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Abstract
Schizophrenia is a severe neuropsychiatric disorder with core features including hallucinations, delusions, and cognition
deficits. Accumulating evidence has implicated abnormal DNA methylation in the development of schizophrenia. However,
the mechanisms by which DNA methylation changes alter the risk for schizophrenia remain largely unknown. We recently
carried out a DNA methylome study of peripheral blood samples from 469 first-episode patients with schizophrenia and 476
age- and gender-matched healthy controls of Han Chinese origin. Genomic DNA methylation patterns were quantified using
an Illumina Infinium Human MethylationEPIC BeadChip. We identified multiple differentially methylated positions (DMPs)
and regions between patients and controls. The most significant DMPs were annotated to genes C17orf53, THAP1 and
KCNQ4 (KV7.4), with Bonferroni-adjusted P values of 1:34� 10�12, 1:15� 10�11, and 3:11� 10�11, respectively. In
particular, KCNQ4 encodes a voltage-gated potassium channel of the KV7 family, which is linked to neuronal excitability.
The genes associated with top-ranked DMPs also included many genes involved in nervous system development, such as
LIMK2 and TMOD2. Gene ontology analysis of the differentially methylated genes further identified strong enrichment of
neuronal networks, including neuron projection extension, axonogenesis and neuron apoptotic process. Finally, we provided
evidence that schizophrenia-associated epigenetic alterations co-localize with genetic susceptibility loci. By focusing on
first-episode schizophrenia patients, our investigation lends particularly strong support for an important role of DNA
methylation in schizophrenia pathogenesis unconfounded by the effects of long-term antipsychotic medication or disease
progression. The observed DNA methylation aberrations in schizophrenia patients could potentially provide a valuable
resource for identifying diagnostic biomarkers and developing novel therapeutic targets to benefit schizophrenia patients.

Introduction

Schizophrenia (SZ) is a serious mental disorder defined by the
presence of symptoms including hallucinations, delusions,
and cognitive impairments, which affects ~1% of the popu-
lation worldwide [1, 2]. Genetic components, including single
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nucleotide polymorphisms (SNPs) [3, 4], structural variants
[5], and gene expression patterns [6], are all likely to impact
the risk of developing SZ. Notably, a genome-wide associa-
tion study (GWAS) conducted by the Psychiatric Genomics
Consortium (PGC) revealed 108 loci associated with SZ,
highlighting the important role of common genetic variation
in SZ susceptibility [3].

This GWAS found that most genetic variants associated
with SZ tended to be enriched in regulatory domains of the
genome [3], highlighting the importance of gene regulation in
the etiology of SZ. Recently, mounting evidence has indicated
that epigenetic modifications, which can be affected by envir-
onmental factors, might play a dynamic role in regulating gene
expression [7, 8]. A wide range of environmental factors,
including prenatal and perinatal events, urban environment,
migration status, drug use, and social adversity [2], have been
linked with SZ susceptibility and could be mediated by epi-
genetic changes. The presence of such epigenetic effects may
explain the well-known phenotypic discordance of SZ in
monozygotic twins [9]. In humans, as one of the major types of
epigenetic modifications, and perhaps the most well-char-
acterized, DNA methylation refers primarily to a biological
process that adds a methyl group to the cytosines of CpG
dinucleotides [10]. Recently, a few studies [11–15] have
reported significant DNA methylation changes associated with
SZ, which pointed to immune cells and neural signaling
pathways as playing particularly pivotal roles. Therefore, DNA
methylation may serve as a useful biomarker and important
mediator to probe and gain insight into the links between
genetic and environmental factors in the development of SZ.

However, the causal role of DNA methylation in the
development of SZ remains largely unknown. One expla-
nation is that most large-scale DNA methylation studies,
either in postmortem brains or peripheral blood cells, were
confounded by the cumulative effects of therapeutic inter-
vention or disease progression. In this study, we examined
DNA methylation profiles using a unique large cohort of
first-episode schizophrenia (FESZ) patients and healthy
volunteers from the Chinese Han population. By examining
FESZ patients, we were able to make stronger inferences
about the links between methylation changes and SZ which
are unconfounded by the long-term effects of drugs or
symptom progression. For the DNA methylation assay, we
used Illumina Infinium Human MethylationEPIC BeadChip
(Illumina, San Diego, CA, USA), a cost-effective platform
with good coverage of methylation sites across the genome.
Our analysis revealed a variety of differentially methylated
patterns associated with FESZ. Notably, our work demon-
strated significant DNA methylation changes in a subset of
genes that participated in neuronal networks, including
neuron projection extension, axonogenesis, and the neuron
apoptotic process, supporting the neurodevelopmental ori-
gin hypothesis of SZ etiology [16]. Finally, we

demonstrated that the DMPs identified in our study were
located nearby known SZ risk loci. Results from our study
provided strong evidence to support links between the blood
DNA methylome and SZ pathogenesis.

