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Abstract
As it is likely that both common and rare genetic variation are important for complex disease risk, studies that examine the full range
of the allelic frequency distribution should be utilized to dissect the genetic influences on mental illness. The rate limiting factor for
inferring an association between a variant and a phenotype is inevitably the total number of copies of the minor allele captured in the
studied sample. For rare variation, with minor allele frequencies of 0.5% or less, very large samples of unrelated individuals are
necessary to unambiguously associate a locus with an illness. Unfortunately, such large samples are often cost prohibitive. However,
by using alternative analytic strategies and studying related individuals, particularly those from large multiplex families, it is possible
to reduce the required sample size while maintaining statistical power. We contend that using whole genome sequence (WGS) in
extended pedigrees provides a cost-effective strategy for psychiatric gene mapping that complements common variant approaches
and WGS in unrelated individuals. This was our impetus for forming the “Pedigree-Based Whole Genome Sequencing of Affective
and Psychotic Disorders” consortium. In this review, we provide a rationale for the use of WGS with pedigrees in modern psychiatric
genetics research. We begin with a focused review of the current literature, followed by a short history of family-based research in
psychiatry. Next, we describe several advantages of pedigrees for WGS research, including power estimates, methods for studying
the environment, and endophenotypes. We conclude with a brief description of our consortium and its goals.
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Rediscovering the value of families for
psychiatric genetics research

Large-scale genome wide association studies (GWAS)
comprise the dominant paradigm in psychiatric genetics
research today [1]. Case/control GWAS, that compare the
frequency of minor alleles from common polymorphisms
between unrelated individuals [2], have provided numerous
insights into the genetic architecture [1] and the inter-
relatedness [3, 4] of psychiatric disorders. However, like
any experimental approach, the case/control GWAS design
has relative strengths and weaknesses. Unfortunately, it is
unlikely that any single design will be able to dissect all of
the genetic influences on multifactorial traits [5, 6] such as
mental illnesses [7, 8]. Rather, diverse complementary
approaches may be necessary to garner the full spectrum of
biological insights that genetics could provide neu-
ropsychiatry [5, 9–12]. Chief among these approaches is the
use of whole genome sequencing (WGS) which catalogues
almost all genomic DNA sequence variation within an
organism [13]. Early sequencing efforts confirmed that the
substantial majority of human genetic variation is rare
(occurring in less than 1% of the population) or private
(only occurring in a single individual and their close rela-
tives) [13, 14]. There is a growing appreciation of the
impact of rare variation on human disease [11, 15, 16],
particularly given the excess of rare functional variants
resulting from recent accelerated population growth and
relatively weak purifying selection [17]. Rare variants,
especially loss of function variants or those deleterious to
protein expression, are far more amenable to biological
experimentation, and subsequent molecular insights, than
common loci [18–22], which are often localized outside of
transcribed regions [23, 24]. As it is likely that both com-
mon and rare variation are relevant for complex diseases
[11], both GWAS and WGS methods should be utilized in a
complementary manner to dissect the genetic influences on
mental illness.

The rate limiting factor for inferring an association
between a particular rare variant and a phenotype is inevi-
tably the total number of copies of that variant captured in
the sample [25–27]. Typically, to have enough copies of a
rare variant for statistical analysis, one must sequence very
large samples of unrelated individuals (e.g., ~700,000 in the
recent human height exome study [20]). Consistent with this
notion, the Whole Genome Sequencing of Psychiatric
Disorders (WGSPD) consortium estimated that sequences
from at least 20,000 unrelated cases and controls are needed
to adequately power a gene burden-type analysis [8],
though far larger samples are necessary to identify specific
risk variants for mental illness. However, by using alter-
native analytic strategies and studying related individuals,
particularly those from large multiplex families, it is

possible to reduce the required sample size while main-
taining statistical power [28–31]. Given this and other
benefits discussed below, we contend that WGS in extended
pedigrees provides a cost-effective strategy for psychiatric
gene mapping that complements GWAS and WGS in
unrelated individuals. In fact, family-based methods may be
the only feasible study design for specifically identifying the
rarest functional variants that are private to family lineages.
This was our impetus for forming the “Pedigree-Based
Whole Genome Sequencing of Affective and Psychotic
Disorders” consortium, an international group of scientists
using family-based designs to identify rare variants that
increase risk for psychiatric disorders.

