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Abstract
Traumatic brain injury (TBI) is a pervasive problem in the United States and worldwide, as the number of diagnosed
individuals is increasing yearly and there are no efficacious therapeutic interventions. A large number of patients suffer with
cognitive disabilities and psychiatric conditions after TBI, especially anxiety and depression. The constellation of post-injury
cognitive and behavioral symptoms suggest permanent effects of injury on neurotransmission. Guided in part by preclinical
studies, clinical trials have focused on high-yield pathophysiologic mechanisms, including protein aggregation,
inflammation, metabolic disruption, cell generation, physiology, and alterations in neurotransmitter signaling. Despite
successful treatment of experimental TBI in animal models, clinical studies based on these findings have failed to translate to
humans. The current international effort to reshape TBI research is focusing on redefining the taxonomy and characterization
of TBI. In addition, as the next round of clinical trials is pending, there is a pressing need to consider what the field has
learned over the past two decades of research, and how we can best capitalize on this knowledge to inform the hypotheses for
future innovations. Thus, it is critically important to extend our understanding of the pathophysiology of TBI, particularly to
mechanisms that are associated with recovery versus development of chronic symptoms. In this review, we focus on the
pathology of neurotransmission after TBI, reflecting on what has been learned from both the preclinical and clinical studies,
and we discuss new directions and opportunities for future work.

Introduction

Traumatic brain injury (TBI) affects 2.8 million people
annually in the U.S. [1], and over 10 million people
worldwide [2]. The economic burden of TBI, both in direct
healthcare costs and lost revenue, is enormous, as injured
persons often fail to return to work and incur significant

morbidity and mortality [3]. The past two decades have
produced over 200 Phase II or higher interventional trials
for TBI. The pathological mechanisms targeted in TBI
clinical trials parallels trends in preclinical research, falling
into several general categories, including mitigating
damage-related tauopathy [4], acute intervention for phy-
siologic stabilization [5], cell replacement strategies to re-
establish plasticity [6, 7], attenuating acute (minutes to
days), subacute (days to weeks) and chronic (months to
years) inflammation [8, 9], restoring cell and tissue meta-
bolism [10], and modulating neurotransmission [11, 12]
(Fig. 1).

A common theme among TBI clinical trials is their
failure. While some failed due to low enrollment or change
in sponsor priorities, many were terminated for futility.
Twenty-four percent of the interventional clinical trials in
the last decade address neurotransmitter systems (Fig. 2);
the small successes in TBI clinical research thus far origi-
nate from trials that fix on neurotransmitter dysfunction,
restore electrical activity, or treat post-traumatic depression
[12–16]. There are over 40 ongoing or completed registered
clinical trials targeting major neurotransmitter systems,
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encompassing more than 4000 patients; the published,
completed trials are summarized below and in Table 1.
Inspired by this theme, this review focuses on preclinical
and clinical studies of neurotransmitter systems after TBI,
the lessons learned from this work, and consideration of
new leads for the field.

Pathophysiology of TBI: state of the field

TBI severity is graded by a clinical assessment of the
extent of coma, the Glasgow Coma Scale (GCS), which
classifies patients using a minimum score of 3 to a max-
imum score of 15 [17, 18]. This score was designed
as a clinical assessment tool, but is routinely used to
categorize patients for inclusion in clinical trials. Using
this nomenclature, the majority of TBIs are categorized
as mild (GCS 13−15), and may include a brief loss of
consciousness, confusion, disorientation, and memory
dysfunction, frequently with no abnormalities on conven-
tional diagnostic imaging [17]. Mild TBI typically
results from mechanical or rotational force to the
head resulting in a period of altered sensorium, including
sports-related concussions. In contrast, moderate (GCS
9−12) and severe (GCS ≤ 8) TBIs are more often associated
with high-velocity impacts (motor vehicle accidents) or
significant acceleration−deceleration injury. This nomen-
clature for categorizing TBI, although universally used,

Fig. 1 Strategies to treat acute and chronic TBI currently under
investigation (counterclockwise from top left). Molecular targeting of
damage-related tauopathy to delay or prevent chronic cognitive effects
of TBI. Improving treatments for elevated intracranial pressure and
new diagnostics to guide measured improvements in acute patient
management. Pharmacological manipulation of transmitter systems to
alleviate cognitive and behavioral symptoms. Molecular targeting of

acute and chronic inflammatory responses, to mitigate secondary
damage. Pharmacological and dietary interventions to support cell and
tissue metabolism and alleviate endocrine dysfunction. Manipulating
endogenous repair mechanisms to boost neurogenesis or otherwise
replace or repopulate damaged tissue and re-establish plasticity. In this
review, we focus on the pathophysiological changes on neuro-
transmitter systems and the studies targeting neurotransmission

Fig. 2 Completed and ongoing clinical trials for traumatic brain injury.
Of 203 interventional clinical trials, 3% are targeting Tau aggregation
or other tauopathy, 34% acute physiological disruption or intracranial
pressure, 23.6% neurotransmitter systems, 9.9% metabolic interven-
tions, 7.4% inflammation or immune function, 4.9% neurogenesis or
stem cell therapy, and 17.2% employ a variety of other strategies
including behavioral interventions, transcranial stimulation, and/or
neuromodulation
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lacks an appreciation of the pathophysiology behind
injury [19].