Materials and methods

Study samples

In this study, a total of 499 first-episode patients with SZ of
Han Chinese ancestry (25.4 ± 6.3 years; 207 males, 292
females) were recruited from three clinical sites, Beijing
HuiLongGuan Hospital, Chongqing Three Gorges Central
Hospital, and Zhumadian Psychiatry Hospital between 2017
and 2018. Diagnosis and blood sample collection were
conducted by the clinical research physicians from Beijing
HuiLongGuan Hospital using identical research protocols.
SZ patients were included in the study if they met the fol-
lowing criteria: (a) they met the Structured Clinical Inter-
view of DSM-IV diagnostic criteria for SZ; (b) they were
aged between 14 and 50 years; (c) the total disease course
was <3 years; (d) previous antipsychotic exposure did not
exceed 2 weeks. Study participants were free of any diag-
nosis of mental deficiency, traumatic brain injury, or a his-
tory of illicit drug abuse or alcoholism. Patients were also
screened for regular administration of neurotrophic agents
and treatment with immune modulators or antioxidants in
the preceding 8 weeks. A total of 500 healthy controls were
enrolled from the local community and frequency-matched
with the patients for age and gender. Only 497 controls
(27.4 ± 5.2 years; 208 males, 289 females) were included for
data analysis because three healthy volunteers were found to
have a history of smoking. All healthy volunteers and their
first-degree relatives had no history of any form of psy-
chiatric disorders. All subjects were in good physical health,
and they did not suffer from any neurological or other
medical illness. Importantly, ethical approval for this project
was obtained from the institutional research board commit-
tee of Beijing HuiLongGuan Hospital and all research
activity was performed in concordance with their guidelines.
Written informed consent was obtained from all study par-
ticipants after a detailed explanation of the nature of this
study was given to all study participants. If a study partici-
pant was unable to understand a particular question, their
relative was asked to answer the relevant question. Using the
online tool developed by Mansell et al. [17], we showed that
our target sample provided over 80% power for 80% of CpG
probes, even when adopting the relatively conservative
Bonferroni correction and assuming a modest average
case–control difference of 2%.

Genomic DNA was isolated from whole blood samples
and then bisulfite-converted following standard procedures.
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The methylation status of bisulfite-converted DNA samples
was assessed using the Illumina Infinium Human Methyla-
tionEPIC BeadChip (Illumina, San Diego, CA, USA), which
measures DNA methylation levels across more than 850,000
probes at single-nucleotide resolution. The raw intensities
were then scanned and DNA methylation measurements
from 499 SZ patients and 500 controls obtained from the
three previously mentioned hospitals were reported. A total
of 39 patient samples were hybridized in duplicate. Thus, in
total, 1038 (538 patient files and 500 control files) micro-
arrays were scanned in 999 unique individuals.

Quality control

Supplementary Fig. S1 shows an overview of our methodo-
logical flow. Technically replicated samples and samples
from smokers were removed from further analysis. Experi-
mental quality control was conducted via BeadArray Controls
Reporter software (https://support.illumina.com/downloads/
beadarray-controls-reporter-installer.html), and a further
13 samples with low experimental quality were excluded.
The statistical analysis started from raw intensity (.idat file)
and was primarily performed using R software v3.6.1
(https://www.r-project.org/). Study participants’ gender status
was checked by using the “minfi” R package [18]. Thirty-
seven additional samples were excluded from subsequent
analysis due to their ambiguous gender status. One sample
was removed because at least 5% of the probes did not pass a
0.01 detection P value threshold. Background correction and
dye-bias normalization were both performed by using the
“Noob” method as described in [19]. Furthermore, functional
normalization [20] was used to correct the unwanted
between-array technical bias without removing any true
biological signals. We then filtered the probes with >0.01
detection P value in more than 5% samples and the probes
with <3 bead count in at least 5% samples. This step led to
the removal of 3386 probes of poor quality. We then filtered
probes (n= 98,222) with annotated SNPs as identified by
Zhou et al. [21] together with probes (n= 16,868) located on
sex chromosomes. Eleven probes aligned to multiple loca-
tions and were filtered using the recommended multi-hit list
provided by Nordlund et al [22]. β values (ranging from 0 to
1) were then generated to represent methylation ratios at a
given CpG site since the β value offers a more intuitive
biological interpretation than the M value; higher β values
indicate higher methylation levels. Technical differences
between two different probe types were then normalized by
“BMIQ” method [23] as implemented in the “ChAMP” R
package [24]. Batch effect correction was then conducted by
“ComBat” [25] using the “ENmix” R package [26]. Fol-
lowing these standard quality control procedures, data were
available for 747,372 probes across 945 samples (469
patients and 476 controls) for subsequent analysis.

