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Abstract
Studies of posttraumatic stress disorder (PTSD) report volume abnormalities in multiple regions of the cerebral cortex.
However, findings for many regions, particularly regions outside commonly studied emotion-related prefrontal, insular, and
limbic regions, are inconsistent and tentative. Also, few studies address the possibility that PTSD abnormalities may be
confounded by comorbid depression. A mega-analysis investigating all cortical regions in a large sample of PTSD and
control subjects can potentially provide new insight into these issues. Given this perspective, our group aggregated regional
volumes data of 68 cortical regions across both hemispheres from 1379 PTSD patients to 2192 controls without PTSD after
data were processed by 32 international laboratories using ENIGMA standardized procedures. We examined whether
regional cortical volumes were different in PTSD vs. controls, were associated with posttraumatic stress symptom (PTSS)
severity, or were affected by comorbid depression. Volumes of left and right lateral orbitofrontal gyri (LOFG), left superior
temporal gyrus, and right insular, lingual and superior parietal gyri were significantly smaller, on average, in PTSD patients
than controls (standardized coefficients=−0.111 to −0.068, FDR corrected P values < 0.039) and were significantly
negatively correlated with PTSS severity. After adjusting for depression symptoms, the PTSD findings in left and right
LOFG remained significant. These findings indicate that cortical volumes in PTSD patients are smaller in prefrontal
regulatory regions, as well as in broader emotion and sensory processing cortical regions.
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Introduction

Posttraumatic stress disorder (PTSD) affects millions of
people globally [1]. PTSD is characterized by intrusive
memories of a traumatic event, avoidance of trauma-related
circumstances, hyperarousal, and negative alterations in
mood and cognition. PTSD is also frequently comorbid
with depression and other psychiatric disorders [2, 3]. The
personal suffering associated with PTSD, coupled with
residual symptoms and functional impairments that persist
even after pharmacological and behavioral treatments,
results in major financial and societal costs [4, 5]. A better
understanding of brain abnormalities that underlie PTSD is
needed to develop more effective treatments.

Behavioral and functional neuroimaging studies have
linked posttraumatic stress symptom (PTSS) to abnormal
fear extinction learning, exaggerated threat detection,
deficient context processing, and impaired emotion reg-
ulation [6]. Several structural magnetic resonance ima-
ging (sMRI) studies comparing PTSD patients to controls
report smaller volumes of brain regions related to these
emotion functions, such as the hippocampus [7], cingu-
late, insula, and prefrontal cortices [8–13]; however, these
results are inconsistent [14–16]. In some studies, volumes
of emotion-related regions were also negatively corre-
lated with PTSS severity, suggesting that smaller volumes
of emotion-related cortical regions may underlie PTSD
pathophysiology [12]. Far less is known about effects of
PTSD on volumes of other cortical regions. Some evi-
dence points to reduced volumes in regions of parietal,
temporal, and occipital cortices of PTSD patients
[13, 17, 18]. However, these findings have not been
replicated and remain tentative [19], possibly due to
small sample sizes or heterogeneity of samples and ana-
lyses across studies. Identification of cortical regions
with PTSD-related structural differences may be
improved with analyses of large samples from multiple
PTSD cohorts, which can provide greater statistical
power, robust results, improved generalizability, and
precise effect size estimates. Large samples also permit
nuanced analyses that can uncover underlying diagnostic
heterogeneity by testing interactions with clinical
variables.

Existing PTSD meta-analyses, based on group
descriptive statistics of volumetric data, focus only on
emotion-related prefrontal, limbic, and insular cortical
regions frequently reported in individual studies. These
meta-analyses report, for example, smaller anterior cin-
gulate cortex (ACC) [20, 21] and total brain volume
[22, 23] in PTSD patients, but most cortical regions
remain largely unstudied. This has resulted in limited
understanding of regional effects of PTSD over the full
extent of cortex. Meta-analyses using voxel based

morphometry (VBM), from either group descriptive sta-
tistics or whole brain data, report lower gray matter den-
sity (GMD) in PTSD patients not only in ACC [24–28],
superior frontal (SFG) [26–28], and insular (IG) [24, 26]
gyri, but also in middle temporal (MTG) [26–28], lingual
(LING) [27], fusiform [27], and parahippocampal [24]
gyri. These GMD findings suggest that PTSD structural
abnormalities may extend beyond emotion-related cortical
regions. However, spatial normalization, smoothing, and
statistical approaches used in group VBM comparisons
can introduce confounds [29]. Consequently, VBM find-
ings of structural differences provide indirect evidence
that requires confirmation with more direct volumetric
measurements [30].