Despite the static TBI taxonomy, much has been learned
about the pathophysiology of TBI. TBI involves both the
primary physical injury to brain tissues and molecular
cascades that propagate injury into surrounding tissue, a
phenomenon known as secondary injury (reviewed in refs.
[20, 21]). These cascades include unregulated neuro-
transmitter and ion release, cell swelling, diffuse axonal
injury, free radical production, mitochondrial dysfunction,
inflammatory cytokines, and altered gene transcription
[20]. Secondary events further exacerbate the direct
consequences of primary injury [20, 22]. As a result,
TBI pathophysiology evolves over weeks to months,
making behavioral outcomes, particularly in mild injuries
without focal lesions, difficult to predict [23, 24]. Despite
the large gains in our understanding of the molecular
events occurring in the brain following injury, efforts to
translate these findings to clinical practice have almost
universally failed. The reasons for this are numerous, not
the least of which is crossing the wide gap from relatively
homogeneous research population to a highly diverse
clinical population [25].

Methodologies for studying TBI in humans include
behavioral and cognitive evaluations, ante-mortem imaging,
accessible tissue samples (including cerebrospinal fluid in
severe TBI), or postmortem analysis of structural and
molecular changes. However, research in humans is
challenging due to heterogeneity in injury severity and
physiology, covarying factors such as time from injury, age,
sex, lifestyle factors, comorbid illness, patient availability
for follow-up, and technical limitations [26–28]. Animal
models overcome some of these obstacles, but have
limitations as well. Preclinical TBI is performed under
anesthesia and some models require directly accessing the
brain [29]. Behavioral evaluations of many aspects of
executive function including attention, processing speed,
motivation, and response inhibition in rodents require labor-
intensive training of the rodents prior to testing [30]. While
there are inherent challenges in interpreting behavioral
changes in animal models, fundamental brain structures
and cellular organization are similar between rodent and
human and many behavioral endophenotypes are well
validated [30, 31].

There are four primary in vivo injury models in rodents:
fluid percussion injury, controlled cortical impact, weight-
drop acceleration impact, and blast injury [29]. These
models vary in the biomechanics of damage and progres-
sion of pathology, but produce similar cognitive and
behavioral deficits and changes in brain biochemistry [29].
Ultimately, different mechanisms of injury, i.e. direct
cortical impact versus blast, may converge on defects of
neurotransmission resulting in a similar spectrum ofTa

bl
e
1
(c
on

tin
ue
d)

S
tu
dy

tit
le

D
ru
g

N
eu
ro
tr
an
sm

itt
er

sy
st
em

N
S
ev
er
ity

T
im

in
ga

T
yp

e
of

st
ud

y
S
um

m
ar
y
of

st
ud

y
re
su
lts

R
ef
er
en
ce

N
o
di
ff
er
en
ce

in
de
pr
es
si
on

,
qu

al
ity

of
lif
e,

or
ou

tc
om

e
m
ea
su
re
s

E
ar
ly

ad
m
in
is
tr
at
io
n
of

se
rt
ra
lin

e
on

de
pr
es
si
ve

sy
nd

ro
m
es

S
er
tr
al
in
e

S
er
ot
on

in
99

M
od

er
at
e-

S
ev
er
e

S
ub

ac
ut
e

S
in
gl
e-
ce
nt
er

do
ub

le
-b
lin

d
pl
ac
eb
o-
co
nt
ro
lle
d
R
C
T

N
o
ch
an
ge

in
de
pr
es
si
ve

sy
m
pt
om

s
N
ov

ac
k
et

al
.

[1
54
]

Im
pa
ct

of
ea
rl
y
ad
m
in
is
tr
at
io
n
of

se
rt
ra
lin

e
on

co
gn

iti
ve

sy
m
pt
om

s
S
er
tr
al
in
e

S
er
ot
on

in
99

M
od

er
at
e-

S
ev
er
e

S
ub

ac
ut
e

S
in
gl
e-
ce
nt
er

do
ub

le
-b
lin

d
pl
ac
eb
o-
co
nt
ro
lle
d
R
C
T

N
o
im

pr
ov

em
en
t
in

co
gn

iti
ve

sy
m
pt
om

s
B
an
os

et
al
.

[1
57
]

A
ra
nd

om
iz
ed

co
nt
ro
lle
d
tr
ia
l
of

an
tid

ep
re
ss
an
t
co
nt
in
ua
tio

n
fo
r

m
aj
or

de
pr
es
si
on

fo
llo

w
in
g

tr
au
m
at
ic

br
ai
n
in
ju
ry

C
ita
lo
pr
am

S
er
ot
on

in
21

A
ll

C
hr
on

ic
S
in
gl
e-
ce
nt
er

do
ub

le
-b
lin

d
pl
ac
eb
o-
co
nt
ro
lle
d

ra
nd

om
iz
ed

co
nt
in
ua
tio

n
tr
ia
l

N
o
di
ff
er
en
ce

in
re
la
ps
e
ra
te
s

of
de
pr
es
si
on

R
ap
op

or
te
ta
l.

[1
56
]

T
re
at
m
en
ts
tr
at
eg
y
to

pr
ev
en
tm

oo
d

di
so
rd
er
s
fo
llo

w
in
g
tr
au
m
at
ic

br
ai
n

in
ju
ry

S
er
tr
al
in
e

S
er
ot
on

in
94

A
ll

S
ub

ac
ut
e

S
in
gl
e-
ce
nt
er

do
ub

le
-b
lin

d,
pl
ac
eb
o-
co
nt
ro
lle
d,

pa
ra
lle
l-

gr
ou

p
R
C
T

P
re
ve
nt
io
n
of

de
pr
es
si
on

on
se
t

w
ith

ou
t
ch
an
ge

in
ne
ur
op

sy
ch
ol
og

ic
al

ou
tc
om

es

Jo
rg
e
et

al
.