In this review, we provide a rationale for the use of WGS
with pedigrees in modern psychiatric genetics research. We
begin with a focused review of the current literature, fol-
lowed by a short history of family-based research in psy-
chiatry. Next, we describe several advantages of pedigrees
for WGS research, including power estimates, methods for
studying the environment, and utilizing endophenotypes.
We conclude with a brief description of our consortium and
its goals.

The current state of psychiatric genetics

Large-scale GWAS meta-analyses have been successfully
completed for schizophrenia (sample size: 36,989 cases/
113,075 controls [32]), bipolar disorder (13,902/19,279
[33], 9,784/30,471 [34]), major depression (130,664/
330,470 [35], 10,851/32,211 [36], 121,380/338,101 [37]),
post-traumatic stress disorder (5131/15,092 [38]), attention
deficit hyperactivity disorder (20,183/35,191 [39]), and
autism (16,539/157,234 [40]). Together, these GWAS have
localized over 200 genome-wide significant loci influencing
mental illness risk [1]. Given the sample sizes listed above,
it is quite possible that common loci with moderate to large
effect sizes for the majority of mental illnesses have already
been localized [10], at least among individuals of European
ancestry. If so, this represents an important milestone for the
field and provides an opportunity to explore alternate
approaches for delineating the genetics of mental illness.

One lesson from GWAS is that mental illnesses, like
other complex diseases, appear to be highly polygenic,
involving large numbers of loci, most of which have a small
or very small effect on risk [10, 41, 42]. This pattern of
results is entirely consistent with Fisher’s multifactorial
model [43], which predicts that as the number of risk loci
grows, the contribution of each new locus correspondingly
shrinks. Accordingly, results from meta-analyses have been
used for individual risk prediction based on polygenic
scores [44, 45] that include thousands to hundreds of
thousands of variants to provide a risk index [46].
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Additionally, loci from GWAS studies appear to be useful
for selecting among potential therapeutic agents [47], a
property which could have a significant impact in psy-
chiatry [48] where novel drug development is at a near
standstill [49].

A case for rare genetic variants in mental illness

Arguably, our understanding of the genetic underpinnings of
autism spectrum disorders has advanced more than that of
other mental illnesses because investigators have focused
more on rare nonsynonymous variants [50] than common
genetic variation [40]. These studies, which often search for
exonic de novo mutations [51, 52], have identified at least 50
potential risk genes for the disorder that together with copy
number variants (CNV) explain more than 30% of the
genetic variance of the illness [53, 54]. While the relative
contribution of largest-effect common variants and of
higher-penetrance rare variants probably varies across
mental illnesses [1, 55, 56], the genetic architecture of aut-
ism is likely not unique. For example, Singh and colleagues
identified a set of rare, putative loss-of-function variants in
an exon SETD1A that strongly increases risk for schizo-
phrenia and intellectual disability [57]. Similarly, exome
sequencing studies in schizophrenia have implicated genes
expressed in neurons [58] and synapses [59] and shown that
affected individuals have more rare protein-altering loss-of-
function variants than unrelated controls [58].

Perhaps the strongest evidence that rare variation is
important across mental illnesses [60] comes from findings
that certain rare CNVs or insertion-deletions clearly influ-
ence risk for autism spectrum disorders [61], intellectual
disability [62] and schizophrenia [63, 64], and may also
contribute to bipolar disorder [65] and ADHD [66] risk.
Indeed, the 22q11 CNV [67] is among the strongest genetic
predictors of schizophrenia risk [63, 68].