It is also important to consider that existing meta-analyses
using descriptive statistics have limited capacity to investigate
confounding factors. For example, depression is frequently
comorbid with PTSD and has been independently associated
with reductions in cortical volume [31–33], GMD [34], and/or
thickness [35] in prefrontal, cingulate, insular, and temporal
lobe regions. Thus, depression-related cortical alterations may
overlap with PTSD-related alterations [25] and may be a
possible confound in PTSD studies. However, volumetric
meta-analyses have not addressed interactions of depression
with PTSD.

In an attempt to more comprehensively investigate cortical
regional volume abnormalities in PTSD patients, we per-
formed a multi-cohort analysis of volumetric data of all cor-
tical regions in 1379 PTSD patients and 2192 controls
without PTSD. In contrast to previous meta-analyses using
published data that may be biased by the “file drawer pro-
blem”, i.e., contradictory and null results are less likely to be
published, we harmonized participants’ whole cortical data
irrespective of prior publication status to preclude inflation of
effect size due to exclusion of non-significant or contradictory
findings. To minimize noise from variability in neuroimaging
processing methods, all laboratories implemented a standar-
dized image processing and quality control pipeline devel-
oped by the ENIGMA Consortium which has been used in
large-scale studies to successfully identify cortical structural
abnormalities in many psychiatric disorders [35–37]. Fur-
thermore, unlike previous meta-analysis approaches that tes-
ted effects across cohorts using group statistics for each
cohort, we used a mega-analysis approach in which the data
of individual subjects were centralized, and the effect of
cohort was modeled using multiple linear regression [38].
This mega-analysis approach enhanced detection of PTSD-
related volumetric differences and increased power to account
for factors that may confound PTSD differences. Almost all
(42 of 44) cohorts in the current study included evaluations of
depression symptoms, permitting study of potential con-
founding effects of comorbid depression on cortical volumes
of PTSD patients to test the specificity of PTSD effects.
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Overall, we attempted to systematically examine all cortical
regions for volumetric abnormalities in PTSD patients.

Methods

Samples

Clinical and imaging data from 3571 individuals were
collected from 44 cohorts assessed in 32 laboratories across
seven countries. Descriptive information on the samples is
summarized in Supplementary Table 1. Inclusion and
exclusion criteria for each cohort are summarized in Sup-
plementary Table 2. Depending on the cohort, current
PTSD was diagnosed according to Diagnostic and Statis-
tical Manual of Mental Disorders (DSM) IV or V criteria,
using the following standard instruments: Clinician-
Administered PTSD Scale-IV (CAPS-4; 24 cohorts,
DSM-IV), CAPS-5 (7 cohorts, DSM-V), Structured Clinical
Interview (SCID-4; 5 cohorts, DSM-IV), Mini International
Neuropsychiatric Interview 6.0.0 (3 cohorts, DSM-IV),
PTSD Checklist-4 (PCL-4; 3 cohorts; DSM-IV), PCL-5 (2
cohorts; DSM-V), PTSD Symptom Scale (1 cohort, DSM-
IV), Schedule for Affective Disorders and Schizophrenia for
School-Age Children (1 cohort, DSM-IV), Diagnostic
Interview Schedule for Children (1 cohort, DSM-IV),
UCLA PTSD Reaction Index (1 cohort, DSM-IV), and
Anxiety Disorders Interview Schedule (1 cohort, DSM-IV).
The anonymized data were aggregated at the University of
Michigan with prior approval of the Institutional
Review Board.