[1
6]

a T
im

e
af
te
r
in
ju
ry
:
ac
ut
e
=
w
ith

in
fi
rs
t
ho

ur
s
to

da
ys
;
su
ba
cu
te
=
w
ee
ks

to
m
on

th
s;
ch
ro
ni
c
=
6
m
on

th
s
or

gr
ea
te
r

998 J. L. McGuire et al.



cognitive and behavioral changes [32]. There is no single
in vivo model of TBI that is objectively superior to other
models at producing robust behavioral and cognitive
effects, and decisions regarding the selection of a preclinical
model may depend on injury mechanisms and study
objectives. In vitro models of TBI, including slice culture,
primary cell culture, and immortalized cell lines, permit a
more precise focus on specific aspects of injury mechanics
and cellular mechanisms [33]. In combination, these models
provide powerful tools for mechanistic studies of initial
damage responses, restoration of homeostasis, and long-
term neurochemical plasticity after TBI that are impossible
in human subjects.

Neurotransmission shapes behavior and
cognition after TBI

The strength and timing of excitatory and inhibitory
transmission (E/I balance) within neural circuits shapes

activity-dependent plasticity required for behavioral adap-
tation to environmental stimuli [34]. Repetitive activation at
excitatory synapses increases synaptic strength through
long-term potentiation (LTP). The balance of LTP and the
related phenomenon long-term depression (LTD) coordi-
nate changes in synaptic strength linked to learning and
memory. Neuroplastic function requires coordination of
pre- and postsynaptic neurons in cohesive circuits, as well
as diffusional signals from surrounding glia [11]. Driven by
preclinical findings, a fundamental theme in TBI research
is modulating neurotransmission to support and restore
adaptive plasticity, E/I balance, and the overall capacity
of the injured brain to respond appropriately to incoming
stimuli [35, 36].

Even TBIs categorized as mild may profoundly affect
learning and memory, concentration, and processing speed
[37, 38]. TBI may subtly impact multiple domains of
executive functioning, including goal identification, plan-
ning, behavioral flexibility, problem solving, self-aware-
ness, and insight [39]. These changes frequently result in

Fig. 3 Summary of temporal changes in neurotransmitter systems after
experimental TBI. In acute TBI, there are increases in extracellular
glutamate (green panel) and decreases in glutamate uptake due to
changes in excitatory amino acid transporter (EAAT) isoform
expression. Within hours after experimental TBI, there are decreases in
NMDA receptor subunits, and changes in AMPA receptor subunit
composition. Chronically, there is sustained depression of glutamate
signaling including changes in postsynaptic receptor composition,
decreased astroglial (red process) EAAT expression, and a shift in the
relative expression of neuronal and glial transporters. Changes in
GABA signaling (red panel) include an acute shift in the balance of
synaptic and extrasynaptic receptors acutely after injury. There is
chronic dysregulation of GABAergic tone with mechanisms that vary
by brain region, illustrated here as decreases in GABA receptor
binding. In cortex, excessive inhibitory control results from structural
change in pyramidal neurons. In subcortical regions, there is a change
in the composition and localization of GABA receptors that may

contribute to epileptogenic potential. For acetylcholine (Ach) (blue
panel), there is an initial unregulated release of ACh and decreases in
transporter density and receptor binding beginning as early as 1 h after
TBI. However there is chronic cholinergic hypofunction associated
with decreased evoked release of Ach and changes in acet-
ylcholinesterase activity. With norepinephrine (NE) (pink panel) there
is an immediate accelerated turnover of NE and concurrent down-
regulation of receptors. The accelerated turnover is quickly reversed
and remains suppressed weeks after injury, leaving chronic down-
regulation of NE receptors and associated decreased signaling. TBI
initiates changes in both receptor and transporter expression that reg-
ulate dopamine (DA) (orange panel) function. Acutely, elevated tissue
dopamine levels can remain elevated for weeks. However, there is
chronic dopaminergic hypofunction illustrated by changes in pre-
synaptic terminal dopamine recycling and decreases in DA tonic and
evoked release. Serotonin (purple panel) changes are characterized by
sustained decreases in both transporters and receptors after TBI
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impaired decision making, low frustration tolerance, and
difficulty returning to premorbid levels of function [39].
The effects of TBI on cognition and executive function can
be immediate and permanent [40].

Additionally, anxiety and depression frequently develop
after TBI [41, 42], sometimes months or years after injury
[41]. Post-TBI depression and anxiety are associated with
poor treatment response [43, 44], and frequently coincide
with cognitive symptoms [45]. The mechanisms underlying
post-TBI depression are unknown, but are not tied to injury
severity [46]. However, secondary processes after TBI
are independently implicated in depression, including
impaired neurogenesis [47], inflammation and microglial
activation [48], and glutamate system dysfunction [49]. As
with many chronic neurodegenerative conditions, post-TBI
neuropsychiatric and cognitive symptoms likely involve
damage to homeostatic mechanisms, ultimately resulting
in deterioration of the molecular machinery underlying
effective neurotransmission in response to environmental
demands.

As damage and recovery process are ongoing, the land-
scape of neurotransmission continues to evolve well into
chronic stages, months to years after injury (Fig. 3).
Understanding how regulation of transmitter systems is
altered after TBI, the progression of these changes over
time, and the cumulative impact of damage to transmitter
systems that work together to coordinate behavioral
responses will be instrumental in developing effective
treatment strategies. Here, we describe the current under-
standing of how TBI impacts major transmitter systems,
strategies implemented to mitigate the effects of TBI, and
lingering knowledge gaps within the field.

