the original paper [36].

The LIBD brain eQTL dataset has been described in the
study by Jaffe et al. [37]. Briefly, Jaffe et al. performed
eQTL analyses using the DLPFC from 412 subjects (175
patients with schizophrenia and 237 unaffected controls).
Genotyping was conducted using HumanHap650Y_V3,
Human 1M-Duo_V3 and Omini5 BeadChips (Illumina).
The gene expression level was quantified with RNA-Seq
(Illumina HiSeq2000). eQTL analysis was performed using
genotype data and RNA-Seq, adjusting for diagnosis, sex,
ancestry (first three MDS components from the genotype
data), and expression heterogeneity (principal components)
[37]. Five types of transcripts were quantified, including
transcripts, genes, exons, expressed regions, and junctions.
Only gene-level eQTLs from LIBD were utilized in our
study. Please refer to the original paper for further details on
the sample collection, RNA extraction and sequencing,
gene expression quantification, genotype data processing,
and statistical analyses [37].

The xQTL presents a comprehensive resource by per-
forming genome-wide xQTL analyses on multiomic data
(including gene expression, DNA methylation, and histone
acetylation data) derived from the DLPFC of up to
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494 subjects (411 subjects have all three data types) [38].
Gene expression levels were measured with RNA-Seq, and
genotyping was conducted using the Illumina OmniQuad
Express platform (n= 384 individuals) and the Affymetrix
Genome-Wide Human SNP Array 6.0 (n= 1709 subjects).
After strict quality control, only 494 individuals were used
for eQTL analysis. For detailed information, please refer to
the original paper and xQTL online portal (http://mostafa
vilab.stat.ubc.ca/xQTLServe/) [38].

The GTEx project presents an analysis of RNA-Seq data
derived from multiple tissues (including 13 brain tissues) of
healthy subjects [39]. We only chose brain eQTL data in
our study, and cis-eQTL analysis was carried out using
FastQTL [41] with the following covariates: genotyping
array platform, sex, and top three genotyping principal
components. Detailed information on sample collection,
genotyping, RNA-Seq, expression quantification, and sta-
tistical analyses was provided in the original paper and the
GTEx website (https://gtexportal.org/home/) [39].

ASE analysis

In addition to eQTL analysis (which tests the association
between gene expression level and genetic variants using
multiple subjects, both genotypes and expression level data
are needed for eQTL analysis), we also used ASE analysis
to explore whether the TF binding–disrupting SNPs were
associated with the expression level of the transcript con-
taining different alleles of the TF binding–disrupting SNPs.
By comparing the expression level of a specific transcript
containing different alleles of the heterozygous site in a
single individual, RNA-Seq data can be used to estimate
ASE for genes (or transcripts) with transcribed polymorphic
sites. Compared with eQTL analysis (which compares gene
expression in individuals with different genotypes), ASE
analysis is a within-individual comparison (it compares the
expression level of the transcript with different alleles in a
single individual).

RNA-Seq is usually used to quantify or measure the
expression level of genes (or transcripts). In addition, RNA-
Seq can also be used to identify heterozygous sites in the
transcribed transcript (through mapping the RNA-Seq reads
to the reference sequence) [42, 43]. If there is a polymorphic
site in the transcript, then we can perform ASE (or allelic
bias or imbalance) analysis by comparing the expression
level of the transcript with different alleles at this poly-
morphic site (i.e., to see if one allele is expressed more
highly than the other) in an individual. To detect ASE, we
require a variant (usually a SNP) to be in the transcript [44].
Thus, only the heterozygous sites in the transcribed
sequences (e.g., exonic regions) could be used for ASE
analysis. For example, suppose that a heterozygous site
(e.g., with A and C alleles) was detected (in a transcript) in

an individual with SNP array or RNA-Seq. From the RNA-
Seq data, we can quantify the expression level of the tran-
script with different alleles at this heterozygous site (e.g.,
the counts (i.e., RNA-Seq reads) of the transcript with the A
allele were 400; however, the counts of the transcript with
the C allele were only 20). Thus, the transcript with the A
allele was preferentially expressed (or expressed more
highly) compared with the C allele. To explore whether one
allele of the TF binding–disrupting SNP was preferentially
expressed compared with the other in the brain of a human
individual, we downloaded ASE data from GTEx [39].
Only ASE data from brain tissues were analyzed in this
study. For more detailed information on ASE analysis,
please refer to a previous study [39] and the GTEx website
(https://gtexportal.org/home/).

Spatio-temporal expression pattern analysis of target genes

To investigate the expression pattern of target genes in
different human tissues, we downloaded the tissue RNA-
Seq data from the GTEx data portal (http://gtexportal.org/)
[39]. The expression values (reads per kilobase of transcript
per million mapped reads (RPKM)) were used for analysis,
and for a specific tissue, we calculated the median expres-
sion level of all genes in a gene set to represent the tissue
expression level of the gene set.

To perform spatio-temporal expression analysis of the
target gene sets, we downloaded the spatio-temporal
expression RNA-Seq data of human brains across differ-
ent developmental stages from BrainSpan [45] (http://www.
brainspan.org/). The gene expression level was measured by
RPKM. For each specific brain developmental stage, the
median expression level of all the genes in a specific gene
set represents the expression level of the gene set at this
stage. Background gene sets were obtained from the study
of Zhang et al. [46].

To explore the cell type-specific expression pattern of a
gene set in single cells from brain tissues, we downloaded
mouse brain single-cell data. This dataset includes single-
cell expression data from multiple brain regions, such as the
neocortex, hippocampus, striatum, and other brain regions,
with a total of 9790 cells. We first converted our human
genes into mouse orthologous genes using the R package
“EWCE”. Then, we counted the number of genes with
expression specificity >0.1 in a specific cell type. More
details about the single-cell data and the calculation of
expression specificity scores were described in the original
paper of Skene et al. [47].

Reporter gene assays

DNA fragments (~400–700 bp) containing the target SNPs
were inserted into the pGL4.11-basic (Promega, E6661)
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vector or the pGL3-promoter (Promega, E1761) vector
based on the genomic locations (i.e., promoter or enhancer)
of the TF binding–disrupting SNPs. If the target SNP was
located in the promoter region, the pGL4.11-basic vector
was used. Otherwise, the pGL3-promoter vector was used.
The detailed procedures of vector construction have been
described in our previous paper [23]. Briefly, the DNA
fragments containing the target SNPs were amplified first
using clone primers (Supplementary Table 1). Each pair of
clone primers contained specific sequences (homologous to
the sequence of the reporter vector, we called them homo-
logous arms) at the 5′ end. After digesting the vectors
(pGL4.11-basic vectors were digested with KpnI (Thermo
Scientific, FD0524) and and HindIII (Thermo Scientific,
FD0505), the pGL3-promoter vectors were digested with
KpnI (Thermo Scientific, FD0524) and XhoI (Thermo
Scientific, FD0694) with restriction enzymes, the PCR
products containing the target SNPs were inserted into the
vectors by using 2×SoSoo Mix (TSINGKE, TSV-S1). We
then used the ligated vectors to transform DH5α competent
cells, and Sanger sequencing was used to validate the
sequence of inserted fragments. PCR-mediated mutation
was utilized to obtain the vector carrying the alternative
allele of the target SNP. All of the cloned sequences were
validated by Sanger sequencing.

We conducted reporter gene assays using three cell lines,
HEK293T, SH-SY5Y, and SK-N-SH. HEK293T, SH-
SY5Y, and SK-N-SH cells were plated into 96-well plates at
3.5 × 104, 7.0 × 104, and 1.0 × 105 cells/well, respectively.
After culturing for 48 h, the constructed vector (containing
the test SNP) (100 ng for HEK293T, 150 ng for SH-SY5Y
and SK-N-SH cells) and internal control plasmid pRL-TK
(E2241, Promega) (20 ng for HEK293T, 30 ng for SH-SY5Y
and SK-N-SH) were cotransfected into the tested cell lines
by using Lipofectamine 3000 (Invitrogen, L3000-015).
Forty-eight hours post transfection, the luciferase activity
was measured by using the Dual-Luciferase Reporter Assay
System (Promega, E1960) according to the manufacturer’s
instructions. The fluorescence intensity (value) was read by
the Luminoskan Ascent instrument (Thermo Scientific). The
luciferase activities (values) were obtained from at least eight
replicate wells. Student’s t test (two-tailed) was utilized to
compare whether the luciferase activity in cells transfected
with vectors containing different alleles of the target SNP
was significantly different. The significance threshold value
(for statistical inference) was set as P < 0.05.