Imaging acquisition and processing

High resolution T1-weighted brain sMRI scans were
acquired at contributing laboratories and processed with
standardized ENIGMA Consortium protocols. In brief,
sMRI images were processed using the automated Free-
Surfer processing stream (version 5.3 in 36 cohorts, 6.0 in 7
cohorts, and 5.1 in 1 cohort) to create individual subject
thickness maps. Each hemisphere was parcellated into 34
cortical regions of interest (ROIs) using the
Desikan–Killiany atlas. FreeSurfer defines the volume of
each ROI by multiplying cortical thicknesses at vertices in
the region by the surface area across all vertices. ROI
volumes and intracranial volume (ICV) were derived in
subjects’ native space. Segmentations of gray and white
matter and parcellations of ROIs were visually inspected
using ENIGMA imaging quality control protocols (http://
enigma.ini.usc.edu/protocols/genetics-protocols). ROIs with
segmentation or parcellation errors were excluded from
analysis. Five cohorts included 391 children (6–17 years,
12.6 ± 3.0 years). Previous studies of PTSD effects on

cortical volumes in children have also yielded inconsistent
findings [12, 18], so we studied PTSD abnormalities across
all ages. Children’s data were processed and inspected in
the same way as adults, based on previous validations of
FreeSurfer processing for the above age range [39, 40].

Statistical analyses

First, a mixed effects model mega-analysis of individual
subject data from all cohorts was used to test for cortical
volume differences in each ROI between PTSD and control
groups. Age, sex, and ICV were included as fixed-effect
covariates. A random intercept was fitted for each cohort
and scanner. Interactions of age by PTSD and sex by PTSD
were added to the model to examine effects of these factors
on group differences. The “lmer” function in the R package
“lme4” was used.

Second, associations between ROI volumes and a dimen-
sional PTSS severity were examined. Instruments for asses-
sing PTSS varied by cohort. Score homogenization was
accomplished by calculating the percentage of the severity
score relative to the maximum score possible for each
instrument (Supplementary Table 3). Most (36 of 44, Sup-
plementary Table 2) cohorts included trauma-exposed control
subjects whose PTSS severities were assessed. Consistent
with distributions of PTSS of other trauma-exposed popula-
tions [41], the homogenized PTSS severity scores of
2535 subjects from both PTSD and control groups were
continuously distributed and the number of subjects declined
progressively with increasing scores (Supplementary
Fig. 1A). The Spearman’s rank-order correlation was used in
a partial correlation analysis to examine associations between
cortical volume and PTSS severity, with adjustments for
cohort, scanner, age, sex, ICV, and assessment instrument.

Third, the effects of comorbid depression on PTSD-
related cortical volume alterations were examined. A binary
index distinguishing high vs. low depression symptom
severity was defined based on the questionnaire-specific
severe depression cut-off scores or the depression diagnosis
provided by SCID (Supplementary Table 3). Subjects with
depression information were divided into high (n= 499) vs.
low (n= 2713) depression symptom severity groups. Cor-
tical volumes of PTSD vs. control subjects from these
cohorts were compared using the same mixed effects model
mega-analysis with and without an additional fixed factor of
the depression symptom severity index to study the con-
founding effect of depression on PTSD group differences.
Then, the interaction between PTSD and depression
symptom index was further examined.

All measures are reported as mean ± standard deviation.
Effect size was calculated using a standardized coefficient,
which was the coefficient from the model with all con-
tinuous variables standardized [42]. A false discovery rate
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(FDR) was used for multiple comparisons correction across
68 cortical regions. FDR is preferred over Bonferroni cor-
rection for multiple testing correction in many fields,
including imaging research [27, 28, 35–37], because Bon-
ferroni correction is overly conservative and likely leads to
false negative results [43]. An FDR corrected P value (often
known as a q value) was calculated using the
Benjamini–Hochberg procedure [44]. An FDR corrected
P value < 0.05 was considered significant. All statistical
analyses were performed using R v3.3.1.