Glutamatergic neurotransmission in TBI

Glutamate, the predominant excitatory neurotransmitter in
the brain, signals through metabotropic and ionotropic
receptors localized to synaptic and extrasynaptic mem-
branes on neurons and glial. Extracellular glutamate levels
are regulated by a family of membrane-bound excitatory
amino acid transporters (EAATs) found on postsynaptic
neurons and astrocytes [50]. Glutamate release and reuptake
is tightly regulated to optimize synaptic transmission and
prevent excitotoxicity from excessive extracellular gluta-
mate [51]. Alterations in glutamate buffering and reuptake
modulate synaptic function, leading to neuroplastic changes
in learning and memory [52]. Thus, if acute deficits in
glutamate regulation become persistent, they may contribute
to the long-term cognitive and emotional deficits common
after TBI.

Data from both humans and animal models indicate that
in the initial minutes and hours, post-TBI, release of

glutamate and ions plays an important role in initiating
secondary injury cascades [53–56]. Elevated extracellular
potassium impairs astrocytic potassium conductance
essential for glutamate uptake and transporter-mediated
buffering [57, 58]. In severe injuries, high levels of extra-
cellular glutamate and impaired glial uptake contribute to
propagating waves of regional electrophysiological hyper-
activity followed by depolarization (cortical spreading
depolarizations, CSDs), that temporarily silences synaptic
activity [5, 59–61]. CSDs are often repetitive and associate
with increases in extracellular glutamate and lactate [59].
In severe injuries, high or intermittently high levels of
extracellular glutamate may continue for a week or longer
[54, 55], with the initial unregulated release of glutamate
followed by sustained depression of glutamate signaling
[62, 63] (Fig. 3).

Preclinical findings

In preclinical models of moderate-severe TBI, N-methyl-D-
aspartic acid (NMDA) glutamate receptor subunit expres-
sion is decreased within hours as NMDAR hyperactivity
is followed by receptor hypofunction [64, 65]. However, a
study of severe injury using a PET ligand selective for open
NMDA channels, 18F-GE-179, found an increase in open
NMDA channels within 5−6 days and an even more
widespread increase in NMDA channel activation 6 weeks
after injury [66]. After severe injury there is an initial
increase in expression of calcium-permeable AMPA
receptors, which may reverse later [67, 68]. Activity and
expression of glutamate transporters is also disrupted in
acute, mild-moderate injury, impairing uptake capacity [58,
69, 70] and glutamate cycling between astrocytes and
neurons. It is unknown whether changes in the cellular
patterns of EAAT expression, such as increased expression
of typically astroglial EAAT isoforms on neurons and
microglia, are pathological, compensatory, or both [71–73].
In human cortex, expression of EAAT2 on glial cells was
decreased within a day after TBI, while reduced expression
of EAAT2 was still evident in postmortem samples with
post-injury survival times of months or years [74].

Clinical findings

Clinical attempts to prevent acute neurotoxicity in
moderate-severe TBI by blocking NMDAR signaling failed
to improve outcomes [75, 76]. Although there are a number
of technical and methodological challenges associated with
these trials, they did not account for two key biological
factors. First, the rapid reversal from glutamatergic hyper-
excitability to hypoexcitability possibly resulted in drug
treatments further exacerbating glutamatergic hypofunction
[62, 77, 78]. Second, is a failure to appreciate the biology of
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synaptic versus extrasynaptic NMDA receptors [76, 79].
Blocking extrasynaptic NMDA signaling may initiate neu-
ronal apoptosis [76, 80], amplifying secondary damage after
injury. Ultimately, exclusive targeting of NMDA-mediated
glutamate signaling failed to re-establish an appropriate
excitatory (glutamate) and inhibitory (GABA) environment
that could positively impact recovery trajectory.

GABAergic neurotransmission in TBI

Inhibitory Gamma aminobutyric acid (GABA) transmission
balances excitatory glutamatergic signaling. E/I balance
integrates inhibitory and excitatory signaling through feed-
back (direct response to excitatory activity) and feed-
forward (stimulation of other GABAergic neurons)
mechanisms [34]. E/I balance represents a fundamental
biological process found in circuits throughout the CNS,
and perturbations of this factor typically yield dysfunction
of synapses and circuits, leading to alterations in behavior
and function [81].

Preclinical findings

GABA signals through ionotropic GABAA or GABAC

receptors or metabotropic GABAB receptors. GABAA

receptors are the most well studied of the GABA receptors
and are heteromeric pentamers derived from at least
19 separate proteins classified by sequence homology into
six classes [82]. GABAA receptors are targeted to synaptic
or extrasynaptic membranes by their subunit composition,
and synaptic or extrasynaptic localization of GABAA

receptors determines tonic and phasic inhibitory tone,
respectively [83, 84]. Increased expression of extrasynaptic
GABAA receptors increases GABAergic tone, but con-
currently reduces the phasic response [83]. Within a week
after TBI, there is a shift in the balance of synaptic GABAA

versus extrasynaptic GABA receptors [85, 86], summarized
in Fig. 3. This suggests a change in E/I balance or synaptic
scaling due to the differences in downstream signaling
following activation of these differentially localized recep-
tors. Twelve hours after moderate-severe TBI, GABAR
binding was decreased [87], while another group found
increased GABA receptor binding near the lesion center
several days after severe injury [66].

Taken together, these findings indicate a role for altera-
tions of GABA receptor expression and function in TBI.
Acute changes in the expression of genes regulating GABA,
glutamate, and E/I balance as part of the initial response to
TBI may stabilize through epigenetic mechanisms, leading
to long-lasting changes in homeostatic control [88].
Damage to mechanisms governing E/I balance and an
inability to either repair or compensate may ultimately lead

to inappropriate neural response and maladaptive plasticity
[11, 89].