Cell culture

The cell lines (HEK293T, SH-SY5Y, and SK-N-SH) used in
this study were kindly provided by Dr ML’s laboratory (these
cell lines were originally from Kunming Cell Bank, Kunming
Institute of Zoology). HEK293T, SH-SY5Y, and SK-N-SH

cells were cultured as described in our previous paper [23].
Briefly, high-glucose DMEM (Gibco, C11995500BT) con-
taining 10% FBS (Gibco, 10091148) was used to culture
HEK293T cells, and high-glucose DMEM (Gibco,
C12430500BT) supplemented with 10% FBS, 10mM
sodium pyruvate solution (Gibco, 11360070), and 1×MEM
nonessential amino acid solution (Gibco, 11140050) was
used to culture SK-N-SH and SH-SY5Y cells. Antibiotics
(penicillin (100 U/mL) and streptomycin (100 μg/mL)
(Gibco, 15070063)) were added to the cell culture medium,
and the antibiotics were withdrawn 48 h before assays.
HEK293T, SH-SY5Y, and SK-N-SH cell lines were pas-
saged at a ratio of 1:4 when their confluence reached ~90%,
and the cell culture medium was changed every 2 days.

Knock down of REST

To verify whether REST regulates the expression of the target
gene (i.e., NEGR1) of the identified TF binding–disrupting
SNP rs3101339, we designed short hairpin RNA (shRNA) to
knock down the expression level of REST. ThermoFisher
shRNA design tools (http://rnaidesigner.thermofisher.com/rna
iexpress/setOption.do?designOption=shrna&pid=-31053155
68901923019) were used to design shRNAs. qPCR was used
to quantify REST mRNA expression levels. The targeting
sequences were as follows: REST-shRNA#1, 5′-GCTGCTAA
TATCAACGAATCT-3′; REST-shRNA#2, and 5′-GCATC
CTACTTGTCCTAATAA-3′. The 58 bp oligonucleotides
(listed in Supplementary Table 2) were synthesized (by
Sangon company) and annealed into double stranded DNAs.
Then, the annealed shRNAs were inserted into the pLKO.1-
EGFP-Puro vector by using the DNA Ligation Kit Ver2.1
(Takara, Cat. No: 6022). The DNA ligation products were
used to transform Stbl3 supercompetent cells (produced by
the Supercompetent Cell Preparation Kit (Beyotime, D0302)
and Stbl3 (Beyotime, D0378)), and Sanger sequencing was
used to validate the constructed shRNA vectors (extracted
from a single colony). To obtain SH-SY5Y cells that stably
expressed shRNAs, we generated lentiviruses by transfecting
HEK293T cells with packaging vectors (pMD2.G (2 μg,
Addgene, Cat. No: 12259) and psPAX2 (5 μg, Addgene, Cat.
No: 12260)). The generated lentivirus particles were then used
to infect SH-SY5Y cells, and 2 μg/mL puromycin was used to
kill the cells that were not stably infected by lentiviruses for
a week.

Knockout of genomic regions containing the target SNPs

To investigate whether the target genes (i.e., from eQTL
analysis) of the identified regulatory SNPs (SNPs that dis-
rupt TF binding) (i.e., rs3101339 and rs2050033) were
regulated by the genomic regions containing the target
SNPs, we deleted the DNA sequences containing the target
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SNPs using CRISPR-Cas9-mediated genome editing. For
each target SNP, a pair of sgRNAs surrounding the target
SNP (i.e., one sgRNA was located upstream of the target
SNP (sgRNA1) and another sgRNA was located down-
stream of the target SNP (sgRNA2)) were designed using a
CRISPR sgRNA Design Tool (https://zlab.bio/guide-
design-resources) (Supplementary Table 3). The distance
between the two sgRNAs was ~500 bp. The sgRNA1 and
sgRNA2 were inserted into PX459M (provided by Mr Yan
Ruiqing) vector and validated by Sanger sequencing. The
recombinant PX459M-sgRNA1/2 vector can express the
two sgRNAs and Cas9 protein simultaneously. All vali-
dated vectors used for this study were amplified by using
DH5α competent cells (TaKaRa, Cat No: 9057) and
extracted by using a plasmid extraction kit (TIANGEN, Cat
No: DP107). HEK293T cells were used for genome editing.
A total of 2.5 × 105 cells were plated into six-well plates
containing 2 mL culture medium. After culturing for 18–20
h, 3 µg constructed PX459M-sgRNA1/2 vectors and control
vectors were transfected into HEK293T cells by using
Lipofectamine 3000 (Invitrogen, L3000-015). Forty-eight
hours post transfection, 1 µg/mL puromycin was used to
select the transfected cells for 3 days. The puromycin-
resistant cells were then cultured for 10 days in 100 mm
tissue culture-treated culture dishes at 200 cells/mL density
to form monoclonal cell populations. Twelve monoclonal
cell populations originating from single cells were selected
and seeded into 24-well plates containing 500 µL culture
medium. After culturing for 4 days, the cells were harvested
and plated into 12-well plates containing 1 mL culture
medium and cultured for 4 days. Then, the cells from the
experimental and control groups were harvested for
knockout efficiency validation and mRNA extraction. At
least three independent monoclonal cell populations in each
group were selected for qPCR assays.

Quantitative PCR (qPCR) analysis

Total RNA was extracted by using the TRIzol™ LS Reagent
(Invitrogen, 10296028), and the PrimeScript™ RT Kit with
gDNA Eraser (Takara, RR047A) was utilized to reverse
transcribe 2 μg total RNA into cDNA. Reversely transcribed
cDNA (1:10 dilution) was used as template to detect the
expression level of the studied genes. We used TB Green™
Premix Ex Taq™ II (Tli RNaseH Plus) (Takara, RR820A) to
measure the expression level of target genes. The qPCR pri-
mers utilized in this study are provided in Supplementary
Table 4. We used the QuantStudio™12K Flex (Applied
Biosystems) instrument and CFX96 Touch™ Real-Time PCR
Detection System (Bio-Rad) to conduct real-time qPCR.
Genomic regions containing two TF binding–disrupting SNPs
(rs3101339 and rs2050033) were deleted by CRISPR-Cas9-
mediated genome editing. The eQTL genes of rs3101339

(NEGR1) and rs2050033 (MEI1, NHP2L1, CSDC2, and
POLR3H) were quantified in normal and edited cells to
investigate whether the target genes were regulated by the
genomic sequences containing the studied SNPs. The ACTB
gene was used to normalize the relative expression of the
target gene, and the 2−ΔΔCt method was used to analyze the
qPCR data [48]. All samples were run in triplicate, and the
data are presented as the mea ± SD. Two-tailed Student’s t test
was used to test whether the expression of the target gene was
significantly different in normal and CRISPR-Cas9-edited
cells. The specificity of qPCR primers was validated with RT-
PCR and is shown in Supplementary Fig. 1. P < 0.05 was set
as the significance threshold.

NEGR1 expression analysis in brains of MDD cases and
controls

We examined NGER1 expression in the brains of MDD
cases and controls using the expression data from Duric et al.
[49] and Labonte et al. [50]. Briefly, Duric et al. [49] col-
lected brain tissues from two brain regions (i.e., hippocampal
tissues, the dentate gyrus and CA1 regions) of 21 MDD
cases and 18 controls (matched for postmortem interval, age,
and tissue pH). Gene expression was measured with MI
Ready microarrays (Microarray, Inc.) (to detect human
whole-genome expression), and expression data were ana-
lyzed with the Bioconductor package and R language. More
detailed information about this study has been described in
the study of Duric et al. [49]. Labonte et al. [50] collected
brain tissues from 26 MDD cases and 22 controls. Six brain
regions were isolated by Labonte et al., including the
DLPFC, the ventromedial prefrontal cortex, the orbitofrontal
cortex, the NAc, the anterior insula, and the ventral sub-
iculum. Gene expression was quantified with RNA-Seq
(Illumina HiSeq2500). The differentially expressed genes
were identified for each region. To compare the differences
between males and females, Labonte et al. [50] performed
sex-specific analysis and identified the differentially expres-
sed genes in male and female MDD cases and controls in
each brain region. Detailed information about the study of
Labonte et al. can be found in the original paper [50].

Results

Identification of TF binding–disrupting SNPs from
the MDD risk loci

We carried out functional genomics analysis to identify the
functional SNPs (or potential causal SNPs) from 40 of the 44
reported MDD risk loci [17] (as the index (or lead) variant for
4 loci was not SNP, we could not extract the SNPs in LD with
these four lead variants) (Fig. 1). Briefly, we first processed
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34 ChIP-seq data (as MDD is a psychiatric disorder that is
mainly attributed to the dysfunction of the central nervous
system, only ChIP-seq assays performed in neuronal cells or
brain tissues were used in this study) to obtain the binding
motifs of the included TFs (Fig. 1 and Supplementary
Table 5). Through calling the ChIP-seq peaks (using MACS
[27]) and running motif discovery on the called ChIP-seq
peaks (MEME [28]), we derived binding motifs of 30 TFs
after stringent quality control (peaks of four TFs were
excluded due to the low quality). The derived binding motifs
were then compared with the motifs from the well-
characterized PWM database (compiled by Whitington et al.
[19]), and the matched PWMs were used for further analysis.