Cell-type composition estimation

Cell proportion differences between patients and controls
constitute a critical aspect to be evaluated and controlled for
DNA methylation analyses, because heterogeneous tissues
such as blood are often used. Cell type heterogeneity was
estimated by GLINT [27] software using the “ReFACTor”
algorithm [28], which does not require any a priori
knowledge of cell counts. Six “ReFACTor” components
were incorporated as covariates in the association test to
account for any cell type differences.

Statistical analysis

Identification of differentially methylated positions

To identify DMPs between SZ patients and healthy sub-
jects, we used the “dmpFinder” function implemented in the
“minfi” R package [18], adjusting for gender and age. In
this case–control comparison, we did not account for cell
type heterogeneity. Multiple testing was adjusted using a
Bonferroni correction, with the significance threshold set at
an adjusted P value < 0.05. To account for cell type het-
erogeneity, we performed an epigenome-wide association
study (EWAS) to examine SZ-associated DMPs after
regressing out the “ReFACTor” components along with
gender and age. The EWAS was conducted using a logistic
regression model, which is implemented in GLINT [27].
P values calculated by GLINT were then subjected to
Bonferroni correction.

Identification of differentially methylated regions

We applied the “DMRcate” algorithm [29] to assess con-
tiguous genomic regions showing DNA methylation dif-
ferences in FESZ patients. Characterization of differentially
methylated regions (DMRs), which is different from
detection of a single genomic site that is differentially
methylated, combines information from multiple nearby
CpG sites. P values were corrected by using the Benjamini-
Hochberg method with the threshold set at an adjusted P
value < 0.05. For each DMR, the distance between two
consecutive probes was constrained to <1000 bp and a
minimum number of three consecutive CpG sites were
required to constitute a DMR. All DMRs were annotated by
their corresponding RefSeq gene using ANNOVAR soft-
ware [30].

Gene ontology enrichment and network analysis

Functional properties of DMP-overlapping genes were char-
acterized by gene ontology (GO) terms within the biological
process domain using “clusterProfiler” R package [31]. GO
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terms were filtered to those that met an adjusted P value <
0.05 (Benjamini–Hochberg adjustment) threshold. The same
procedure was conducted for all genes annotated to DMRs.
Furthermore, unlike the GO enrichment analysis, which
focuses only on sets of functionally similar genes, network
analyses are capable of exploring more complex and detailed
gene-gene interactions. Therefore, we selected genes accord-
ing to biological function based on GO terms and constructed
a protein-protein interaction network using STRING v11.0
[32] with a minimum required interaction score set at 0.9,
indicating high confidence. The detailed interaction network
graph was drawn using Cytoscape 3.8.0 [33].

Co-localization analysis of SZ GWAS loci and DMPs

We performed a co-localization analysis to identify over-
lapping signals between our differentially methylation
results and previously reported SZ risk SNPs. In total, we
used 3333 no-overlapping SZ risk SNPs identified as sig-
nificant from previous GWAS conducted by PGC [3] and a
study of east Asian and European population [34] along
with the DMPs from our DNA methylation analysis. We
considered DMPs within 200 kb of significant SNPs as co-
localized.

Results

Identifying differentially methylated positions

We observed high concordance between the technical
replicates (Supplementary Fig. S2A), which indicated good
experimental quality of the generated data. Additionally, the
false discovery rate was clearly reduced after correcting for
experimental batch effects, including those from slides,
plates, arrays and wells, along with gender and age, as
shown in the Q–Q plot (Supplementary Fig. S2B). Notably,
although the cell type heterogeneity correction was expec-
ted to strongly reduce false positive signals, the reduction
was limited, suggesting that our results contained only a
minor level of confounding effects from cellular composi-
tion (Supplementary Fig. S2B).