Results

Sample characteristics

Male and female subjects between 6 and 85 years old were
studied. The number of male and female subjects in PTSD
and control groups did not differ significantly, but mean age
was significantly higher in the PTSD group (Table 1). The
PTSD group had significantly greater PTSS scores and
higher comorbid depression than controls (Table 1).
Homogenized PTSS scores were significantly greater in the
high vs. low depression symptom group (51.5 ± 20.6 vs.
22.4 ± 22.2; T= 25.6, degree of freedom (df)= 622.2, p <
0.00001), but did not differ between males vs. females
(27.0 ± 24.2 vs. 28.7 ± 25.1, T= 1.65, df= 1675.8, p=
0.099) and were not correlated with age (Pearson correla-
tion R=−0.014, df= 2525, P= 0.49).

Cortical volume differences between PTSD and
control groups

ROI volume means, standard deviations, effect sizes, and
significance levels for differences between PTSD and

control groups are reported in Table 2 and Supplementary
Table 4. After adjusting for age, sex, ICV, cohort, and
scanner, PTSD subjects had significantly smaller volumes
bilaterally in the lateral and medial orbitofrontal gyrus
(LOFG and MOFG), IG, precuneus, and superior temporal
gyrus (STG). PTSD patients also had smaller volumes in
left rostral middle frontal gyrus (RMFG), rostral and caudal
ACC (RACC and CACC), posterior cingulate cortex
(PCC), and banks of the superior temporal sulcus (STS-
banks). Finally, PTSD patients had smaller volumes in
right SFG, pars orbitalis of inferior frontal gyrus (IFG-
PORB), MTG, superior and inferior parietal gyrus (SPG
and IPG), and LING (Fig. 1). ICV did not differ between
groups (Table 1). The I2 from Higgins Heterogeneity tests
ranged between 0 and 48.3 across all regions, indicating
low to moderate heterogeneity across cohorts (Supple-
mentary Table 5).

Sex and age interactions with PTSD

Main effects of age and sex were significant in almost all
regions (Supplementary Table 5). Interactions between sex
and PTSD were not significant in any region; however,
interactions between age and PTSD were significant bilat-
erally in MTG, left inferior temporal gyrus (ITG), and right
fusiform and parahippocampal gyri (Table 3). To eliminate
the effect of age difference between groups, the analysis was
repeated in an age-matched subsample (35.2 ± 11.1 years in
PTSD vs. 34.4 ± 12.1 years in control, T= 1.80, df= 2776.3,
p= 0.07) obtained by excluding the two youngest cohorts and
the one eldest cohort. PTSD by age interactions were no
longer significant in any region, but volumes of bilateral
LOFG and STG, left PCC, and right SFG, IFG-PORB, LING,
and MTG remained significantly smaller in the PTSD patients
vs. age-matched controls across ages (Table 3).

Table 1 Demographics, symptoms and ICV of PTSD and control groups.

PTSD Control Difference P value

N (%) 1379 (39.5%) 2192 (60.5%)

Female N (%) 554 (40.4%) 923 (42.2%) χ2= 1.02 (df= 1) 0.31

Age (years) 36.0 ± 14.1 34.3 ± 15.5 T= 3.35 (df= 3101) P= 0.0008*

Age range (years) 6–82 6–85

PTSD severity 49.8 ± 16.7 10.5 ± 12.8 T= 64.91 (df= 2009) <0.0001*

N of depression High/Low 397/860 102/1852 χ2= 403.04 (df= 1) <0.0001*

N of cohorts 43 42

N of scanners 63 60

ICV (mm3) 1491977 ± 212659 1492371 ± 223097 T= 0.05 (dfa= 2813.2) P= 0.959

Data are reported as mean ± standard deviation.

df degree of freedom.

*: Significant at P < 0.05 level.
aWelch approximation to the degrees of freedom (df) is used.
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Correlations between PTSS severity and cortical
volumes

Cortical volumes of bilateral LOFG, left STG, and right
SPG, IG and LING were significantly negatively correlated
with PTSS severity scores from the pooled PTSD and
control subjects (Table 4, Supplementary Table 6, Supple-
mentary Fig. 2). The correlations for bilateral LOFG, left
STG, and right SPG were consistent with significant
negative associations of cortical ROI volume and PTSS
severity in the same linear mixed effects model analyses
used for group comparisons (Supplementary Table 6, Sup-
plementary Fig. 1B-F). When further examining the same
correlation in the PTSD group alone, the above ROI
volumes remained negatively correlated with PTSS sever-
ity, but no correlations were significant after FDR correction

(Supplementary Table 6). This might be attributed to the
reduced number of subjects and range of symptom severity.