To pinpoint the functional SNPs (i.e., SNPs that disrupt the
binding of the analyzed TFs) from the 40 of the 44 reported
MDD risk loci [17], we extracted the SNPs that were in LD
(r2 > 0.3) with the 40 index SNPs. A total of 8005 SNPs
(including the 40 index SNPs and SNPs that were in LD with
the 40 index SNPs) were obtained (Supplementary Table 6).
We mapped these SNPs to the matched motifs to investigate
whether these SNPs are located in the binding motif of the
analyzed TFs and whether allelic differences at these SNPs
affect the binding of the analyzed TFs [35]. In total, we
identified 34 SNPs that disrupted the binding of 15 TFs
(Fig. 1 and Supplementary Table 7). We found that 11 MDD
risk SNPs disrupted CTCF binding (Fig. 2a). In addition,
there were eight SNPs that disrupted the binding of two or
more TFs (Fig. 2b). Of note, 75% of TF binding–disrupting
SNPs reside in intronic and intergenic regions (Fig. 2c).

Fig. 1 Flowchart of functional genomics analysis. ChIP-seq assays
performed using neuronal cell lines and brain tissues were used for
peak calling and motif discovery. The identified motifs were then
compared with the PWMs from the PWM database (see “Methods”),
and the matched motifs were used for downstream analysis. SNPs in
linkage disequilibrium (LD, r2 ≥ 0.3) with the index SNPs (identified
by MDD GWAS, a total of 40 index SNPs) were extracted. A total of
8005 SNPs from 40 MDD risk loci (as the index (or lead) variant was
not SNP for 4 loci, we could not extract the SNPs in LD with these
four variants) were mapped to the identified motifs to investigate
whether these SNPs disrupt the binding of transcription factors. In
total, 34 TF binding–disrupting SNPs were identified.

Fig. 2 Overview of the TF binding–disrupting SNPs. a Left panel:
the number of SNPs that disrupt binding of a specific transcription
factor. Right panel: the distribution of the TF binding–disrupting SNPs
in the human genome. Most (75%) of the TF binding–disrupting SNPs
were located in intronic and intergenic regions. b Heatmap shows the
number of SNPs that disrupt the binding of two or more TFs. c The
distribution of TF binding–disrupting SNPs in different genomic
regions.
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Validation of the regulatory effects of the TF
binding–disrupting SNPs with reporter gene assays

Our functional genomics identified 34 TF binding–
disrupting MDD risk SNPs (these TF binding–disrupting
SNPs were hereafter called regulatory SNPs). To verify the
regulatory effects of these regulatory SNPs (i.e., TF
binding–disrupting SNPs), we performed reporter gene
assays. We tested whether the different alleles of the
binding–disrupting SNPs affect luciferase activity in three
cell lines (i.e., HEK293T, SH-SY5Y, and SK-N-SH).
Among the 34 tested regulatory SNPs, we found that allelic
differences in 29 regulatory SNPs altered the luciferase
activity significantly in at least one tested cell line

(Supplementary Table 8, Figs. 3, 4, and Supplementary
Figs. 2, 3). Notably, different alleles of 13 regulatory SNPs
significantly affected the luciferase activity in all three tes-
ted cell lines (Figs. 3, 4, and Supplementary Table 8). Taken
together, these results demonstrated the regulatory effects of
most of the identified TF binding–disrupting SNPs.

Disruption of FOSL2, EP300, and JUND binding by
rs9262142

Our functional genomics identified 34 TF binding–disrupting
SNPs. We validated the regulatory effects of 29 SNPs with
reporter gene assays, implying that these SNPs might have
functional consequences by affecting the binding of TFs. To

Fig. 3 Verification of the regulatory effects of the TF
binding–disrupting SNPs with reporter gene assays. a The con-
structs containing the G allele of rs1467013 exhibited significantly
higher luciferase activities than the constructs containing the A allele
in all three tested cell lines. b The reporter vectors containing the T
allele of rs159961 showed significantly higher luciferase activities than
the A allele in all three tested cell lines. c The G allele of rs7554486
conferred significantly higher luciferase activity than the A allele in all
three tested cell lines. d The constructs carrying the G allele of

rs1950834 exhibited significantly higher luciferase activities than the
constructs carrying the A allele in all three tested cell lines. e The
reporter vectors containing the G allele of rs1111177 showed sig-
nificantly higher luciferase activity than the A allele in all three tested
cell lines. f The A allele of rs2924321 conferred significantly higher
luciferase activity than the G allele in all three tested cell lines. Stu-
dent’s t test (two-tailed) was used to detect if the differences were
significant. n= 8 for the control group, n= 16 for each experimental
group. *P < 0.05, **P < 0.01, ***P < 0.001.
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Fig. 4 Verification of the regulatory effects of the TF
binding–disrupting SNPs using reporter gene assays. Different
alleles of the TF binding–disrupting SNPs listed in this figure con-
ferred significant differences in luciferase activity in at least one tested
cell line. a The C allele of rs10756277 conferred significantly higher
luciferase activities than T allele in all three tested cell lines. b The
reporter vectors containing the C allele of rs77498214 showed sig-
nificantly higher luciferase activities than the A allele in HEK293T and
SH-SY5Y cells. However, in SK-N-SH cells, the A allele of
rs77498214 conferred significantly higher luciferase activities than C
allele. c The A allele of rs301792 conferred significantly higher luci-
ferase activity than the G allele in SH-SY5Y and SK-N-SH cell lines.
d The constructs carrying the C allele of rs2403202 exhibited

significantly higher luciferase activities than the constructs carrying the
G allele in SH-SY5Y cells. e The reporter vectors containing the C
allele of rs12607673 showed significantly higher luciferase activity
than the T allele in SH-SY5Y and SK-N-SH cell lines. f The C allele
of rs12605603 conferred significantly higher luciferase activity than
the G allele in SK-N-SH cells. g The reporter vectors containing the T
allele of rs12607674 showed significantly higher luciferase activity
than the C allele in HEK293T and SH-SY5Y cells. h The reporter
vectors containing the C allele of rs132792 showed significantly
higher luciferase activity than the T allele in SH-SY5Y and SK-N-SH
cells. Student’s t test (two-tailed) was used to compare if the differ-
ences were significant. n= 8 for the control group, n= 16 for each
experimental group. *P < 0.05, **P < 0.01, ***P < 0.001.
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further characterize how the identified regulatory SNPs dis-
rupt TF binding, we investigated a regulatory SNP (i.e.,
rs9212642) at 6p22.1. SNP rs9262142 is located in the
binding motifs of three TFs, including FOSL2, EP300, and
JUND (Fig. 5a–c). ChIP-seq data showed that the genomic
sequence containing rs9262142 was marked by ChIP-seq
peaks of FOSL2, EP300, and JUND (Fig. 5d), indicating that
these three TFs could bind the genomic sequence containing

rs9262142 in neuronal cells. In addition, we found that
rs9262142 is located in a genomic region marked by DNase-
seq signals (Fig. 5d), indicating that rs9262142 is located in a
transcriptionally active region in neuronal cells. Notably,
histone modification data also revealed that rs9262142 is
located in a genomic region with high transcriptional activity
in neuronal cells (Fig. 5d). Finally, reporter gene assays
indicated that the constructed vectors carrying the G allele of

Fig. 5 Disruption of FOSL2,
EP300, and JUND binding by
SNP rs9262142. a–c rs9262142
is located in the binding motifs
of FOSL2, EP300, and JUND
TFs. d rs9262142 is located in a
genomic region marked by
signals of DNase-seq, ChIP-Seq,
and histone modifications,
indicating that the genomic
region containing rs9262142
was actively transcribed in
neuronal cells. e–g Reporter
gene assays validated the
regulatory effect of rs9262142.
The constructs containing the G
allele of rs9262142 exhibited
significantly higher luciferase
activities in all three tested cell
lines. The Two-tailed Student’s t
test was used to detect if the
differences were significant. n=
8 for the control group, n= 16
for each experimental group.
*P < 0.05, ***P < 0.001.
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rs9262142 exhibited significantly higher luciferase activities
compared with the vectors carrying the A allele of rs9262142
in all three tested cell lines (P < 0.05, Fig. 5e–g). Taken
together, these results indicate that rs9262142 is a functional
SNP that disrupts the binding of FOSL2, EP300, and JUND.

Disruption of SMC3 and CTCF binding by rs3812986

In addition to rs9262142, we also investigated rs3812986, a
SNP that disrupts the binding of SMC3 and CTCF (Fig. 6a,
b). We found that rs3812986 is located in a genomic region
marked by DNase-seq signal (Fig. 6c), indicating that the
genomic region containing rs3812986 was actively tran-
scribed in neuronal cells. ChIP-seq data showed that SMC3
and CTCF can bind the genomic region containing
rs3812986 in neuronal cells. We further verified the

regulatory effect of rs3812986 using reporter gene assays.
Our reporter gene assays showed that the C allele of
rs3812986 conferred significantly higher luciferase activity
compared with the T allele in all three tested cell lines
(Fig. 6d–f). These results demonstrated the regulatory effect
of rs3812986.