E/I balance: a moving target

Preclinical findings

Changes in the cellular machinery regulating glutamatergic
and GABAergic signaling only provide indirect evidence
of altered E/I balance after TBI, while preclinical models
afford access to direct measurements of excitation and
inhibition in neural circuits after experimental injury.
Within hours of mild injury, hippocampal LTP is sup-
pressed, consistent with overall glutamatergic hypofunction
reported early in TBI [90–93]. Notably, changes in the brain
following injury are not limited to the lesion center, or even
adjacent areas, but may include widely distributed brain
circuits. For example, in disparate cortical regions,
decreased firing frequency, increased latency of evoked
response, and elevated action potential thresholds persist at
least several days after mild or moderate injury to the sen-
sory cortex [94–96]. Concurrently, there are differential
shifts in E/I balance within the hippocampal circuit and
impairment of LTP and NMDA-evoked currents in CA1
[97, 98]. Also within this timeframe, inhibitory signaling in
the amygdala is decreased, suggesting hyperexcitability in
subcortical structures regulating emotion [99].

Disruption of E/I balance continues to change over
weeks, months, and years, as TBI progresses through sub-
acute and chronic phases, although mechanisms underlying
these changes are not uniform across or within brain
regions. Two weeks after moderate-severe experimental
injury, exaggerated GABAergic inhibition in frontal cortex
is reversible by GABA inhibitors, but over time GABAergic
tone is restored and cortical hypo-excitation reflects hypo-
trophy in deep-layer cortical pyramidal neurons [100, 101].
In the dentate gyrus there is a gradual loss of phasic
GABAergic inhibition over 6 months ipsilateral to severe
injury, becoming bilateral over time [102]. Evoked
responses to extrasynaptic GABAR agonist are diminished
both early after moderate-severe TBI and chronically [103].
Also in severe injury, tonic GABAergic inhibition in the
dentate gyrus may increase over time [104]. Remodeling
of hippocampal circuits in severe TBI increases excitatory
inputs from CA3 and granule cells into hilar interneurons
10 weeks after injury. In contrast, inhibitory inputs to the
dentate gyrus are decreased, leaving the overall balance of
signaling excitatory [105]. After severe injury, spontaneous
epileptiform electrical activity increases in hippocampus
within weeks of injury, along with the stimulus threshold to
initiate LTP [106], while after mild injury LTP can be
initiated, but not sustained [107]. These changes highlight

Neurotransmitter changes after traumatic brain injury: an update for new treatment strategies 1001



the complexity of the post-injury milieu, where individual
circuits, cells and/or synapses may differentially respond to
pharmacological interventions.

Clinical findings

Thought to reflect changes in E/I balance, post-traumatic
seizures have a cumulative incidence of up to 20% by 5
years [108]. The latency period associated with the devel-
opment of post-traumatic epilepsy further supports pro-
gressive pathological changes in E/I balance after injury.
Clinical trials to prevent post-traumatic seizures after
moderate to severe TBI effectively prevented early (within
7 days) but not later seizures [13, 14, 109]. Phenytoin and
leviteracetam are anti-epileptic medications whose
mechanisms of action are thought to involve diffuse
blockage of voltage-gated channels. The clinical effective-
ness of these drugs for subacute but not chronic seizure is
additional evidence that E/I balance evolves over the course
of injury.

Emerging shifts in E/I balance suggest that modulating
glutamate and/or GABA neurotransmission could restore
neuroplastic function and improve cognitive symptoms
in chronic TBI. The NMDAR antagonist/dopamine
agonist, amantadine, 100 mg twice daily, alleviated
aggressive behavior after TBI [110], but the evidence
for efficacy in other behavioral domains was equivocal
[111–113]. In a multicenter study of 184 patients, amanta-
dine (maximum dose 200 mg twice daily) administered
subacutely (initiated 4−16 weeks after injury) improved
functional recovery in patients with disorders of con-
sciousness [12]. A similar drug, the uncompetitive NMDA
receptor antagonist memantine [114, 115], was approved
for clinical trials but small sample size (n= 11) and early
termination due to lack of enrollment provided unin-
terpretable results (NCT00462228).

Taken together, these data suggest a central role for
abnormalities of glutamate and GABA neurotransmission
in acute and chronic TBIs of varying severity. Changes
encompassing receptors, transporters, release mechanisms,
and signaling cascades clearly establish that defects of
neuroplasticity emerge following brain injury. However, the
glutamate and GABA neurotransmitter systems do not
operate in isolation. Excitatory and inhibitory tone is
modulated by inputs from local and widely distributed
diverse subtypes of neurons.

Acetylcholine neurotransmission in TBI

Cholinergic inputs into frontal cortex and hippocampus
regulate attention and memory consolidation. Acetylcholine
signals through two classes of receptor expressed on both

neurons and glia, G-protein-coupled muscarinic receptors
which can be excitatory or inhibitory, and ionotropic
(nicotinic) receptors which are excitatory [116]. Acet-
ylcholine synthesis, release, and degradation are regulated
by presynaptic choline acetyltransferase (ChAT), the
vesicular transporter vAChT, and postsynaptic acet-
ylcholinesterase (AChE), respectively [116]. Acetylcholine
release can increase spontaneous activity, facilitate evoked
responses, or inhibit evoked responses [117]; however, the
overall effect of acetylcholine signaling in cortex is to
enhance NMDA-mediated currents [116, 117]. Acetylcho-
line release exhibits both cue-evoked spikes in acetylcholine
receptor activity, as well as slower increases in activity
corresponding to attentional processes [118].