Family studies in psychiatric genetics

Historically, the mapping of traits to genetic loci in humans
depended almost exclusively on family studies. Early
linkage studies posited simple, single major gene models of
inheritance and utilized transmission of chromosome seg-
ments across generations in large pedigrees to map putative
disease loci relative to a scaffold of a few hundred markers
of known position. Later linkage approaches did not assume
a Mendelian model and utilized identity-by-descent (IBD)
allele sharing among relatives. Although these linkage
methods successfully identified loci for some illnesses (e.g.,
Huntington’s disease, Alzheimer’s disease, macular
degeneration, diabetes, and some forms of breast cancer),
early attempts to localize the genetic influences on poly-
genic diseases were limited and often could not be

replicated. Indeed, two early high profile reports of linkages
for bipolar disorder, one on the X chromosome [69] and the
other on 11p [70], could not be replicated [71, 72]. When
reviewing this literature in 2008, Burmeister and colleagues
[73] reported that no single locus was unequivocally repli-
cated across multiple independent samples for any mental
illness. This lack of results was likely due to underpowered
studies that used suboptimal concordant sibling pair designs
[73, 74] and were likely ineffectual where very rare or
private mutations were causal. Nonetheless, discouraging
progress with linkage analyses, combined with the simpli-
city of sampling unrelated cases and controls, undoubtedly
added to the popularity of association methods and the
field’s shift towards GWAS.

In an influential article, Risch and Merikangas [75]
argued that linkage analysis has limited power to detect
genes of modest effect (particularly in concordant sibling
pair designs), but that family-based assocation methods
have far greater power to detect the same loci, provided the
locus is either directly genotyped or in strong linkage dis-
equilibrium (LD) with a genotyped marker. The genome-
wide application of this association strategy was made
possible by the human genome project’s identification and
mapping of hundreds of thousands of common genetic
variants and the characterization of patterns of LD between
them. It draws on shared population history rather than
transmission among family members, to map loci of inter-
est. This information, in turn, allowed investigators to
estimate minor allele frequencies (MAF) and LD-structure
for singletons, enabling GWAS in unrelated individuals [2].
Yet, the reliance on population level knowledge has draw-
backs. For example, GWAS are population-specific. Most
published GWAS have been in European-derived popula-
tions, where the LD structure is well defined and repre-
sented on GWAS arrays. Although work is ongoing, sample
sizes in non-European populations are yet to reach levels
that would support powerful GWAS [76]. Carefully ascer-
tained, very large families do not require population level
information (e.g., MAF or LD-structure), have the potential
to provide sufficient copies of very rare alleles to identify
their effects, and offer the opportunity to leverage both
analytical approaches, combining genome-wide association
and examination of familial transmission within the same
analysis. Thus, while family-based designs were largely set
aside in the GWAS era, the recurring focus on rare variants
and functional genomics have renewed interests in
pedigrees.

Rare variants and pedigrees

Pedigree-based studies represent an implicit enrichment
strategy for identifying rare variants as transmission of a
rare allele from parents to offspring follows Mendel’s laws,
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maximizing the chance that multiple copies of that allele
exist in the pedigree. For example, 148 individuals from a
single large pedigree sampled in our ongoing “Genetics of
Brain Structure and Function” study [77, 78] are repre-
sented in Fig. 1. Based on the principles of Mendelian
inheritance, the pedigree could maximally provide 105
copies of a rare or even private mutation originating in a
single founder (founder and unilineal descendants). While
the propagation of a particular variant within a pedigree is
likely less extreme than this, the example provides an
important heuristic for understanding how families enrich
even the rarest of genetic variation where the segregation of
rare variants in a pedigree provides multiple copies, facil-
itating their detection and effect estimation [29, 31, 79, 80].
For a known pedigree, each founding lineage can be
directly assessed for the expected number of copies of a
private variant originating at the top of the lineage using
Mendelian transmission probabilities. The expected number
of copies of a private variant originating in the focal founder
of Fig. 1 is 13 (as is that of his founder spouse). While this
founder pair exhibits the maximum number of potential
copies, the founder female spouse of the third male sibling
in generation II actually exhibits the highest expectation of
potential copies with 14.125.