Disruption of RAD21 binding by rs2919451

We further studied rs2919451, a SNP that disrupts the
binding of RAD21 (Fig. 7a). Similar to rs9262142 and
rs3812986, we found that the genomic sequence sur-
rounding rs2919451 was marked by DNase-seq and ChIP-
seq signals, indicating that rs2919451 is located in a tran-
scriptionally active region with RAD21 binding (Fig. 7b).
We further verified the regulatory effect of rs2919451 with

Fig. 6 Disruption of SMC3
and CTCF binding by
rs3812986. a, b rs3812986
disrupts the binding of SMC3
and CTCF TFs. c rs3812986 is
located in a region marked by
signals of DNase-seq, indicating
that rs3812986 is located in a
genomic region with a high
degree of transcription activity
in neuronal cells. ChIP-seq data
showed that the transcription
factors SMC3 and CTCF bound
to the genomic region containing
rs3812986 in neuronal cells. d–f
Reporter gene assays validated
the regulatory effect of
rs3812986. The luciferase
activities of the constructs with
the C allele of rs3812986 were
significantly higher than those of
the constructs with the T allele
in all three tested cell lines.
Student’s t test (two-tailed) was
used to detect if the differences
were significant. n= 8 for the
control group, n= 16 for each
experimental group. ***P <
0.001.
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reporter gene assays. We found that the reporter constructs
containing the T allele (of rs2919451) exhibited higher
luciferase activities compared with the constructs carrying
the C allele of rs2919451 in all three tested cell lines
(Fig. 7c–e). These results indicated that rs2919451 is a
functional SNP with a potential regulatory effect.

Validation of the regulatory effects of the TF
binding–disrupting SNPs with ASE analysis

Our reporter gene assays validated the regulatory effects of
most of the TF binding–disrupting SNPs (29 out of 34
SNPs). To further verify whether the identified TF
binding–disrupting SNPs were associated with the expres-
sion level of transcripts, we used ASE data from the GTEx
[39]. Among the 34 TF binding–disrupting SNPs, three
SNPs had ASE data in brain tissues from GTEx (as ASE
analysis requires that the TF binding–disrupting SNP was
heterozygous and located in the transcribed region in a
single individual, only a small percentage of the identified
TF binding–disrupting SNPs can be used for ASE analysis).
ASE analysis showed that three regulatory SNPs (rs8233,
rs132792, and rs1054080) also exhibited significant ASE in
brain tissues from the GTEx (Fig. 7f–h). The expression
level (i.e., read counts from RNA-Seq) of the transcript with
the A allele of rs8233 was higher than that of the transcript
with the G allele (Fig. 7f). The expression level of the
transcript with the T allele of rs132792 was significantly
higher than that of the transcript carrying the C allele
(Fig. 7g). For rs1054080, we noticed that all of the detected
transcripts carried the C allele (though this individual was
heterozygous at rs1054080), indicating that the transcript
with the C allele was preferentially expressed compared
with the A allele (Fig. 7h). Collectively, these results further
supported the potential regulatory effect of these identified
TF binding–disrupting SNPs.

Validation of the regulatory effects of rs3101339
with CRISPR-Cas9-mediated genome editing

Our reporter gene assays and ASE analysis revealed the
regulatory effects of the identified TF binding–disrupting
SNPs. To further investigate how the identified TF
binding–disrupting SNPs regulate gene expression, we
studied rs3101339, a SNP that disrupts the binding of the
REST (RE1-silencing TF) TF (Fig. 8a). Our functional
genomics analysis and PWM data showed that rs3101339
was located in the binding motif of REST (Fig. 8a), a
neuron-restrictive silencing factor. DNase-seq data revealed
that rs3101339 was located in a transcriptionally active
region in neuronal cells (Fig. 8b). ChIP-seq data showed
that REST can bind to the genomic region containing
rs3101339 (Fig. 8b). Consistent with the DNase-seq and
ChIP-seq data, histone modification data showed that the
genomic region containing rs3101339 was enriched in
H3K4me3 signals (Fig. 8b), further supporting that
rs3101339 was located in a genomic region with a high
level of transcriptional activity. We further verified the
regulatory effect of rs3101339 with reporter gene assays
(Fig. 8c–e). The reporter vector containing the C allele of

Fig. 7 Disruption of RAD21 binding by rs2919451 and ASE ana-
lysis. a rs2919451 is located in the binding motif of RAD21.
b rs2919451 is located in a genomic region marked by signals of
ChIP-seq (RAD21) and DNase-seq, indicating that rs2919451 is
located in an actively transcribed genomic region in neuronal cells.
c–e Reporter gene assays validated the regulatory effect of rs2919451.
The constructs containing the T allele of rs2919451 exhibited sig-
nificantly higher luciferase than the C allele in all three tested cell
lines. Student’s t test (two-tailed) was used to detect if the differences
were significant. n= 8 for the control group, n= 16 for each experi-
mental group. ***P < 0.001. f–h Allele-specific expression (ASE)
analysis showed that different alleles of rs8233, rs132792, and
rs1054080 exhibited significant preferential expression in human brain
tissues, further supporting the regulatory effects of these SNPs.
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rs3101339 exhibited significantly higher luciferase activity
than the vector containing the A allele in all three tested cell
lines (Fig. 8c–e). These results indicate that rs3101339 is a
functional SNP.

Our above data revealed that rs3101339 is a functional
SNP with a potential regulatory effect. To further identify
the gene (or genes) regulated by rs3101339, we performed

eQTL analysis. We found that rs3101339 was significantly
associated with NGER1 expression in the xQTL (P=
3.46 × 10−19) and GTEx (P= 4.19 × 10−7) datasets
(Fig. 8f). The eQTL data showed that NERG1 expression in
individuals with the AA genotype was significantly lower
than that in individuals with the CC genotype, which was
consistent with the reporter gene assays (Fig. 8c–e).
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Notably, rs3101339 is located in the promoter region of
NGER1 (447 bp upstream of the NEGR1 transcription start
site, based on the UCSC genome browser) (Supplementary
Fig. 4), a region with multiple SNPs showed a significant
association with MDD (Supplementary Fig. 5). These
results (including PWM, ChIP-Seq, DNase-Seq, histone
modification, eQTL analysis and SNP location) collectively
suggest that rs3101339 may regulate NEGR1 by affecting
REST binding and NEGR1 promoter activity. To investigate
whether NEGR1 was regulated by REST, we knocked down
REST using shRNAs. We found that REST knockdown
resulted in significant downregulation of NEGR1 in SH-
SY5Y cells (Fig. 8g, h), indicating that the expression of
NEGR1 was regulated by the REST TF. We further vali-
dated the regulation of NEGR1 by rs3101339 using
CRISPR-Cas9-mediated genome editing. The genomic
sequence (586 bp) containing rs3101339 was knocked out
by a pair of sgRNAs (Fig. 8i and Supplementary Fig. 4).
Compared with the control cells, we found that NEGR1
expression was significantly upregulated in rs3101339
knockout cells (Fig. 8j), indicating that the expression of
NEGR1 was regulated by the genomic sequence containing
rs3101339. Taken together, these results indicate that
rs3101339 is a functional SNP that regulates the expression
of the NEGR1 gene.

Validation of the regulatory effects of rs2050033
with CRISPR-Cas9-mediated genome editing

In addition to rs3101339, we also validated the regulatory
effect of rs2050033 using CRISPR-Cas9-mediated genome
editing. The reasons that we selected rs2050033 were as
follows: first, our motif analysis and PWM data showed that
rs2050033 is located in the binding motif of the CTCF TF,
and allelic differences at rs2050033 disrupt the binding of
CTCF (Fig. 9a). Second, DNase-seq data revealed that
rs2050033 is located in a genomic region with high tran-
scription activity in neuronal cells (Fig. 9b). Third, ChIP-
seq data showed that CTCF bound to the genomic sequence
containing rs2050033 (Fig. 9b). Fourth, reporter gene
assays supported the regulatory effects of rs2050033. We
found that the G allele of rs2050033 conferred significantly
higher luciferase activity than the T allele in all of the tested
cell lines (P < 0.05, Fig. 9c–e). Fifth, to identify the target
gene (or genes) that might be regulated by rs2050033, we
conducted eQTL analysis using the data from the CMC [36]
and LIBD [37]. We found that rs2050033 was significantly
associated with the expression levels of CDCS2, POLR3H,
NPH2L1, TOB2, MEI1, and CENPM (Fig. 9f–m), implying
that these genes were potential target genes of rs2050033.
These convergent lines of evidence suggest that rs2050033
is a functional SNP.

To further verify whether these genes are regulated by
rs2050033, we knocked out the genomic region containing
rs2050033 using CRIPSR-Cas9-mediated genome editing
(Fig. 9n). We found that the expression of CSDC2,
POLR3H, MEI1, and NPH2L1 was significantly changed in
rs2050033 knockout cells compared with control cells
(Fig. 9o–r), indicating that these genes were regulated by
the genomic region containing rs2050033. Collectively,
these results validated that rs2050033 is a functional SNP.