Preclinical findings

After TBI, there is acute release of acetylcholine that
increases extracellular acetylcholine concentration followed
by long-term suppression of acetylcholine signaling
[119, 120], illustrated in Fig. 3. Receptor binding and
vChAT transporter density decrease in preclinical models of
moderate injury as early as 1 h after TBI, and may persist
for at least 3 days [87, 119, 121]. Two weeks after injury,
evoked release of acetylcholine is impaired in moderate
TBI animals [122]. In mild TBI patients, acetylcholine
hypofunction and decreased AChE activity can be evident
more than a year after injury [120].

Preclinical and postmortem evidence indicate cholinergic
projections from basal forebrain are susceptible to damage
after TBI [119, 123]. Cortical projections from the basal
forebrain may be particularly vulnerable to accumulation
of neurofibrillary tangles and tau protein aggregation,
potentially contributing to chronic, cholinergic hypofunc-
tion after TBI [123].

Clinical findings

A variety of pro-cholinergic agents, including receptor
agonists [124], cholinesterase inhibitors [125], and
mechanisms activating acetylcholine release [126], showed
promise in preclinical TBI models. Acetycholinesterase
inhibitors, notably donepezil and rivastigmine, went to
randomized controlled trials (RCTs) [127–129]. Both drugs
showed mildly beneficial effects in specific cognitive
domains of attention and short-term memory [127–129]. In
chronic (>1 year) mild TBI subjects recruited from a
previous rivastigmine trial, patients who responded to
a minimum daily dose of 3 mg daily of rivastigmine had
significantly lower initial acetylcholinesterase activity than
nonresponders [130]. Although hampered by the small
sample sizes common to most human imaging studies,
additional studies of this kind, specifically identifying
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biologically distinct subpopulations of TBI subjects, may
provide important insight into tailoring treatment strategies.

Catecholamines in TBI

The principal source of forebrain the catecholamines
dopamine (DA) and norepinephrine (NE) is dorsal midbrain
(DA) and brainstem (NE) [131]. Changes in DA and NE
after TBI are summarized in Fig. 3. Catecholaminergic
nuclei are vulnerable to direct brainstem damage and
shearing of projections to forebrain, and are particularly
susceptible to metabolic stress due to intrinsically high
energy requirements [131]. Catecholaminergic nuclei
receive reciprocal projections from cortex, and damage to
these inputs from forebrain after TBI will affect catechola-
minergic regulation. Tonic NE signaling mediates arousal
and wakefulness, while phasic firing is associated with
attentional focus and vigilance [131, 132].

Preclinical findings

The most consistent preclinical finding for noradrenergic
signaling is turnover of norepinephrine [131]. The initial
accelerated turnover of cortical NE reverses by 6 h, and
suppression of NE turnover is still evident 8 weeks after
moderate-severe injury [133–135]. Concurrent down-
regulation of α1 adrenoreceptors is evident within 30 min
after TBI [136, 137]. Atomoxetine (80 mg/day for 14 days),
an NE uptake inhibitor, provided no significant improve-
ment in attention or in self-reported post-injury depressive
symptoms [138].

Dopamine signals through G-protein-coupled receptors
[131] and is removed from the synapse by the neuronal
dopamine transporter DAT or enzymatic degradation [139].
In preclinical models of moderate TBI, there is a pro-
gressive loss of dopaminergic neurons in the substantia
nigra [140, 141], evident from 2 weeks and continuing for
months post injury. Similar to other neurotransmitters, there
is an acute rise in extracellular dopamine evident 1 h after
moderate-severe injury, which is sustained in some regions
for a day or more [131, 142]. Regional increases in tissue
dopamine levels potentially last considerably longer, up to
several weeks in severe injury [143]. However, other studies
support an initial increase in tissue dopamine followed
closely by prolonged dopaminergic hypofunction in severe
injury [144, 145]. Preclinical studies suggest dopaminergic
dysfunction after TBI is driven by defects in tonic and
evoked dopamine release, as well as impaired dopamine
reuptake into neurons, rather than through alterations in
dopamine receptor expression [144, 145]. PET imaging
indicates regional changes in both DAT activity and D2
receptor binding in human TBI [131, 146].

Clinical findings

Dopamine has potent modulatory effects on glutamate
transmission suggesting that dopaminergic drugs have
potential to improve cognitive domain symptoms after TBI.
The D2-dopamine receptor agonist bromocriptine, titrated
to a dose of 5 mg twice daily for 6 weeks, performed no
better than placebo in resolving cognitive symptoms [147].
Methylphenidate and amphetamines, typically used to treat
disorders of attention, produced equivocal effects on cog-
nition, although interpretation of study results is limited by
small sample sizes [148, 149]. Armodafinil (50−150 mg/
12 weeks), an indirect dopamine agonist approved for
treating narcolepsy, was effective in increasing wakefulness
and sleep latency in TBI patients with excessive sleepiness
in a dose-dependent manner [15]. Similar to the amantadine
trial [12], dopamine modulation demonstrates efficacy for
improving wakefulness, but long-term positive effects on
cognition are unproven.

Serotonin neurotransmission in TBI

Serotonin originates in the raphe nucleus and is distributed
throughout the forebrain. There are at least 16 serotonin
receptors expressed on both excitatory and inhibitory neu-
rons [81] and once released, serotonin is taken up by pre-
synaptic serotonin transporters [150].