For a fixed biological effect size, the power of pedigrees
for capturing larger numbers of rare minor allele copies than
that expected in an equivalent set of unrelated individuals is
a direct function of pedigree structure. Basically, the var-
iance of the number of minor allele copies (MACs) can be
substantially larger (and therefore lead to potentially many
more copies) in pedigrees than in a sample of unrelated
individuals. Given that the expected correlation structure for
the allelic dosages amongst family members is well repre-
sented by the coefficient of relationship matrix, R, standard
covariance mathematics reveal that the expected excess in
the variance of expected MACs in a pedigree can be
approximated by a multiplicative variance inflation factor,
VIF ¼ P

i;j
rij=n where rij is the coefficient of relationship

between the i-th and j-th individuals in the pedigree and n is
the number of individuals in the pedigree. The larger the
VIF for a pedigree, the greater the expected power is for
capturing larger numbers of a private variant, which itself
determines the expected power to detect an association of a

rare variant conditional on biological effect size. A sibship
yields a VIF equal to1þ ðn� 1Þð1=2Þ, thus a large sibship
of 10 siblings generates a VIF of 5.5 times that expected for
10 unrelated individuals. The pedigree shown in Fig. 1
generates a VIF of 8.6. Typically, large pedigrees with large
lineages will yield the highest VIFs likely to be observed in
humans. Thus, pedigrees are optimally suited for the
examination of rare functional variants because in the lim-
iting case of private variants, traditional epidemiological
studies of unrelated individuals are highly unlikely to cap-
ture more than a single copy of such a variant (e.g.,
[58, 59, 81]). Pedigree-based studies could capture many
more depending upon the size and structure of the pedi-
grees. However, a potential negative for such studies is the
more limited number of genomes being observed over that
of unrelated samples. For example, the pedigree in Fig. 1
represents independent genomes from 44 founders versus
that 148 that would be observed if all these individuals were
unrelated. Thus, while more copies of rare variants can be
captured in pedigrees, we also expect fewer such variants
overall than in samples of unrelated individuals.

For rare variants in the absence of inbreeding, the
number of heterozygotes captured is a primary determinant
of statistical power to detect association. In this case, the
number of heterozygotes is equivalent to the number of
minor allele copies captured in the sample. Following the-
ory developed in Blangero and colleagues [82], the expec-
ted association test statistic for private variants in pedigrees
can be approximated (for small relative effects) as:

χ21 � Nh2q � cðh2T ;h2q;RÞ ¼ NHð1� HÞα2 � cðh2T ; h2q;RÞ

where N is the sample size, h2q is the heritability due to the
variant in the sample, h2T is the total heritability of the trait,
H is the proportion of heterozygotes in the sample, and α is
the displacement of the heterozygote mean trait value from
the common homozygote in standard deviation units. The
parameter, α, directly measures the biological effect size of
the variant. The symbol cðÞ represents a function of
parameters within the parentheses and is used here as a
correction that accounts for the non-independence amongst
related individuals and is defined in detail elsewhere [82].
The value of c is generally small for most reasonable
genetic effect sizes [82]. Thus, power is dominated by the

Fig. 1 Demonstration of rare variant inheritance in a large extended
pedigree. One hundred and forty-eight individuals from a single large
pedigree sampled in our ongoing “Genetics of Brain Structure and
Function” study are represented. Based on the principals of Mendelian

inheritance, the pedigree could maximally provide 105 copies of a rare
or even private mutation originating in a single founder (filled). The
figure was created with CraneFoot [150]
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biological effect size and NH that gives the observed
number of heterozygotes (or the number of captured minor
allele copies) in the sample.