Identification of the potential target genes of the TF
binding–disrupting SNPs

Our serial experiments showed that the identified regulatory
SNPs (i.e., TF binding–disrupting SNPs) were functional.
To further explore the target genes that might be regulated
by these regulatory SNPs, we examined the associations
between these regulatory SNPs and gene expression in four
independent brain eQTL datasets (i.e., CMC [36], LIBD
[37], xQTL [38], and GTEx [51]. Detailed information on
sample information, brain tissue isolation, RNA extraction
and quantification, genotyping, and eQTL analysis can be
found in “Methods” and original papers). Among the 34 TF
binding–disrupting SNPs, we found that 29 SNPs showed
significant association with gene expression in human
brains in at least one brain eQTL dataset (Supplementary
Table 9). Of note, we noticed that 17 identified regulatory

Fig. 8 Validation of the regulatory effect of rs3101339 with
reporter gene assays, eQTL analysis, and CRISPR-Cas9-mediated
genome editing. a rs3101339 is located in the binding motif of the
REST transcription factor, and different alleles of rs3101339 disrupt
the binding of REST. b rs3101339 is located in a genomic region
marked by signals of DNase-seq, ChIP-seq (REST), and histone
modifications, indicating that rs3101339 is located in a genomic region
with a high degree of transcriptional activity in neuronal cells.
c–e Reporter gene assays validated the regulatory effect of rs3101339.
The C allele of rs3101339 conferred significantly higher luciferase
activity than the A allele in all three tested cell lines. f eQTL analysis
showed that rs3101339 was significantly associated with NEGR1
expression in human brain tissues. Consistent with the results of
reporter gene assays, NEGR1 expression in individuals with the CC
genotype was significantly higher than that in individuals with the AA
genotype. g, h REST knockdown downregulated NEGR1 expression,
indicating that NEGR1 expression was regulated by REST.
i, j CRISPR-Cas9-mediated knockout of the genomic region con-
taining rs3101339 resulted in significant upregulation of NEGR1
expression, suggesting that the genomic region containing rs3101339
regulates NEGR1 expression. i Electrophoresis showed the successful
deletion of the genomic sequence containing rs3101339. WT indicates
the length of PCR products (690 bp) containing rs3101339 in wild-
type cells. KO indicates the length of DNA fragments (126 bp) con-
taining rs3101339 in edited cells (as the genomic sequence (564 bp)
containing rs3101339 was deleted, the length of PCR products was
decreased compared with wild-type cells). RNA extracted from cells
marked by red arrowheads was used for qPCR analysis. n= 8 for the
control group in c–e, n= 16 for each experimental group in c–e, n= 3
for g, h, n= 3 for the control group in j and n= 4 for the knockout
group in j. Student’s t test (two-tailed) was used to detect if the dif-
ferences were significant. **P < 0.01, ***P < 0.001.
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SNPs were associated with the expression of the same gene
in at least two independent brain eQTL datasets (Table 1),
implying that these genes might be regulated by these TF

binding–disrupting SNPs. Collectively, these results suggest
that the identified TF binding–disrupting SNPs may confer
MDD risk by regulating these target genes.
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Spatio-temporal expression pattern of target genes

We explored the spatio-temporal expression pattern of tar-
get genes (whose expression levels were associated with the
identified TF binding–disrupting SNPs). Two gene sets
were used. Genes from Supplementary Table 9 were defined
as gene set 1, and genes from Table 1 were defined as gene
set 2. We found that the expression levels of target genes
(including gene sets 1 and 2) were higher than those of
background genes in human brain tissues (Supplementary
Fig. 6). In addition, the expression levels of target genes
(including gene sets 1 and 2) were higher than background
genes across different developmental stages of the human
brain (Supplementary Fig. 7). Further expression analysis
using the single-cell RNA-Seq results revealed that target
genes were highly expressed in pyramidal cells (Supple-
mentary Fig. 8). These results suggest that the target genes
may play a role in pyramidal cells.

Dysregulation of NEGR1 in MDD

Our functional genomics showed that the functional SNP
rs3101339 may confer risk of MDD by regulating NEGR1
expression (Fig. 8). To further explore the role of NGER1 in
MDD, we examined NEGR1 expression in the brains of
MDD cases and controls using expression data from studies
by Duric et al. [49] and Labonte et al. [50]. We found that
NEGR1 was significantly downregulated in the CA1

(reduced by 35%, P= 0.004) and dentate gyrus regions
(reduced by 76%, P= 0.002) of MDD cases compared with
controls in the study of Durin et al. [49] (N= 21 MDD
cases and N= 18 controls). Consistently, we found that
NEGR1 was also significantly downregulated in the NAc of
female MDD cases compared with controls in the study of
Labonte et al. (N= 12 female MDD cases and N= 9 female
controls) (reduced by 15%, P= 0.038) (Supplementary
Fig. 9). NEGR1 expression was not changed in other brain
regions in the study of Labonte et al. These expression
results suggested that dysregulation of NGER1 may have a
role in MDD. Interestingly, Szczurkowska et al. [52] found
that downregulation of NEGR1 affected neuronal migration
and spine density, implying that NEGR1 may confer risk of
MDD by affecting dendritic spines.

Discussion

We have witnessed the rapid progress of genetic studies of
MDD during the past five years. Since the identification of
two genome-wide significant MDD risk loci by whole-
genome sequencing in 2015 [15], over 100 risk loci for
MDD have been identified by GWAS [16–18] during the
past 5 years. Despite the fact that new risk loci are identified
at an unprecedented rate, pinpointing the causal risk var-
iants from the reported risk loci and elucidating the role of
causal variants in the pathophysiology of MDD remain
major challenges in the post-GWAS era. In this study, we
systematically investigated the regulatory mechanisms of
MDD risk variants. We identified 34 SNPs that disrupt the
binding of 15 TFs using a functional genomics approach.
Our reporter gene assays validated that most of the identi-
fied TF binding–disrupting SNPs were functional. ASE
analysis and CRISPR-Cas9-mediated genome editing fur-
ther supported the regulatory effects of the identified TF
binding–disrupting SNPs. Interestingly, we found that most
of the identified TF binding–disrupting SNPs were located
in intronic and intergenic regions. The ChIP-seq, PWM,
DNase-seq signal, and histone modification profiling of the
34 TF binding–disrupting SNPs are provided in Supple-
mentary Figs. 10–43. These lines of convergent evidence
support that these identified regulatory SNPs may contribute
to MDD risk by regulating gene expression.

In addition to the discovery of 34 regulatory SNPs, we
also identified the target genes that might be regulated by
these regulatory SNPs using eQTL analysis. Our eQTL
analysis showed that most of the identified regulatory SNPs
(29 out of 34 TF binding–disrupting SNPs) were associated
with gene expression in human brain tissues. Considering
the regulatory effects of these TF binding–disrupting SNPs,
it is likely that the identified regulatory SNPs exert their
biological effects by regulating these target genes. More

Fig. 9 Validation of the regulatory effect of rs2050033 with
reporter gene assays, eQTL analysis, and CRISPR-Cas9-mediated
genome editing. a rs2050033 disrupts the binding of the CTCF
transcription factor. b CTCF ChIP-seq and DNase-seq data showed
that rs2050033 is located in a genomic region marked by ChIP-seq and
DNase-seq signals, indicating that rs2050033 is located in an actively
transcribed region and CTCF bound to the genomic sequence con-
taining rs2050033 in neuronal cells. c–e Reporter gene assays verified
the regulatory effect of rs2050033. In all three tested cell lines, the
constructs containing the G allele of rs2050033 exhibited significantly
higher luciferase activities compared with the T allele. f–m eQTL
analysis showed that rs2050033 was significantly associated with the
expression of CSDC2, POLR3H, NPH2L1, TOB2, MEI1, and CENPM
in human brain tissues. f–i eQTL data were from the CMC brain eQTL
dataset. j–m eQTL data were from the LIBD brain eQTL dataset. n–r
Deletion of the DNA sequence containing rs2050033 led to significant
expression changes in CSDC2, POLR3H, MEI1, and NPH2L1, sug-
gesting that the genomic region containing rs2050033 regulates the
expression of these genes. i Electrophoresis showed the successful
deletion of the genomic sequence containing rs2050033. WT indicates
the length of PCR fragments (878 bp) containing rs2050033 in wild-
type cells. KO indicates the length of DNA fragments (375 bp) con-
taining rs2050033 in edited cells. RNA extracted from cells marked by
red arrowheads was used for qPCR analysis. Student’s t test (two-
tailed) was used to detect if the differences were significant. *P < 0. 05,
***P < 0.001. n= 8 for the control group in reporter gene assays (i.e.,
c–e), n= 16 for each experimental group in reporter gene assays (i.e.,
c–e), n= 4 for o–r.
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Table 1 Association significance between the TF binding–disrupting SNPs and gene expression in the human brain tissues.