Of the 747,372 sites that passed the quality controls, a
total of 4277 probes had an adjusted P value < 0.05 (Bon-
ferroni adjustment), showing a significant difference in
DNA methylation level between patients and controls.
These DMPs were mapped to 3346 unique genes. Among
these sites, 2534 were hypermethylated, whereas 1743 sites
exhibited hypomethylation. Statistical significance, effect
size, genomic location, and annotation of all DMPs ranked
by Bonferroni-adjusted P values are documented in Sup-
plementary Table S1 along with P values after controlling
for cell type heterogeneity. The top 20-ranked DMPs are

presented in Table 1 and highlighted in Fig. 1A. The most
significant DMPs were annotated to genes C17orf53,
THAP1 and KCNQ4 (Kv7.4), with Bonferroni-adjusted P
values of 1:34� 10�12, 1:15� 10�11, and 3:11� 10�11,
respectively. Figure 1B shows a volcano plot comparing the
P values and Δβ values (the magnitude of methylation
difference between patients and controls) for all CpG sites.
As shown in Supplementary Fig. S3A, B, when jΔβj
thresholds were considered, more hypomethylated than
hypermethylated DMPs were observed (jΔβj � 0.01, 927
hypomethylated vs. 302 hypermethylated DMPs; jΔβj �
0.02, 202 hypomethylated vs. 10 hypermethylated DMPs).

Insight into the functional genomic regions of SZ DMPs
can be drawn from Fig. 1C. The majority of DMPs were
located in regulatory regions, whereas fewer DMPs were
aligned to the gene body. The same pattern was observed
with the hypermethylated DMPs (Supplementary Fig. S4A);
however, the opposite was seen in hypomethylated DMPs
(Supplementary Fig. S4B). Most DMPs were found within
or near CpG islands, while the minority of DMPs were
scattered in open sea areas (located >4 kb from a CpG
island), as shown in Fig. 1D. Again, a similar pattern was
shown with hypermethylated DMPs (Supplementary
Fig. S5A) in contrast to hypomethylated DMPs, which
tended to occur in open sea areas (Supplementary Fig. S5B).

Among the top 20-ranked DMP list (Table 1), we iden-
tified several genes of particular interest because of their
biological functions, including KCNQ4, a member of the
voltage-gated potassium channels of the KV7 family related
to neuronal excitability [35, 36], along with LIMK2 [37]
and TMOD2 [38], which are associated with nervous sys-
tem development. The patterns of DNA methylation chan-
ges for these genes are presented in Fig. 2A–C. In addition,
we paid special attention to several DMP-related genes that
were previously reported to confer clinical risk for SZ.
Interestingly, the DMP cg16086782 was situated at
SHANK2 (Supplementary Fig. S6A), a promising candidate
risk gene for SZ [39]. Another interesting observation was
that the significant DMP cg09392443 resided in the poised
promoter of GAD1 (Supplementary Fig. S6B); alternative
splicing of GAD1 and epigenetic state have been previously
reported to confer SZ susceptibility and contribute to
GABA dysfunction in the prefrontal cortex and hippo-
campus [40]. In addition, the DMP cg08388004 corre-
sponded to BDNF (Supplementary Fig. S6C), a gene
previously reported to be associated with SZ [41, 42]. The
DNA methylation alterations of these DMPs in SZ patients
are displayed in Fig. 2D–F.

Identifying differentially methylated regions

DMRs were identified by combining information from
nearby CpG sites after adjusting for gender and age. We
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detected 6325 genomic regions (Supplementary Table S2),
overlapping with 6264 unique genes. The largest differen-
tially methylated segment was located on chromosome 6,
spanning 94 probes and overlapping with exonal regions of
the RGL2 gene. The most significant DMR was located on
chromosome 2, spanning 19 CpG sites and corresponding to
the HPCAL1 gene. The regional features of HPCAL1 are
described in Fig. 3. These observations provided strong
evidence that contiguous DNA methylation differences
across specific genomic regions may be linked to SZ. A
total of 2154 (64.38%) differentially methylated genes
identified by the DMP analysis were also revealed by DMR
analysis. Approximately 65.61% of the genes found through
DMR analysis were not significant in the corresponding
single-site DMP test.