Preclinical findings

After moderate-severe TBI, serotonin transporters are
downregulated within a day and remain downregulated
for at least 2 weeks [151] (Fig. 3). In preclinical models
of moderate-severe injury, the tricyclic antidepressant
imipramine (20 mg/kg for 2 or 4 weeks) and the selective
serotonin reuptake inhibitor (SSRI), fluoxetine (10 mg/kg
for 4 weeks), increased neurogenesis measured 4 weeks
after TBI; only the tricyclic improved recognition memory
[6, 152]. Neither of these medications have gone into
clinical trials for reversal of cognitive defects in TBI.

Clinical findings

As depression and anxiety develops in many patients
after injury, and post-TBI depression has clinical features
that mirror noninjury depression, it has been presumed
that SSRIs could be useful for prevention and treatment of
post-TBI depression. Over 25 RCTs, open label, or
case studies have tested SSRIs as treatment for post-
TBI depression and cognitive dysfunction, with varying
results [153]. Disruption of the serotonergic system likely
begins soon after injury. Subacute (initiated on average
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at 3 weeks post-TBI) administration of the SSRI sertraline
for 12 weeks, at a dose of up to 100 mg/day mitigated
depressive symptoms during the course of treatment, but did
not provide lasting protection against development of post-
TBI depression [154–156]. Sertraline did not prevent or
improve deficits in attention, memory, or executive function
[16, 157]. A recent trial, however, showed improvement in
information processing in doses up to 200 mg/day, but
suggested the dopaminergic activity of sertraline as the
mechanism [158]. In summary, the SSRIs are promising
interventions for improving post-TBI depression in chronic
TBI, but improvement in cognitive symptoms after TBI
needs further study.

Adenosine neurotransmission in TBI

Adenosine signals through G-protein-coupled A1,A2A,
A2B and A3 receptors or through a myriad of metabotropic
P2X and P2Y receptors, expressed throughout the brain
[159, 160]. Adenosine accumulates rapidly after injury due
to breakdown of adenosine triphosphate [159]. Adenosine
levels are regulated by 5′-nucleotidases, which generate
adenosine from adenosine phosphates, adenosine deami-
nase, which converts adenosine to inosine, adenosine kinase
which phosphorylates adenosine to become adenosine
monophosphate, and nucleoside transporters, none of which
are well studied after TBI [159].

Adenosine acts presynaptically to suppress excitatory
transmitter release and postsynaptically to maintain
hyperpolarization [159, 161]. Adenosine triphosphate
released from astrocytes stimulates hippocampal inter-
neurons as part of homeostatic regulation of E/I balance
[162, 163]. However, adenosine itself can suppress tonic
GABAergic signaling and astroglial glutamate uptake
[164, 165]. Signaling through A1 and A2A receptors has
opposing effects on excitation; A1R is primarily inhibitory,
while A2AR facilitates synaptic signaling [161]. Local
glutamate levels regulate adenosine A2AR signaling
[166], while imbalance in adenosine signaling affects
working and short-term memory, and goal directed or
effortful behavior [161].

Preclinical findings

While the adenosine neurotransmitter machinery is
only recently gaining attention in experimental TBI, extra-
cellular concentrations of adenosine, and its metabolites
inosine and hypoxanthine are known to increase within
minutes after injury [167]. Extracellular adenosine returns
to basal levels within an hour, but inosine and hypoxanthine
remain elevated [167]. Genetic knockout of the A1 receptor

results in lethal status epilepticus after experimental
TBI [168]. Conversely, attenuation of A2A receptor sig-
naling improves aspects of TBI symptomology [169, 170].
The modulatory roles of the adenosine neurotransmitter
system suggests this system as a high-yield substrate for
pharmacological intervention. Supporting this hypothesis,
polymorphisms of adenosine regulatory genes are asso-
ciated with an increased risk for developing post-traumatic
epilepsy [171–173].

In summary, a single neurotransmitter-focused
approach has not (so far) delivered targets yielding effica-
cious therapies for the cognitive effects of TBI. A more
integrated approach accounting for diverse neurotransmitter
systems is needed to develop novel therapeutics to
modulate and/or restore function to premorbid states.

Integration of diverse neurotransmitter
systems: modulation of E/I balance

Effective neurotransmission requires constant rebalancing
of excitatory and inhibitory signaling. Collectively and with
varying impact, diverse neurotransmitter systems work
cooperatively in healthy brain to fine-tune E/I balance
[174]. Hypofunctional D1-dopamine receptor signaling
impairs LTP in hippocampus [175], and interactions
between dopamine and acetylcholine facilitate LTP in
frontal cortex [176]. The D2-dopamine receptor directly
interacts with both adenosine and metabotropic glutamate
receptors to modulate excitatory transmission [175]. Cho-
linergic and dopaminergic neurons contact both glutama-
tergic neurons and GABAergic interneurons, tuning the
response of the neuronal ensemble [176]. Comodulation of
synaptic plasticity by dopamine and serotonin also coop-
eratively shifts E/I balance towards either LTP or LTD [81].
NE sensitizes cortical circuits reflecting its role in vigilance
and risk assessment [174], while decreasing serotonin sig-
naling through 5-HT1A receptors potentiates circuit inhi-
bition [177].