SNP Gene P (CMC) FDR (CMC) P (LIBD) FDR (LIBD) P (xQTL) P (GTEx)

rs301792 RERE 5.90E–04 2.57E–02 3.65E–07 4.10E–05 1.38E–21 NA

rs159961 RERE 6.39E–04 2.74E–02 5.93E–10 1.08E–07 1.66E–20 NA

rs2362968 GFM1 4.80E–03 1.25E–01 3.19E–07 3.63E–05 1.04E–07 NA

rs2362968 RARRES1 2.25E–09 3.68E–07 6.47E–16 2.45E–13 NA NA

rs1950834 LRFN5 3.74E–14 2.20E–11 NA NA 2.70E–04 4.04E–11
(Cere Hemi)

rs1111177 LRFN5 1.93E–14 1.17E–11 NA NA 1.35E–04 4.17E–12
(Cere Hemi)

rs2403202 TRMT61A 3.29E–07 4.86E–05 NA NA 1.09E–06 NA

rs1054080 TRMT61A 4.52E–05 3.90E–03 NA NA 1.77E–04 NA

rs3812986 HPR 9.60E–10 2.15E–07 NA NA 2.75E–09 NA

rs3812986 DHX38 7.82E–32 1.16E–28 NA NA 1.87E–13 NA

rs470112 CSDC2 1.10E–06 1.04E–04 4.49E–05 3.00E–03 1.52E–05 NA

rs470112 POLR3H 9.07E–08 1.05E–05 NA NA 1.66E–06 NA

rs470112 NHP2L1 4.99E–03 1.38E–01 NA NA 2.15E–02 NA

rs1984584 CSDC2 1.29E–06 1.20E–04 3.93E–06 3.51E–04 5.90E–06 NA

rs1984584 POLR3H 1.18E–07 1.34E–05 1.47E–04 8.28E–03 7.36E–07 NA

rs1984584 NHP2L1 5.36E–03 1.44E–01 NA NA 1.46E–02 NA

rs4822028 CSDC2 6.47E–32 4.79E–29 2.79E–23 1.90E–20 NA 5.08E–08(Cor)

rs4822028 POLR3H 3.98E–37 4.77E–34 1.47E–20 8.30E–18 1.67E–22 1.73E–05
(Cere Hemi)

rs132792 CSDC2 2.81E–31 2.04E–28 3.31E–16 1.29E–13 NA 1.29E–05(Cau)

rs132792 POLR3H 1.31E–32 1.04E–29 1.93E–11 4.39E–09 1.11E–21 4.73E–05
(Cere Hemi)

rs132792 LINC00634 4.73E–03 1.33E–01 NA NA 2.09E–02 NA

rs2050033 CSDC2 9.66E–40 1.51E–36 1.44E–18 6.90E–16 NA 2.03E–06(Cau)

rs2050033 POLR3H 2.39E–36 2.48E–33 6.57E–25 4.97E–22 6.04E–24 6.01E–07
(Cere Hemi)

rs2050033 DESI1 4.88E–03 1.36E–01 NA NA 5.79E–04 NA

rs3101339 RPL31P12 NA NA 8.32E–28 7.66E–25 NA 2.26E–20
(Cere Hemi)

rs2050033 MEI1 NA NA 2.82E–22 1.80E–19 NA 3.43E–07(Cor)

rs1264326 HLA-C NA NA 1.06E–13 3.18E–11 NA 3.70E–05(Cor)

rs1264326 VARS2 NA NA 1.26E–10 2.55E–08 NA 2.65E–05(Hip)

rs1054080 XRCC3 NA NA 1.74E–07 2.08E–05 7.73E–08 NA

rs9857883 GFM1 NA NA 2.17E–07 2.56E–05 4.77E–03 NA

rs2403202 XRCC3 NA NA 1.29E–05 1.01E–03 2.08E–05 NA

rs9262142 FLOT1 NA NA 1.19E–04 6.95E–03 NA 3.04E–10(Cere)

rs9262142 HCG17 NA NA 1.44E–04 8.14E–03 NA 3.81E–05(Cor)

rs1984584 PMM1 NA NA 1.72E–04 9.48E–03 2.21E–02 NA

rs3101339 NEGR1 NA NA NA NA 3.46E–19 4.19E–07(Puta)

rs4822028 XRCC6 NA NA NA NA 4.62E–02 1.14E–05(Cau)

rs1984584 CYP2D6 NA NA NA NA 2.27E–03 1.32E–06(Cor)

rs470112 CYP2D6 NA NA NA NA 1.69E–03 3.36E–06(Cor)

Brain tissues from the dorsolateral prefrontal cortex (DLPFC) were used in CMC (N= 467), xQTL (N= 494), and LIBD brain Eqtl browser (N=
412). Tissues from six brain regions were used in GTEx. SNPs that showed significant association with the expression of the same gene in at least
two independent eQTL datasets were shown.

Cor cortex, Cau caudate, Cere Hemi cerebellar hemisphere, cere cerebellum, Puta putamen, Hip hippocampus.
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work is needed to elucidate the roles and mechanisms of
these target genes in MDD pathophysiology.

We noticed that approximately one-third (11 out of 34)
of TF binding–disrupting SNPs were located in the CTCF
binding motif, implying that disruption of CFCT binding
may represent a common mechanism of MDD risk variants.
CTCF is a conserved zinc-finger protein that plays pivotal
roles in transcriptional regulation [53, 54]. Recent studies
have shown the important role of CTCT in 3D genome
organization [54–57].

Notably, expression analysis showed that NEGR1 (regu-
lated by the REST binding–disrupting SNP rs3101339) was
significantly downregulated in MDD cases compared with
controls. NEGR1 encodes neural cell adhesion molecule
neuronal growth regulator 1, a protein that has pivotal roles
in regulating cortical development, dendritic spine density,
and neuronal morphological maturation [52, 58]. Increasing
evidence suggests the dysfunction of dendritic spines in
MDD [59, 60]. Decreased expression of synapse-related
genes and loss of synapses were observed in MDD [60].
Interestingly, sustained rescue of lost synapses could relieve
depression-like behavioral states [61]. These findings sug-
gest that NEGR1 may play pivotal roles in MDD by reg-
ulating the density and morphology of dendritic spines.
Intriguingly, recent studies also showed that Negr1 defi-
ciency resulted in behavioral abnormalities related to psy-
chiatric disorders [52, 62], further supporting the potential
role of NEGR1 in MDD pathogenesis. Collectively, these
lines of evidence suggest that rs3101339 may confer risk of
MDD by regulating NGER1 expression.

We noticed that the risk allele (i.e., C allele) of rs3101339
was associated with higher reporter gene activity and NEGR1
expression (Fig. 8c–f). Based on these data, NEGR1
expression was predicted to be upregulated in MDD cases
compared with controls. However, we found that NEGR1
expression was downregulated in MDD cases compared with
controls. A possible reason for this inconsistency is that
rs3101339 and other functional variants act synergistically to
regulate NEGR1 expression. In addition, considering that the
samples used for eQTL analysis and gene expression ana-
lysis were not the same, and the sample size used for dif-
ferential expression analysis was relatively small, the number
of individuals with the rs3101339 AA genotype in MDD
cases might be more than in controls (which may also lead to
the observation of significant downregulation of NEGR1 in
MDD cases). Finally, treatment with antidepressants might
also change gene expression. Thus, the expression level of
NEGR1 observed in MDD cases might not exactly reflect the
genetic effects of rs3101339. More work is needed to
investigate how rs3101339 confers MDD risk by modulating
NEGR1 expression.

In summary, we pinpointed 34 functional SNPs (i.e., TF
binding–disrupting SNPs) from the 44 reported MDD risk

loci [17], and we elucidated the regulatory mechanisms of
some functional SNPs. These regulatory SNPs may repre-
sent potential causal variants for MDD, as they disrupt the
binding of corresponding TFs. More importantly, we ver-
ified the regulatory effects of these regulatory SNPs and
identified the potential target genes regulated by these
SNPs. Further functional characterization of these func-
tional SNPs and target genes will help elucidate the genetic
mechanisms and pathogenesis of MDD. Finally, our find-
ings also provide potential targets for the development of
new drugs for MDD.

URLs

MDD GWAS data from PGC2, http://www.med.unc.edu/pgc/;
CMC, http://www.synapse.org/CMC; GTEx, https://gtexportal.
org/home/; LIBD brain eQTL browser, http://eqtl.brainseq.org/
phase1/eqtl/; ENCODE, https://www.encodeproject.org/;
FastQC, http://www.bioinformatics.babraham.ac.uk/projects/fa
stqc/; Cutadapt, https://cutadapt.readthedocs.io/en/stable/index.
html; FIMO, http://meme-suite.org/tools/fimo; MACS, http://
liulab.dfci.harvard.edu/MACS/; Bowtie, http://bowtie-bio.
sourceforge.net/index.shtml; MEME, http://meme-suite.org/
tools/meme; BrainSpan, http://www.brainspan.org/; The 1000
Genomes Project, http://www.1000genomes.org/; PLINK,
http://zzz.bwh.harvard.edu/plink/; UCSC Genome Browser,
http://genome.ucsc.edu/

Data availability

The ChIP-seq profiling, PWM data, DNase-seq signals, and
histone modification data of the 34 TF binding–disrupting
SNPs are provided in Supplementary Figs. 10–43. The rest
of the data are available from the corresponding author
upon request.