GO enrichment profiling and network analysis

To describe common features of the DMPs, we performed
GO enrichment analysis, identifying a total of 118 GO
terms that passed a Benjamini–Hochberg adjusted P value <
0.05 threshold, as shown in Supplementary Table S3. The
top-ranking enriched GO terms (Benjamini–Hochberg

procedure adjusted P < 0.01) were involved in neuronal
functions, such as neuron projection extension, axonogen-
esis, and the neuron apoptotic process (Fig. 4A), supporting
the hypothesis of neurodevelopmental origin of SZ [16]. In
addition, the Wnt signaling pathway, known to be important
for neurodevelopment and nervous system regulation
[43, 44], was also significantly enriched (Fig. 4A). More-
over, we found that genes in these neuronal function related
GO terms displayed tight protein–protein interactions both
in intra- and inter-GO terms (Fig. 4B), suggesting that these
genes could potentially work together as a gene network
and jointly contribute to SZ risk. Among the top-ranking
enriched GO terms, a panel of genes were also found to be
related to histone modification and covalent chromatin
modification (Fig. 4A), indicating a potential link between
DNA methylation and chromatin modifications, which has
been supported by a recent study in human neurons [45].

Consistent with the DMP results, DMR-related genes
were also linked to neuron-related GO terms (e.g., neuron
apoptotic process, axonogenesis, axon development, central
nervous system neuron differentiation) as well as histone
modification and covalent chromatin modification (Sup-
plementary Table S4). Furthermore, we identified several

Table 1 Differentially methylated positions between schizophrenia patients and healthy controls*.

Probe ID Chr Position P value PBonferroni Δβ PCell PCell_Bonferroni RefGene Region CpG Content

cg10169393 1 12615900 5:59� 10�19 4:18� 10�13 −0.03581 1:55� 10�15 1:16� 10�09 NA NA OpenSea

cg14588336 9 129276999 1:78� 10�18 1:33� 10�12 −0.03934 1:36� 10�14 1:01� 10�08 NA NA S_Shore

cg17707493 17 42222405 1:79� 10�18 1:34� 10�12 −0.01116 3:84� 10�16 2:87� 10�10 C17orf53 Body S_Shelf

cg20173334 8 42698483 1:53� 10�17 1:15� 10�11 0.010282 7:33� 10�15 5:48� 10�09 THAP1 TSS200 Island

cg11386025 1 41284582 4:16� 10�17 3:11� 10�11 0.021992 9:19� 10�14 6:87� 10�08 KCNQ4 Body Island

cg05761564 18 48194330 1:66� 10�16 1:24� 10�10 −0.01007 5:31� 10�14 3:97� 10�08 MAPK4 Body S_Shelf

cg12896404 17 27375440 6:88� 10�16 5:14� 10�10 −0.01469 7:89� 10�15 5:90� 10�09 PIPOX Body OpenSea

cg20976174 3 183415827 8:10� 10�16 6:06� 10�10 0.002937 1:73� 10�13 1:29� 10�07 YEATS2 5’UTR Island

cg24315703 22 31608152 8:24� 10�16 6:16� 10�10 0.022908 2:81� 10�13 2:10� 10�07 LIMK2 TSS200 Island

cg17736252 1 78273462 9:11� 10�16 6:81� 10�10 0.013121 9:76� 10�13 7:30� 10�07 FAM73A Body N_Shelf

cg21190363 14 105203406 1:04� 10�15 7:76� 10�10 −0.01099 2:36� 10�13 1:76� 10�07 ADSSL1 Body OpenSea

cg25445749 17 26220465 1:33� 10�15 9:95� 10�10 0.006165 2:00� 10�13 1:49� 10�07 C17orf108 TSS200 Island

cg03784197 16 88471457 1:63� 10�15 1:22� 10�09 −0.01836 1:45� 10�12 1:09� 10�06 NA NA OpenSea

cg20282741 1 53704012 1:66� 10�15 1:24� 10�09 0.004258 4:94� 10�13 3:69� 10�07 MAGOH Body Island

cg22624255 19 19779476 3:07� 10�15 2:29� 10�09 −0.00719 1:42� 10�13 1:06� 10�07 ZNF101 TSS200 Island

cg10878914 19 48673765 3:75� 10�15 2:81� 10�09 0.004316 1:60� 10�13 1:19� 10�07 LIG1 5′UTR Island