Concerted actions of multiple transmitter systems coor-
dinate neurotransmission at individual synapses and within
neural circuits across multiple temporal scales. The effects
of injury on the coordination between neurotransmitter
systems to regulate cognitive and emotional processing, at
any stage of injury, is poorly understood. The complex
nature of neurotransmission, including the intricate inter-
actions between neurotransmitter systems, suggests that
less-specific drugs may be more efficacious than highly
selective compounds. This notion is supported by the rela-
tively promiscuous receptor binding profiles of the TCAs
and amantadine, drugs that appear to provide improvement
in a few symptom domains of TBI [178–180].
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Opportunities for future work

Despite intense interest in identifying the underpinnings of
cognitive and behavioral symptoms after TBI, there are still
significant gaps in our understanding of how injury impacts
neurotransmission. For example, very little is known about
extrasynaptic signaling mechanisms after TBI. In contrast to
synaptic NMDAR signaling that promotes cell survival,
extrasynaptic NMDAR signaling activates cell death path-
ways and likely contributes to early cell loss and excito-
toxicity after TBI [79]. Extrasynaptic NMDAR signaling
also antagonizes coupling of glutamate signaling to protein
transcription, blocking processes required for memory
consolidation and potentially contributing to cognitive
dysfunction well after acute stages of injury [181].

Extrasynaptic glutamate comes from several sources,
including astrocytic release and spillover from neuronal
synapses. The cystine-glutamate antiporter, xCT, is a sig-
nificant source of extrasynaptic glutamate [182]. Glutamate
released by astrocytes into the extrasynaptic space via
system xC‾ can stimulate metabotropic glutamate receptors
peripheral to the synapse as well as extrasynaptic ionotropic
receptors [182]. System xc‾ also contributes to the physio-
logic roles of extrasynaptic glutamate in synaptic scaling
[183]. Expression and activity of xCT and system xc‾ is
regulated by cytokine signaling (notably IL-1β and TNFα),
NO− and other reactive species, growth factors, and neu-
ronal activity, linking inflammation and metabolic stress to
regulation of synaptic strength and excitatory transmission
[182]. Pharmacologically blocking system xc‾ produces
defects in working memory and long-term memory; how-
ever hyperactivity of system xc‾ is potentially even more
damaging due to excitotoxic activation of extrasynaptic
NMDARs [182]. Despite the recognized role of system xc‾
in tuning excitatory transmission, it has not been studied
in TBI.

Recent studies indicate that lactate can function as a
neurotransmitter [184, 185], through a G-protein-coupled
receptor, hydrocarboxylic receptor 1 HCA1 (GPR81).
HCA1 is expressed on pyramidal neurons in cerebellum,
hippocampus, and cortex, and to a lesser extent astrocytes
[184, 186]. HCA1 activation suppresses neuronal activity
[187] and HCA1 signaling requires high extracellular lac-
tate concentrations. These findings suggest HCA1 is acti-
vated in response to injury or intense neural activity [184].
Interestingly, an acute (minutes to hours) increase in brain
lactate after severe TBI [10, 188] is associated with poor
outcomes [189]. Paradoxically, sodium lactate infusion
shows some beneficial effect and is being trialed to prevent
acute increases in intracranial pressure in severe injury
[190]. Whether HCA1 activation contributes to either the
beneficial or negative effects of acutely elevated lactate
levels after TBI is unknown. It is also unknown whether the

metabolic switch to aerobic glycolysis and subsequent
increase in lactate production in activated glia influences
HCA1 signaling in TBI or other inflammatory neurode-
generative disorders.

Metabolic imaging approaches such as magnetic reso-
nance spectroscopy (MRS) and positron emission tomo-
graphy (PET) have great potential to provide insight into
the regulation and function of brain activity and amino
acid neurotransmitter systems after TBI, particularly when
combined with other imaging modalities. However, these
technologies are not yet being used to maximal effect
in TBI research. MRS studies report both increased
[191, 192] and decreased [193, 194] tissue concentrations of
glx, the combined glutamate/glutamine signal. Incon-
sistencies may have to do with timing, ROI, subject popu-
lations, or methodological differences. In general,
interpretation of imaging studies in TBI is hindered by
small sample size. Despite available PET ligands for all of
the major transmitter systems, it has been only minimally
utilized [130, 146, 195, 196].

Conclusion

Pathological processes after brain injury continuously
evolve (Fig. 4) [197], and we are only now beginning to
understand compensatory and recovery mechanisms that
could be enhanced [198–200]. There are abundant oppor-
tunities for improvement in study design and outcomes
reporting in TBI clinical drug trials [112, 201]. Most pre-
vious clinical trials included patients with similar injury
severities graded by GCS, but overlooked key clinical
features and commonalities in the pathophysiology of injury
[19, 202]. The next big clinical trials will involve identi-
fying the appropriate patient populations for targeted
therapeutic interventions. Currently an international effort
is underway to advance innovation in TBI therapeutics
via comparative effectiveness research and open source
data sharing. The international initiative for TBI research
(InTBIR), a collaborative between the European Commis-
sion, the National Institutes of Health, and the Canadian
Institute of Health Research, is tasked with changing the
face of TBI research by 2020 [203, 204]. A crucial part of
the new infrastructure for TBI research includes creation
and utilization of Common Data Elements for TBI [205].
The Transforming Research and Clinical Knowledge in TBI
(TRACK-TBI) [205] and the Collaborative European
Neurotrauma Effectiveness Research in TBI (CENTER-
TBI) [206] prospective longitudinal observational studies
are critical to this effort. Data collected will be publically
available for research through the Federal Interagency
Traumatic Brain Injury Research (FITBIR) informatics
system [207, 208]. These data will allow more nuanced
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approaches in selecting study populations and stratifying
treatment responses. Identifying commonalities in study
subpopulations is a promising focus for future tailoring of
TBI treatment. Finally, focusing treatment strategies on
individual neurotransmitters has not been successful. Iden-
tifying pathophysiological measures that reflect circuit level
changes in plasticity, such as CSDs, may present an
opportunity to integrate findings from diverse neuro-
transmitter systems and provide new targeting strategies for
this difficult to treat condition.
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