Acknowledgements This work was equally supported by the National
Key R&D Program of China (2018YFC1314600) and the National
Key Research and Development Program of China (Stem Cell and
Translational Research) (2016YFA0100900). This study was also
supported by the Innovative Research Team of Science and Tech-
nology Department of Yunnan Province (2019HC004) and the Key
Research Project of Yunnan Province (2017FA008 to X-JL). One of
the brain eQTL datasets used in this study was generated as part of
the Common Mind Consortium supported by funding from Takeda
Pharmaceuticals Company Limited, F. Hoffman-La Roche Ltd,
and NIH grants R01MH085542, R01MH093725, P50MH066392,
P50MH080405, R01MH097276, RO1-MH-075916, P50M096891,
P50MH084053S1, R37MH057881 and R37MH057881S1,
HHSN271201300031C, AG02219, AG05138, and MH06692. Brain
tissue for the study was obtained from the following brain bank col-
lections: the Mount Sinai NIH Brain and Tissue Repository, the
University of Pennsylvania Alzheimer’s Disease Core Center, the
University of Pittsburgh NeuroBioBank and Brain and Tissue Repo-
sitories, and the NIMH Human Brain Collection Core. CMC leader-
ship: Pamela Sklar, Joseph Buxbaum (Icahn School of Medicine at
Mount Sinai), Bernie Devlin, David Lewis (University of Pittsburgh),

Regulatory mechanisms of major depressive disorder risk variants 1943

http://www.med.unc.edu/pgc/
http://www.synapse.org/CMC
https://gtexportal.org/home/
https://gtexportal.org/home/
http://eqtl.brainseq.org/phase1/eqtl/
http://eqtl.brainseq.org/phase1/eqtl/
https://www.encodeproject.org/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://cutadapt.readthedocs.io/en/stable/index.html
https://cutadapt.readthedocs.io/en/stable/index.html
http://meme-suite.org/tools/fimo
http://liulab.dfci.harvard.edu/MACS/
http://liulab.dfci.harvard.edu/MACS/
http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/index.shtml
http://meme-suite.org/tools/meme
http://meme-suite.org/tools/meme
http://www.brainspan.org/
http://www.1000genomes.org/
http://zzz.bwh.harvard.edu/plink/
http://genome.ucsc.edu/


Raquel Gur, Chang-Gyu Hahn (University of Pennsylvania), Keisuke
Hirai, Hiroyoshi Toyoshiba (Takeda Pharmaceuticals Company Lim-
ited), Enrico Domenici, Laurent Essioux (F. Hoffman-La Roche Ltd),
Lara Mangravite, Mette Peters (Sage Bionetworks), and Thomas
Lehner, Barbara Lipska (NIMH). The Genotype-Tissue Expression
(GTEx) Project was supported by the Common Fund of the Office of
the Director of the National Institutes of Health and by NCI, NHGRI,
NHLBI, NIDA, NIMH, and NINDS.

Author contributions X-JL conceived and designed the study. YH
performed most of the bioinformatic analyses, including the proces-
sing of the raw ChIP-seq data, the identification of PWMs from the
ChIP-seq peaks, and the identification of TF binding–disrupting SNPs.
SL, YL, and JW performed the reporter gene assays, knock down of
transcription factors, and CRISPR-Cas9 mediated genome editing. XL
carried out the eQTL analysis. JL conducted spatio-temporal expres-
sion pattern and cell type-specific expression analysis. SL, YL, XL, JL,
JW, ZL, ML, and X-JL contributed to this work in data generation and
analysis, results interpretation, and manuscript writing. X-JL oversaw
the project and drafted the first version of the manuscript. All authors
revised the manuscript critically and approved the final version.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

References

1. Sullivan PF, Daly MJ, O’Donovan M. Genetic architectures of
psychiatric disorders: the emerging picture and its implications.
Nat Rev Genet. 2012;13:537–51.

2. Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas
KR, et al. The epidemiology of major depressive disorder: results
from the National Comorbidity Survey Replication (NCS-R).
JAMA. 2003;289:3095–105.

3. Otte C, Gold SM, Penninx BW, Pariante CM, Etkin A, Fava M,
et al. Major depressive disorder. Nat Rev Dis Prim. 2016;2:16065.

4. Bromet E, Andrade LH, Hwang I, Sampson NA, Alonso J, de
Girolamo G, et al. Cross-national epidemiology of DSM-IV major
depressive episode. BMC Med. 2011;9:90.

5. Chesney E, Goodwin GM, Fazel S. Risks of all-cause and suicide
mortality in mental disorders: a meta-review. World Psychiatry.
2014;13:153–60.

6. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ.
Global and regional burden of disease and risk factors, 2001:
systematic analysis of population health data. Lancet.
2006;367:1747–57.

7. Ferrari AJ, Charlson FJ, Norman RE, Patten SB, Freedman G,
Murray CJ, et al. Burden of depressive disorders by country, sex,
age, and year: findings from the global burden of disease study
2010. PLoS Med. 2013;10:e1001547.

8. Global Burden of Disease Study 2013 Collaborators Global,
regional, and national incidence, prevalence, and years lived with
disability for 301 acute and chronic diseases and injuries in 188
countries, 1990–2013: a systematic analysis for the Global Burden
of Disease Study 2013. Lancet. 2015;386:743–800.

9. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati
M, et al. Years lived with disability (YLDs) for 1160 sequelae of
289 diseases and injuries 1990-2010: a systematic analysis for the
Global Burden of Disease Study 2010. Lancet. 2010;380:2163–96.

10. Greenberg PE, Fournier AA, Sisitsky T, Pike CT, Kessler RC.
The economic burden of adults with major depressive disorder in
the United States (2005 and 2010). J Clin Psychiatry.
2015;76:155–62.

11. Li M, D’Arcy C, Meng X. Maltreatment in childhood sub-
stantially increases the risk of adult depression and anxiety in
prospective cohort studies: systematic review, meta-analysis, and
proportional attributable fractions. Psychol Med. 2016;46:717–30.

12. American Psychiatric Association. Diagnostic and statistical
manual of mental disorders. 5th ed. Arlington: American Psy-
chiatric Publishing; 2013.

13. Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of
major depression: review and meta-analysis. Am J Psychiatry.
2000;157:1552–62.

14. Ripke S, Wray NR, Lewis CM, Hamilton SP, Weissman MM,
Breen G, et al. A mega-analysis of genome-wide association
studies for major depressive disorder. Mol Psychiatry.
2013;18:497–511.

15. CONVERGE consortium*. Sparse whole-genome sequencing
identifies two loci for major depressive disorder. Nature.
2015;523:588–91.

16. Hyde CL, Nagle MW, Tian C, Chen X, Paciga SA, Wendland JR,
et al. Identification of 15 genetic loci associated with risk of major
depression in individuals of European descent. Nat Genet.
2016;48:1031–6.

17. Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM,
Abdellaoui A, et al. Genome-wide association analyses identify 44
risk variants and refine the genetic architecture of major depres-
sion. Nat Genet. 2018;50:668–81.

18. Howard DM, Adams MJ, Clarke TK, Hafferty JD, Gibson J,
Shirali M, et al. Genome-wide meta-analysis of depression iden-
tifies 102 independent variants and highlights the importance of
the prefrontal brain regions. Nat Neurosci. 2019;22:343–52.

19. Whitington T, Gao P, Song W, Ross-Adams H, Lamb AD, Yang
Y, et al. Gene regulatory mechanisms underpinning prostate
cancer susceptibility. Nat Genet. 2016;48:387–97.

20. The ENCODE Project Consortium*. An integrated encyclopedia
of DNA elements in the human genome. Nature. 2012;489:57–74.

21. Kim YK, Won E. The influence of stress on neuroinflammation
and alterations in brain structure and function in major depressive
disorder. Behav Brain Res. 2017;329:6–11.

22. Won E, Kim YK. Stress, the autonomic nervous system, and the
immune-kynurenine pathway in the etiology of depression. Curr
Neuropharmacol. 2016;14:665–73.

23. Huo Y, Li S, Liu J, Li X, Luo XJ. Functional genomics reveal
gene regulatory mechanisms underlying schizophrenia risk. Nat
Commun. 2019;10:670.

24. Kong Y. Btrim: a fast, lightweight adapter and quality trimming
program for next-generation sequencing technologies. Genomics.
2011;98:152–3.

25. Martin M. Cutadapt removes adapter sequences from high-
throughput sequencing reads. EMBnet J. 2011;17:10–12.

26. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and
memory-efficient alignment of short DNA sequences to the human
genome. Genome Biol. 2009;10:R25.

27. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein
BE, et al. Model-based analysis of ChIP-seq (MACS). Genome
Biol. 2008;9:R137.