Effect of depression on PTSD-related differences in
cortical volumes

When the binary index of depression symptom severity was
added to the analytical model, PTSD effects remained sig-
nificant bilaterally in the LOFG, whereas differences in
right SFG and LING, and left CACC became non-
significant (Table 5, Supplementary Table 7). Depression
symptom severity and ROI volumes were significantly
inversely related in left pars opercularis of IFG (IFG-POPE)
and STG, and right IG and SPG. Negative effect sizes in the
above regions for both PTSD and depression suggested
greater symptom severity was associated with smaller

Table 2 Cortical regions with significant volume differences between PTSD and control subjects.

PTSD Control PTSD vs. Control

Brain regionsa N Mean (mm3) SD (mm3) N Mean (mm3) SD (mm3) Diff. (mm3) Effect sizeb FDR P

Frontal regions

R LOFG 1259 7368.940 1137.590 2079 7562.397 1234.104 −193.456 −0.111 0.000*

R MOFG 1232 5131.391 819.555 2071 5222.223 844.395 −90.831 −0.067 0.039*

R IFG-PORB 1269 2696.327 497.214 2092 2764.559 515.613 −68.232 −0.086 0.020*

R SFG 1211 21834.360 3438.285 2017 22431.852 3589.712 −597.492 −0.082 0.008*

L LOFG 1265 7565.540 1102.285 2089 7765.323 1162.551 −199.783 −0.107 0.001*

L MOFG 1250 5160.526 889.396 2082 5288.258 907.856 −127.733 −0.068 0.038*

L RMFG 1256 15829.645 2737.385 2081 16311.831 2959.738 −482.186 −0.062 0.039*

Insular regions

R IG 1118 6780.865 1006.828 1880 6847.068 974.675 −66.203 −0.073 0.039*

L IG 1197 6853.961 1050.529 2014 6962.180 1112.211 −108.219 −0.066 0.036*

Cingulate regions

L RACC 1258 2684.630 589.660 2090 2758.639 596.734 −74.009 −0.074 0.047*

L CACC 1266 1848.427 495.657 2090 1939.267 525.090 −90.840 −0.098 0.030*

L PCC 1270 3242.812 590.116 2095 3341.209 626.234 −98.397 −0.078 0.039*

Temporal regions

R STG 1209 11434.388 1684.942 2035 11652.213 1787.315 −217.825 −0.081 0.021*

R MTG 1249 11768.208 1932.620 2074 11941.835 2240.106 −173.627 −0.075 0.020*

L STG 1207 12107.253 1911.582 1989 12438.862 1913.769 −331.609 −0.089 0.018*

L STS-banks 1122 2538.936 513.020 1879 2631.318 562.580 −92.382 −0.084 0.039*

Parietal regions

R precuneus 1258 10119.110 1660.468 2091 10336.908 1758.257 −217.798 −0.065 0.038*

R SPG 1153 13072.242 2171.277 1974 13293.998 2176.036 −221.756 −0.068 0.039*

R IPG 1239 15102.197 2586.341 2066 15469.810 2754.932 −367.613 −0.065 0.041*

L precuneus 1263 9713.105 1606.806 2093 9909.710 1672.397 −196.605 −0.061 0.041*

Occipital regions

R LING 1186 6786.013 1187.746 1973 6994.104 1187.540 −208.091 −0.110 0.006*

*: PTSD vs. control difference significant at FDR corrected P < 0.05 level.
a“L” refers to left hemisphere, and “R” means right hemisphere.
bThe standardized coefficients of linear mixed model were reported for effect sizes.
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volumes for both conditions. Interaction of PTSD and
depression on cortical volume was not significant in any
region. Finally, for subjects with low depression symptoms,
the PTSD-associated difference remained significant in left
LOFG (Supplementary Table 7).