cg14213021 10 71930531 3:83� 10�15 2:86� 10�09 0.008601 1:79� 10�12 1:34� 10�06 SAR1A TSS1500 Island

cg13627451 15 52043674 4:04� 10�15 3:02� 10�09 0.011488 7:49� 10�13 5:60� 10�07 TMOD2 TSS200 Island

cg10827434 1 84944976 5:01� 10�15 3:74� 10�09 0.021802 1:61� 10�12 1:20� 10�06 RPF1 1stExon Island

cg00400810 15 42066822 6:27� 10�15 4:69� 10�09 0.003165 1:28� 10�12 9:58� 10�07 MAPKBP1 5′UTR Island

*Listed are the top 20 DMPs between SZ patients and nonpsychiatric controls (ranked by Bonferroni-adjusted P values) with the associated P
values, beta changes, and annotations.

Chr chromosome, Δβ effect size between patients and controls, PCell P values after controlling for cell type heterogeneity, PCell_Bonferroni, P values
after controlling for cell type heterogeneity adjusted by the Bonferroni method, RefGene target gene name from the UCSC database, Region gene
region feature category from the UCSC describing the CpG position, CpG Content the location of the CpG relative to the CpG island.
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GO terms related to the development of several brain
regions, including the forebrain, telencephalon and cere-
bellar cortex. Taken together, these observations high-
lighted the importance of DNA methylation along with
other epigenetic modifications in neurodevelopmental pro-
cesses which have been previously implicated in SZ etiol-
ogy. All significant GO terms (adjusted P value < 0.05)
enriched for SZ DMRs are documented in Supplementary
Table S4.

Co-localization of SZ-DMPs and SZ GWAS loci

Our analysis revealed that 139 significant DMPs which
were mapped to 126 genes, co-localized with 133 SZ risk
SNPs (Supplementary Table S5). These 126 genes were

then queried in PubMed (https://pubmed.ncbi.nlm.nih.gov/)
along with the keyword “Schizophrenia”. Of the queried
genes, 42 were found to have previous evidence of a link
with SZ. As plotted in Fig. 5, on chromosome 7, both CpG
site cg04894216 and SNP rs13230421 are located on
GRM3 gene, which may confer risk for SZ by influencing
glutamatergic neurotransmission and synaptic plasticity [3].
More co-location patterns are presented in Supplementary
Fig. S7.

Discussion

In this study, we conducted a genome-wide DNA methy-
lation analysis in peripheral blood cells from 469 FESZ

Fig. 1 Differentially methylated positions between FESZ patients
and healthy controls. AManhattan plot of all probes across the whole
genome illustrating P values (y-axis, −log10 scale) against genomic
location (x-axis). Chromosomes are distinguished by different colors.
The red horizontal dashed line represents −log10(6.68 × 10−8), corre-
sponding to the Bonferroni-adjusted P value= 0.05. B Volcano plot of
all CpG sites. The X coordinate shows the Δβ, and the Y coordinate
shows −log10(P value). Hypomethylated DMPs in SZ patients are
labeled by using blue dots, whereas hypermethylated DMPs are
represented by red dots. The horizontal gray dashed line stands for
−log10(6.68 × 10−8), corresponding to Bonferroni-adjusted P values

= 0.05. C Bar plot demonstrating the distribution of functional
genomic regions. Colors represent different regions. TSS1500,
200–1500 bases upstream of the transcriptional start site; TSS200,
0–200 bases upstream of the transcriptional start site; 5′UTR, between
the transcriptional start site and the ATG start site; 1stExon, first exon;
body, between the ATG and stop codon; 3′UTR, between the stop
codon and poly A signal. D Pie chart indicating the location of DMPs
relative to CpG islands. Domains are labeled with different colors.
N_Shelf, 2–4 kb upstream of island; N_Shore, 0–2 kb upstream of
island; OpenSea, >4 kb from a CpG island; S_Shelf, 2–4 kb down-
stream of island; S_Shore, 0–2 kb downstream of island.

4480 M. Li et al.

https://pubmed.ncbi.nlm.nih.gov/


patients and 476 matched controls of Han Chinese ancestry.
We effectively controlled for confounding by batch effects,
gender, age (Supplementary Fig. S2B) and smoking status.
Despite the use of peripheral blood cells, many disease-
associated DMPs and DMRs were linked to genes involved
in neural function. Our gene set enrichment analyses
strongly supported the possible involvement of aberrant
DNA methylation of neurodevelopmental genes in SZ
pathogenesis. Finally, the co-localization analysis showed
the location of DMPs overlapped with previously reported
SZ GWAS loci.