28. Bailey TL, Elkan C. Fitting a mixture model by expectation
maximization to discover motifs in biopolymers. Proc Int Conf
Intell Syst Mol Biol. 1994;2:28–36.

29. Fernandez-Pujals AM, Adams MJ, Thomson P, McKechanie AG,
Blackwood DH, Smith BH, et al. Epidemiology and heritability of
major depressive disorder, stratified by age of onset, sex, and
illness course in generation Scotland: Scottish Family Health
Study (GS:SFHS). PLoS ONE. 2015;10:e0142197.

1944 S. Li et al.



30. Banda Y, Kvale MN, Hoffmann TJ, Hesselson SE, Ranatunga D,
Tang H, et al. Characterizing race/ethnicity and genetic ancestry
for 100,000 subjects in the genetic epidemiology research on adult
health and aging (GERA) cohort. Genetics. 2015;200:1285–95.

31. Pedersen CB, Bybjerg-Grauholm J, Pedersen MG, Grove J,
Agerbo E, Baekvad-Hansen M, et al. The iPSYCH2012 case-
cohort sample: new directions for unravelling genetic and envir-
onmental architectures of severe mental disorders. Mol Psychiatry.
2018;23:6–14.

32. Allen NE, Sudlow C, Peakman T, Collins R. UK biobank data:
come and get it. Sci Transl Med. 2014;6:224ed224.

33. The 1000 Genomes Project Consortium. A global reference for
human genetic variation. Nature. 2015;526:68–74.

34. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA,
Bender D, et al. PLINK: a tool set for whole-genome association
and population-based linkage analyses. Am J Hum Genet.
2007;81:559–75.

35. Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences
of a given motif. Bioinformatics. 2011;27:1017–8.

36. Fromer M, Roussos P, Sieberts SK, Johnson JS, Kavanagh DH,
Perumal TM, et al. Gene expression elucidates functional impact
of polygenic risk for schizophrenia. Nat Neurosci.
2016;19:1442–53.

37. Jaffe AE, Straub RE, Shin JH, Tao R, Gao Y, Collado-Torres L,
et al. Developmental and genetic regulation of the human cortex
transcriptome illuminate schizophrenia pathogenesis. Nat Neu-
rosci. 2018;21:1117–25.

38. Ng B, White CC, Klein HU, Sieberts SK, McCabe C, Patrick E,
et al. An xQTL map integrates the genetic architecture of the
human brain’s transcriptome and epigenome. Nat Neurosci.
2017;20:1418–26.

39. The GTEx Consortium. The genotype-tissue expression (GTEx)
pilot analysis: multitissue gene regulation in humans. Science.
2015;348:648–60.

40. Shabalin AA. Matrix eQTL: ultra fast eQTL analysis via large
matrix operations. Bioinformatics. 2012;28:1353–8.

41. Ongen H, Buil A, Brown AA, Dermitzakis ET, Delaneau O. Fast
and efficient QTL mapper for thousands of molecular phenotypes.
Bioinformatics. 2016;32:1479–85.

42. Piskol R, Ramaswami G, Li JB. Reliable identification of genomic
variants from RNA-seq data. Am J Hum Genet. 2013;93:641–51.

43. Castel SE, Levy-Moonshine A, Mohammadi P, Banks E, Lap-
palainen T. Tools and best practices for data processing in allelic
expression analysis. Genome Biol. 2015;16:195.

44. Khansefid M, Pryce JE, Bolormaa S, Chen Y, Millen CA,
Chamberlain AJ, et al. Comparing allele specific expression and
local expression quantitative trait loci and the influence of gene
expression on complex trait variation in cattle. BMC Genomics.
2018;19:793.

45. Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M, et al.
Spatio-temporal transcriptome of the human brain. Nature.
2011;478:483–9.

46. Zhang Q, Nogales-Cadenas R, Lin JR, Zhang W, Cai Y, Vijg J,
et al. Systems-level analysis of human aging genes shed new light
on mechanisms of aging. Hum Mol Genet. 2016;25:2934–47.

47. Skene NG, Bryois J, Bakken TE, Breen G, Crowley JJ, Gaspar
HA, et al. Genetic identification of brain cell types underlying
schizophrenia. Nat Genet. 2018;50:825–33.

48. Livak KJ, Schmittgen TD. Analysis of relative gene expression
data using real-time quantitative PCR and the 2(−Delta Delta C
(T)) method. Methods. 2001;25:402–8.

49. Duric V, Banasr M, Licznerski P, Schmidt HD, Stockmeier CA,
Simen AA, et al. A negative regulator of MAP kinase causes
depressive behavior. Nat Med. 2010;16:1328–32.

50. Labonte B, Engmann O, Purushothaman I, Menard C, Wang J,
Tan C, et al. Sex-specific transcriptional signatures in human
depression. Nat Med. 2017;23:1102–11.

51. The GTEx Consortium. The genotype-tissue expression (GTEx)
project. Nat Genet. 2013;45:580–5.

52. Szczurkowska J, Pischedda F, Pinto B, Manago F, Haas CA,
Summa M, et al. NEGR1 and FGFR2 cooperatively regulate
cortical development and core behaviours related to autism dis-
orders in mice. Brain. 2018;141:2772–94.

53. Merkenschlager M, Nora EP. CTCF and cohesin in genome
folding and transcriptional gene regulation. Annu Rev Genom
Hum Genet. 2016;17:17–43.

54. Zheng H, Xie W. The role of 3D genome organization in development
and cell differentiation. Nat Rev Mol Cell Biol. 2019;20:535–50.

55. Dekker J, Mirny L. The 3D genome as moderator of chromosomal
communication. Cell. 2016;164:1110–21.

56. Heinz S, Texari L, Hayes MGB, Urbanowski M, Chang MW,
Givarkes N, et al. Transcription elongation can affect genome 3D
structure. Cell. 2018;174:1522–36.

57. Rowley MJ, Corces VG. Organizational principles of 3D genome
architecture. Nat Rev Genet. 2018;19:789–800.

58. Pischedda F, Piccoli G. The IgLON family member Negr1 pro-
motes neuronal arborization acting as soluble factor via FGFR2.
Front Mol Neurosci. 2016;8:89.

59. Ren Z, Sahir N, Murakami S, Luellen BA, Earnheart JC, Lal R,
et al. Defects in dendrite and spine maturation and synaptogenesis
associated with an anxious-depressive-like phenotype of GABAA
receptor-deficient mice. Neuropharmacology. 2015;88:171–9.

60. Kang HJ, Voleti B, Hajszan T, Rajkowska G, Stockmeier CA,
Licznerski P, et al. Decreased expression of synapse-related genes
and loss of synapses in major depressive disorder. Nat Med.
2012;18:1413–7.

61. Moda-Sava RN, Murdock MH, Parekh PK, Fetcho RN, Huang
BS, Huynh TN, et al. Sustained rescue of prefrontal circuit dys-
function by antidepressant-induced spine formation. Science.
2019;364:eaat8078.

62. Singh K, Jayaram M, Kaare M, Leidmaa E, Jagomae T, Heinla I,
et al. Neural cell adhesion molecule Negr1 deficiency in mouse
results in structural brain endophenotypes and behavioral devia-
tions related to psychiatric disorders. Sci Rep. 2019;9:5457.

Regulatory mechanisms of major depressive disorder risk variants 1945


	Regulatory mechanisms of major depressive disorder risk variants
	Abstract
	Introduction
	Methods
	Processing of ChIP-seq data
	Motif discovery and identification
	MDD risk SNPs used in this study
	Extraction of SNPs in LD with the reported index SNPs
	Identification of risk SNPs that disrupt binding of TFs
	Brain eQTL annotation
	ASE analysis
	Spatio-temporal expression pattern analysis of target genes
	Reporter gene assays
	Cell culture
	Knock down of REST
	Knockout of genomic regions containing the target SNPs
	Quantitative PCR (qPCR) analysis
	NEGR1 expression analysis in brains of MDD cases and controls

	Results
	Identification of TF binding–nobreakdisrupting SNPs from the MDD risk loci
	Validation of the regulatory effects of the TF binding–nobreakdisrupting SNPs with reporter gene assays
	Disruption of FOSL2, EP300, and JUND binding by rs9262142
	Disruption of SMC3 and CTCF binding by rs3812986
	Disruption of RAD21 binding by rs2919451
	Validation of the regulatory effects of the TF binding–nobreakdisrupting SNPs with ASE analysis
	Validation of the regulatory effects of rs3101339 with CRISPR-Cas9-mediated genome editing
	Validation of the regulatory effects of rs2050033 with CRISPR-Cas9-mediated genome editing
	Identification of the potential target genes of the TF binding–nobreakdisrupting SNPs
	Spatio-temporal expression pattern of target genes
	Dysregulation of NEGR1 in MDD

	Discussion
	URLs
	Supplementary information

	ACKNOWLEDGMENTS
	Compliance with ethical standards

	ACKNOWLEDGMENTS
	References