Discussion

This study is the first mega-analysis of PTSD effects on
volumes of regions that span the entire cortex. PTSD was
associated with smaller volumes in emotion-related prefrontal,
limbic, and insular regions, but also in temporal, parietal, and
occipital regions. Bilateral LOFG, left STG, and right IG,
SPG and LING volumes were smaller in the PTSD group
using a categorical diagnostic classification, and were nega-
tively associated with PTSS severity, a dimensional variable.
The corroborating categorical and dimensional results for
these regions strengthen confidence in the findings [45, 46]. In
addition, the categorical PTSD classification was associated
with smaller volume in MOFG and precuneus bilaterally,
SFG, IFG-PORB, STG, MTG, and IPG in the right

Fig. 1 Cortical volume differences between PTSD and control sub-
jects. Light blue indicates regions with smaller volume in PTSD group.
Dark blue indicates regions which are smaller in PTSD group, and their
volumes are negatively associated with harmonized PTSS severity scores.

Table 3 Significant interaction of age and PTSD diagnosis in cortical volumes.

All subjects Age-matched subsamplea

Age effect Age effect PTSD vs. control

Brain regions Effect sizeb FDR P Interaction FDR P Effect sizeb FDR P Interaction FDR P Effect sizeb FDR P

Frontal regions

R LOFG −0.371 3.0 × 10−95* 0.070 −0.302 5.4 × 10−99* 0.918 −0.093 0.012†

R IFG-PORB −0.388 1.3 × 10−82* 0.096 −0.314 1.8 × 10−80* 0.876 −0.083 0.046†

R SFG −0.436 1.4 × 10−137* 0.959 −0.350 9.1 × 10−130* 0.930 −0.090 0.012†

L LOFG −0.413 9.8 × 10−111* 0.121 −0.329 1.0 × 10−111* 0.918 −0.085 0.023†

Cingulate regions

L PCC −0.353 6.1 × 10−62* 0.504 −0.277 2.9 × 10−58* 0.821 −0.088 0.046†

Temporal regions

R STG −0.342 1.1 × 10−67* 0.305 −0.273 7.2 × 10−68* 0.975 −0.080 0.046†

R MTG −0.358 1.6 × 10−89* 0.041# −0.282 2.2 × 10−87* 0.803 −0.080 0.029†

R fusiform −0.273 2.6 × 10−42* 0.040# −0.206 1.4 × 10−38* 0.876 −0.064 0.111

R parahippocampal −0.126 7.1 × 10−15* 0.040# −0.091 4.3 × 10−13* 0.821 −0.010 0.702

L STG −0.360 2.8 × 10−71* 0.437 −0.285 7.0 × 10−69* 0.930 −0.084 0.046†

L MTG −0.355 2.2 × 10−73* 0.040# −0.281 7.5 × 10−72* 0.821 −0.050 0.179

L ITG −0.301 4.5 × 10−52* 0.040# −0.237 1.5 × 10−49* 0.599 −0.059 0.127

Occipital regions

R LING −0.286 1.0 × 10−39* 0.119 −0.217 1.0 × 10−35* 0.881 −0.118 0.012†

*: Significant age main effects at FDR corrected p < 0.05 level.
#: Significant interaction of age and PTSD diagnosis at FDR corrected P < 0.05 level.
†: Significant PTSD main effect at FDR corrected P < 0.05 level in age-matched subsamples.
aAnalysis after matching mean ages of PTSD and control groups by excluding the single cohort on older adults, ADNIDOD, and two youngest
cohorts, NIRL and FEAR.
bThe standardized coefficients of linear mixed model were reported for effect sizes.
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hemisphere, and RMFG, RACC, CACC, PCC, IG, and STS-
banks in the left hemisphere. However, volumes of these
regions were not significantly correlated with PTSS severity.