One of our top DMP findings was in the KCNQ4
(KV7.4) gene (Table 1), which encodes a component of
voltage-gated potassium channels of the KV7 family
(KV7.1–5) [35]. KCNQ4 could interact with KCNQ3 and
mediate M-like currents that may modulate the excitability
and synaptic transmission of prefrontal cortex neurons
[36, 46]. In addition, Carment et al. demonstrated that
abnormal regulation of cortical excitability and inhibition
were exhibited in those with SZ [47]. Taken together, our
findings suggested that abnormal DNA methylation of
KCNQ4 may affect its expression, thereby contributing to
SZ pathogenesis. We also identified LIMK2 as a gene
potentially involved in SZ pathogenesis (Table 1). LIMK2,
together with LIMK1 serve as the primary regulators of
actin dynamics involved in structural plasticity by mod-
ulating cofilin protein [48]. LIMK-dependent actin

reorganization is important for cortical development
through its influence on neural progenitor cell proliferation
and migration by the regulation of PAK1/Rho signaling
[37]. Moreover, LIMK1 and LIMK2 gene expression were
reported to be significantly altered in the brain tissue of SZ
patients [49]. TMOD1 and TMOD2 (Supplementary
Table S1), were also found to harbor significant DMPs.
TMOD2 is critical for dendritic arborization, whereas
TMOD1 is required for spine development and synapse
formation [38]. Some genes with well-known neural func-
tions also showed abnormal methylation in those with SZ,
including SHANK2 [39], GAD1 [40], and BDNF [41, 42].

Multiple lines of evidence from our gene set enrichment
analysis showed that differentially methylated genes were
significantly enriched in neural pathways (Supplementary
Table S3), which is consistent with the neurodevelopmental
origin hypothesis of SZ [16]. In addition, several biological
processes such as histone modification were also enriched
for genes with abnormal methylation, warranting further
investigation. In the DMR analysis, we found that regional
DNA methylation changes likely contribute to the devel-
opment of SZ. Expression of DMR-containing gene
HPCAL1 (VILIP-3), which serves as a neuronal sensor of
Ca2+, may alter signaling and synaptic function in GABA
projection neurons [50]. Moreover, enrichment analyses of
the annotated genes within DMRs were consistent with the
results of the DMP-related gene analysis, suggesting that a

Fig. 2 Violin plot of important DMPs between patients and controls. SZ patients and healthy controls are distinguished by different colors. The
Y-axis represents the beta value of each CpG site. Bonferroni-adjusted P values of DMPs are labeled with red.
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network of neuronal-functioning genes contribute to SZ
susceptibility (Supplementary Table S4).

Some DNA methylation studies have examined post-
mortem brain tissues, which are both costly and difficult to
obtain. By comparison, peripheral blood is more readily
accessible with a sizable sample, and CpGs from specific
genomic regions have shown statistically significant corre-
lations between brain and peripheral blood samples [51].
Notably, our observation of significantly enriched GO terms
for the DMR-related genes revealed that the development of
certain brain regions could be reflected in the DNA
methylome of blood samples (Supplementary Table S4).
This observation indicated that specific epigenetic markers
in brain tissue can be mirrored by the corresponding sites in
peripheral blood samples. Therefore, peripheral blood could

serve as a valuable surrogate for brain tissue to meet the
needs of large-scale or longitudinal studies.

Our results exhibited an interesting association between
neuronal pathways and SZ in the blood DNA methylome
which supported many previous findings. Hannon et al.
have shown that neuronal proliferation and brain develop-
ment were associated with SZ [12], while Jaffe et al.
identified a panel of differentially methylated genes sig-
nificantly enriched for nervous system differentiation in SZ
[14]. In addition, Montano et al. identified multiple genes in
SZ patients that were previously reported to be implicated in
neuronal development and function [11]. In contrast to a
few previous studies which found no such links, the neu-
ronal function and development findings from pathway
enrichment analysis were robust in our study. This may be
because epigenetic alterations of FESZ patients are more
closely linked to the onset of psychotic symptoms, rather
than confounding factors, such as disease stage or anti-
psychotic medication use. Aberg et al. [13] reported
enrichment of hypoxia in their methylome study, which
may suggest this mechanism as a risk factor for SZ devel-
opment. Nevertheless, we did not detect any association
between hypoxia and SZ, which warrants further investi-
gation. Future studies may clarify whether hypoxia is
indeed a risk factor for SZ or whether it may be an effect of
long-term antipsychotic use. A few studies [12, 13] have
reported that immune related pathways might alter the risk
for SZ. Interestingly, although we used peripheral blood
cells, we did not identify any significant DNA methylation
differences among genes in immune-related pathways;
again, this might be due to our use of FESZ patients for the
current study. Overall, our study provides a powerful
examination of potential mechanisms which influence risk
of FESZ, which are relatively unaffected by long-term
treatment and progression effects as compared to non-first-
episode SZ patients.