Figure 2 shows the biological effect size that can be
detected at 80% power for a fixed number of observed
heterozygotes in the pedigree in Fig. 1. We show the
range of 5 to 70 heterozygotes/MACs. The lower bound of
five minor allele copies required before testing is based on
simulations that show that the resulting test distribution
under the null hypothesis conforms with expectation (i.e.,
there is no excess type I error). As the number of captured
MACs increases, power to detect moderate biological
effect sizes improves. As a rough reference, a biological
effect size of 4.5 SDU approaches nearly monogenic
penetrance. Figure 2 also shows the effect of augmenting
this pedigree with an additional 20,000 unrelated controls
(the total sample size of the WGSPD consortium [8]). For
the case of the rarest of variants (i.e., private variants),
there is a relatively minor improvement in power with
increased numbers of controls who are highly unlikely to
harbor the rare variant. Thus, the recruitment of related
individuals acts like an ascertainment bias to increase
power by increasing the probability of capturing addi-
tional copies of rare variants that appear in the founders of
the sampled lineages.

The prior discussion focuses on ascertainment of families
simply through lineage size in order to maximize the

capture of rare variants that originate in pedigree founders.
However, additional power benefits accrue through addi-
tional ascertainment through disease or phenotype. For
example, the co-segregation of rare variation and disease
status in multiplex families can amplify association signals
[31, 83, 84]. For the study of rare sequence variation, an
implication of Mendelian transmission is that the required
sample sizes can be orders of magnitude smaller for families
than those required for designs based on unrelated subjects
[85], particularly if sequence information is combined with
linkage methods [28] in pedigrees of 20–25 individuals or
larger [29], when comparing affected sibling pairs [30] or
when searching for shared genomic segments [31]. For the
rarest variants, large pedigrees have better power for
detection of linkage/association when compared to
equivalent-sized samples of smaller families [86] or unre-
lated subjects [80, 87, 88]. Family-based cohorts have
substantially greater power than unrelated cases to detect
rare genetic effects given an equivalent number of sampled
individuals [89, 90].

An additional advantage to studying families is that, in
contrast to unrelated individuals, the analysis of phenotypes
among family members is constrained for genetic back-
ground (e.g., minimizes the impact of population admixture
and stratification [91, 92]). Given that analytic techniques
developed to correct for population stratification in common
variant studies maybe less effective when the focus is on
rare variants [93, 94], observations that pedigree-based
experiments appear to be robust to population stratification
are of particular importance [92]. In addition, reduced
environmental variation among family members can reduce
noise, improving statistical power to observe genotype-
phenotype associations [95]. Shared familial environments
also can alter the potential to observe signals resulting from
gene-environment interactions. Pedigree-based designs
allow for the investigation of de novo mutations, parent of-
origin effects [96], transmission bias [97], phasing [98, 99],
and compound heterozygosity [100, 101]. Finally, when
pedigrees have multiple affected members it is often pre-
sumed that the same inherited mutation on a similar genetic
background causes the illness in each case. This assumption
appears to be better supported when a kindred includes at
least three affected individuals [102, 103]. Although
unambiguously demonstrating phenocopies is difficult in
multifactorial phenotypes [104], it is possible that family-
based studies provide a method for detecting phenocopies if
a rare mutation appears to segregate with affection status in
the pedigree[102]. To the extent that the segregating
mutation also influences an illness endophenotype (see
below), contrasting the endophenotype from the putative
phenocopy and family members who carry the variant could
provide further evidence of the non-genetic origin of the
illness in that individual.