Of the above six regions that had significant associations
between cortical volumes and both categorical PTSD
diagnosis and dimensional PTSS severities, bilateral LOFG
volumes remained significantly negatively associated with
PTSD after accounting for depression symptom severity.
Left LOFG volume was smaller in PTSD subjects with low
depression symptoms. By contrast, right LING volumes
were no longer significantly associated with PTSD after
accounting for depression. Interestingly, volumes of left
STG, right IG and right SPG were significantly smaller in
the group with high depression symptoms, suggesting that
some variance in the model was attributed to comorbid
depression rather than PTSD in these regions. Finally, fur-
ther comparisons from subgroups of age-matched PTSD
and control subjects suggest that smaller PTSD-related
volumes of bilateral LOFG, left STG, and right LING were
not influenced by between-group differences in age. Smaller
LOFG volumes in PTSD patients across all ages are con-
sistent with previous findings in both adults [13, 17] and
children [12]. However, the significant interaction of age
with PTSD in temporal regions might be attributed to
between-group differences in age.

Depression effects on PTSD-related smaller cortical
volumes

Studies have reported that PTSD and depression are both
associated with smaller LOFG volume [13, 17, 31–33]. We
found smaller bilateral LOFG volume was linked to PTSD
pathophysiology independently of comorbid depression.
Consistent with this possibility, prior studies report that
lower GMD in LOFG is negatively associated with cumu-
lative trauma exposure [13], and post-to-pre trauma reduc-
tion of GMD in LOFG negatively correlates with PTSS
severity [47]. Adding to previously reported volume
reduction of STG [17] and IG [8], we found smaller
volumes of right SPG and LING in PTSD patients, which
are consistent with GMD differences in SPG [48] and LING
[27, 48]. When adjusting for depression symptoms, LING
volumes were no longer significantly associated with
PTSD; moreover, smaller SPG, IG, and STG volumes were
significantly related to comorbid depression. These results
have different potential interpretations. First, we found
greater depression symptom severity in PTSD patients and
higher PTSS in depressed subjects, suggesting a positive
association between PTSD and depression symptoms. This
raises a possibility that shared variance of the two variables
lowered the statistical power to true PTSD effects [49].
Second, it is possible that depression symptom and PTSS
scales measure symptoms common to both disorders
including negative emotions, avoidance symptoms, or other
latent construct(s). Third, it is possible that depression
symptoms and PTSS are mediated, in part, by shared brain

Table 5 Cortical regions with significant main effects of PTSD or
depression in the analysis including both PTSD diagnosis and
depression symptom severity classifications.

PTSD Depression

Brain regions Effect sizea FDR P Effect sizea FDR P

Frontal regions

R LOFG −0.093 0.020* −0.057 0.322

R SFG −0.066 0.143† −0.088 0.107

L LOFG −0.094 0.020* −0.065 0.300

L IFG-POPE 0.024 0.718 −0.143 0.032#

Insular regions

R IG −0.025 0.699 −0.128 0.032#

Cingulate regions

L CACC −0.106 0.114† 0.005 0.971

Temporal regions

L STG −0.049 0.319 −0.128 0.032#

Parietal regions

R SPG −0.022 0.718 −0.129 0.032#

Occipital regions

R LING −0.076 0.232† −0.070 0.322

*: PTSD effects were significant at FDR corrected P < 0.05 level in
analyses with and without the depression variable.
†: PTSD effects were significant at FDR corrected P < 0.05 level in
analyses without the depression variable, but were insignificant in
analyses with the depression variable.
#: Depression effects were significant at FDR corrected P < 0.05 level.
aThe standardized coefficients of linear mixed model were reported for
effect sizes.

Table 4 Cortical regions with significant correlations of PTSS severity
and regional volumes.

Brain regions N Ra FDR P

Frontal regions

R LOFG 2475 −0.060 0.039*

L LOFG 2479 −0.066 0.038*

Insular regions

R IG 2210 −0.065 0.038*

Temporal regions

L STG 2362 −0.066 0.038*

Parietal regions

R SPG 2295 −0.059 0.050*

Occipital regions

R LING 2319 −0.065 0.038*

*: Significant at FDR corrected P < 0.05 level.
aSpearman correlation coefficients of cortical volume and homogenized
PTSS severity scores in partial correlation analyses adjusting for cohort,
scanner, age, sex, ICV, and the assessment instrument that was used.
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abnormalities. If any or all of these explanations are valid,
our findings would suggest that smaller IG, STG, SPG and
LING could be associated with PTSD pathophysiology.
Alternatively, the current results cannot rule out the possi-
bility that diminished volumes of these regions may be
associated with depression, but not PTSD.