A host of research has demonstrated disease-related
DNA methylation changes could be used as biomarkers to
distinguish individuals into different subsets with respect to
disease risk assessment, diagnosis, treatment monitoring
and personalization [52–55]. Our results indicated that SZ
pathogenesis could be linked to the DNA methylome,
suggesting new avenues to develop biomarkers for early
detection, accurate diagnosis and individualized treatment
of SZ. The DNA methylome holds promise to identify
patients from healthy controls or classify SZ patients into
different subtypes with objective molecular markers, while
also aiding in therapeutic target design. By comparing
patients who respond to therapeutic regimens and those who
do not, differentially methylated sites are an attractive
source to select patients who will experience clinical benefit
with that treatment. The stable, easy-to-access blood sample
and cost-effective detection technology could meet the

Fig. 3 Regional Manhattan plot, genomic annotation and co-
methylation pattern surrounding HPCAL1. In the first panel, the Y-
axis shows P values (−log10 scale) calculated from the case–control
analysis between FESZ patients and healthy individuals; the X-axis
represents the genomic location of each CpG site on the chromosome.
The index site was labeled using a black dot. Color reflects the
magnitude of correlation between the reference site and all other CpGs
in terms of methylation level, while red indicates a positive correlation
and blue suggests a negative correlation. The middle plot shows the
annotation tracks in a given genomic region. Chromatin annotation
track color code: dark red, active promoter; pink, weak promoter; royal
purple, poised promoter; orange: strong enhancer; light purple: strong
enhancer; light yellow: weak enhancer; yellow: weak enhancer; dark
blue: insulator; light green: transcriptional transition, green: tran-
scriptional elongation; turquoise: weak transcribed; amaranth: repres-
sed; brown: heterochromatin/low signal; gray: repetitive/CNV; light
gray: repetitive/CNV. In the lower panel, co-methylation pattern based
on Spearman correlation coefficients of selected CpGs is shown (red
stands for positive correlation; blue stands for negative correlation).
The depth of the color reflects the strength of the correlation.
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needs of real-time treatment response surveillance. In
addition, converging evidence from DNA methylation
analysis and GWAS at a given locus may represent more
promising biomarkers for diagnosis and therapeutic targets
for treatment of SZ. Despite the new findings coming out of
peripheral blood cells, the biological mechanisms of the
epigenetic aberrations contributing to SZ remain to be fur-
ther investigated. Furthermore, although we have used a
well-powered sample here, our findings need to be validated
by future studies.

Conclusion

Focusing on FESZ patients, we completed a large-scale
DNA methylation case–control study in a sample from the
Chinese Han population. We identified a panel of DMPs
and DMRs that were differentially methylated in FESZ
patients relative to healthy controls. Notably, abnormal
DNA methylation of KCNQ4, LIMK2, and TMOD2
exhibited a strong association with SZ. Gene enrichment
analysis demonstrated that neurodevelopment,

neurogenesis, and synaptic transmission contributes to SZ.
Furthermore, our results provided evidence that SZ asso-
ciated DMPs overlapped with known genetic risk loci.
Taken together, our findings suggested that changes in the
blood DNA methylome in FESZ patients provided a pow-
erful approach to identify biomarkers and target genes that
may facilitate an understanding of SZ biology underlying
the genetic association with SZ and the development of
novel strategies for diagnosis and more tailored treatments.

Data availability

Code used in the analyses is available to download from
https://github.com/Mingrui-Li1992/SZ_methylation. All
data can be viewed in NODE (http://www.biosino.org/
node) by pasting the accession OEP001178 into the text
search box or through the URL: http://www.biosino.org/
node/project/detail/ OEP001178.
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