Fig. 2 Biological effect size for rare variants as a function of minor
allele copies (MAC). The blue dashed line shows the biological effect
size that can be detected at 80% power for a fixed number of observed
heterozygotes in the pedigree in Fig. 1. As the number of captured
MACs increases, power to detect moderate biological effect sizes
improves. The effect of augmenting this pedigree with an additional
20,000 unrelated controls is presented in the orange line. For the case
of the rarest of variants, there is a relatively minor improvement in
power with increased numbers of controls who are highly unlikely to
harbor the rare variant
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Rare variants, pedigrees and psychotic and affective
disorders

Recently, Steinberg and colleagues [105] examined a single
Icelandic pedigree with ten psychotic individuals (six
schizophrenia, two schizoaffective disorder and two psy-
chotic bipolar disorder) using WGS and long-range phasing.
All affected individuals carried a rare nonsense mutation in
RBM12 (RNA-binding-motif protein 12) resulting in a
truncated protein lacking a predicted RNA-recognition
motif while few unaffected had the mutation (p= 2.2 × 10
−4). A Finnish family with a second loss of function RBM12
mutation replicated the finding (p= 0.020). Although the
truncating mutation was not fully penetrant for psychosis,
non-psychotic carriers were similar to their psychotic rela-
tives in terms of neurocognitive endophenotypes, educa-
tional attainment and disability benefits received. Together,
these data strongly associate RBM12 with psychosis risk
and demonstrate the potential for gene identification using
WGS and extended pedigrees.

Homann and colleagues [106] performed WGS on nine
families with at least three members with schizophrenia. In

one of these families, seven siblings with schizophrenia
spectrum disorders carried a private missense variant within
the SHANK2 gene. In a separate family, four affected sib-
lings carried a novel private missense variant in the
SMARCA1 gene. In a conceptually similar study, Timms
and colleagues [107] used exome sequencing to examine
rare nonsynonymous variants in five multiplex schizo-
phrenia families. One pedigree carried a missense and fra-
meshift substitution of GRM5, while another family had a
missense substitution in PPEF2; both are genes that directly
interact with the NMDA system [107]. Three pedigrees had
missense substitutions within LRP1B, which is putatively
related to the NMDA receptor. While these findings require
replication and biological validation, nominated genes are
reasonable empirical candidates for psychosis risk, war-
ranting further research.

As can be seen in Table 1, an increasing number of
family-based sequencing studies involving affective and
psychotic disorders are being published, often with very
small sample sizes. While findings from most of these
studies have yet to be replicated, several of the more recent
studies, particularly those conducted in population isolates

Table 1 Extended pedigree-
based sequencing studies of
psychotic or affective disorders

Reference Year
published

Ascertainment sequence # of
families

Individuals
sequenced

Populationa Findings
replicated

Bouwkamp
[109]

2017 Bipolar disorder WGS 1 1 Dutch No

Hornig [151] 2017 Schizophrenia Exome 1 8 German No

John [152] 2017 Schizophrenia Exome 1 4 Indian Partial

Rao [153] 2017 Bipolar disorder Exome 4 9 USA No

Steinberg
[105]

2017 Schizophrenia WGS 1 7 Icelandic Yes

Zhang [154] 2017 Bipolar disorder Exome 1 6 USA No

Egawa [155] 2016 Schizophrenia Exome 1 3 Japanese No

Goes [156] 2016 Bipolar disorder Exome 8 36 USA No

Homann
[106]

2016 Schizophrenia WGS 9 90 USA No

Kos [157] 2016 Schizophrenia Exome 8 134 USA No

Subaran
[158]

2016 Major depression Exome 5 12 USA No

Watanabe
[159]

2016 Schizophrenia Exome 3 12 Japanese Partial

Zhou [160] 2016 Schizophrenia Exome 1 4 Chinese No

Ament [161] 2015 Bipolar disorder WGS 41 200 Amish No

Kember
[162]

2015 Bipolar disorder WGS 1 80 Amish Yes

Thygesen
[163]

2015 Schizophrenia WGS 6 3 Dane No

Georgi [142] 2014 Bipolar disorder WGS 1 50 Amish No

Strauss [164] 2014 Bipolar disorder Exome 4 26 Amish No

Timms [107] 2013 Schizophrenia Exome 5 12 USA No

a Studies conducted in the USA involved subjects of European Ancestry
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[108] with larger sample sizes, provide strong candidate
genes for these disorders.