Implications for PTSD neurocircuits

Prior evidence supports associations between cortical
structural alterations and PTSS [19], and potential links
between altered cortical structure and brain function in
PTSD patients [50, 51]. Deficits in emotion processing
circuits and top-down prefrontal dysregulation of these
circuits are linked to PTSD [6]. In this context, LOFG plays
an important role in integrating sensory and limbic inputs
and in top-down prefrontal inhibitory regulation of emotion
and sensory regions [52, 53]. Patients with OFG lesions
demonstrate attention deficits and impaired response inhi-
bition to emotional stimuli [54]. Thus, low LOFG volume
may impair inhibitory top-down regulation of emotion and
sensory attention. If the current findings of smaller IG, STG,
SPG, and LING volumes also contribute to PTSD patho-
physiology, and if IG, STG, and SPG volumes are not
solely related to depression, volume alterations in these
regions may also contribute to emotion and/or sensory
memory dysfunctions in PTSD. Reduced GMD in anterior
IG has been linked to greater PTSS including intrusive
memories [55, 56], which may explain anterior IG over-
responsiveness to negative emotions in PTSD patients [57].
The present findings of smaller SPG, STG, and LING
volumes implicate sensory information processing systems
in PTSD. SPG contributes to a dorsal visual processing
stream for spatial and movement information [58, 59]. STG
is a multimodal region linked to audiovisual integration of
emotions and is functionally connected to the amygdala—a
subcortical emotion processing region that is fundamental to
PTSD pathophysiology [60, 61]. LING is involved in visual
memory and processing facial and spatial information.
Reduced GMD and functional connectivity with other
visual areas co-exist in the LING of sexual assault PTSD
patients and are associated with re-experiencing symptoms
and self-blame [62]. Lower volumes in SPG, STG, and
LING may contribute to PTSD symptoms that involve
integration of auditory, visual, and emotional processing.
These regions may provide sensory substrates for intrusive
memories in PTSD and other psychiatric disorders includ-
ing depression [63]. Consistent with this hypothesis, lower
GMD in temporal, parietal and occipital regions negatively
correlates with the severity of intrusive memories [64]. This
perspective suggests that cortical contributions to PTSD
involves sensory and memory processing regions that have
been largely overlooked in PTSD studies.

Limitations

The present study has limitations that are pertinent for the
generalization and specificity of findings. Data were derived
from cohorts that varied in image acquisition, processing,
and clinical assessment instruments. We adjusted for data
source statistically and had acceptable heterogeneities of
cortical regional volumes across cohorts. Additional factors
could affect cortical volume, e.g., cohort stratification,
medications, duration of illness, trauma type, age at trauma
exposure, trauma exposure of control subjects, and other
comorbidities including anxiety disorders and substance
abuse, which were not available for many cohorts and not
analyzed. The cross-sectional data cannot distinguish the
volume differences that occurred before vs. after trauma
exposure. Further studies are needed to examine con-
founding effects of comorbid disorders, and to identify age-
specific PTSD abnormalities.

Conclusion

This is the largest mega-analysis of cortical volumes in
PTSD patients to date. We report smaller LOFG volumes in
PTSD patients across all ages that are independent of
depression. We found that reduced volumes of SPG and
LING, in addition to previously reported IG and STG, may
be linked to posttraumatic stress and/or comorbid depres-
sive symptomatology. Collectively, these regions contribute
to emotion, memory, and sensory processing circuits, and to
top-down regulation of these circuits. Our findings support
current thinking on deficits in emotion neurocircuits in
PTSD and shed new light on the involvement of sensory
processing brain circuits in the pathophysiology of PTSD.
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