The foregoing discussion focused on identifying indivi-
dual rare variants or CNVs strongly associated with risk for
affective or psychotic disorders. The focus on a single
variant or CNV is analytically consistent with method
developed for monogenic disorders [109]. However, there is
growing evidence that even in the case of a highly penetrant
mutation, an individual’s genetic background contributes to
illness risk [110]. For example, among individuals with a
22q11 deletion, rare CNVs outside of the 22q11 deletion
region significantly contribute to schizophrenia risk [68].
Similarly, among members of a large multiplex pedigree
with a balanced chromosomal translocation (1q42–11q14.3)
associated with affective and psychotic disorders [111],
common and rare variation in other areas of the genome
appear to increase illness risk [112]. These finding are
consistent with observations that genetic variation outside
of the focal “causal” gene are often necessary for disease
expression in monogenic disorders [103]. Together, these
results serve as a reminder of the difficulty of making casual
inferences in human genetics.

Cost-effectiveness of wgs in families

Family-based designs are cost effective. Given that genetic
relationships between family members are known, WGS
can be imputed [113] for individuals who have sparse
genotype data, decreasing the effective cost per sample
[114, 115]. This pedigree-based imputation or “pseudo-
sequencing” is particularly effective for rarer, segregating
variants [116]. Typically, this approach consists of two
steps: (1) form optimal sub-pedigrees that maximize phase
and IBD information and (2) pseudo-sequence each sub-
pedigree. The resulting output will contain the expected
number of copies for the tested allele (dosage), shown to
yield the most power when used in association testing
versus choosing most probable genotypes [90]. Livne and
colleagues [114] applied similar methods (a combination of
pedigree-based and LD-based imputation), reporting > 99%
accuracy over the full range of allele frequencies. With data
from the “Genetics of Brain Structure and Function” study,
we found that pseudo-sequenced individuals show 97%
accuracy for rare heterozygous variants and 99% for rare
homozygotes compared to ExomeChip genotypes. Despite
the accuracy of these “pseudo-sequencing” methods, once a
rare variant is associated with a specific trait, we advocate
directly genotyping that variant across the full sample to
confirm the imputation.

Pedigree-based sequence data allows a level of quality
control not available for population studies. Genotyping
errors occur when the “true” genotype is not identical to
the genotype determined after subsequent genotyping.

These errors, can occur at every step of the genotyping
process and cannot be fully eradicated as genotyping
methods are not completely accurate [117]. Genotyping
errors can lead to a number of possible biases, including
an artificial excess of homozygotes [118], a false depar-
ture from Hardy–Weinberg equilibrium [119], an over-
estimation of inbreeding [118] or unreliable inferences
about population substructures [120]. Incorporating
evidence of Mendelian transmission of alleles between
parents and offspring in pedigree data can dramatically
reduce genotyping errors [121], even allowing
for the detection of de novo mutation and the fact
that 25% of typing errors may be Mendelian-compatible
[122].

Using families to model environmental risk factors

Mental illness results from multiple genetic and environ-
mental factors and, likely, from their interactions. In
contrast to genetic data, the environment is ever changing
and its impact can vary with developmental stage, making
the study of non-genetic influences on mental illness risk
particularly challenging. Yet, most studies of environ-
mental risk factors for mental illness (e.g., [123–125.]) do
not explicitly account for genetic background. For exam-
ple, the incidence of schizophrenia is higher among indi-
viduals living in urban areas than to those living in rural
areas [126, 127], which presumably reflects an environ-
mental risk factor for psychotic disorders. However, even
this classic environmental risk factor has an appreciable
genetic component, where “urbanicity” is to some extent
conditioned upon family history for schizophrenia [128]
and individuals living in urban areas have higher poly-
genetic risk for the disorder than those living in rural areas
[129]. Thus, Epidemiological studies designed to identify
risk factors for mental illnesses should also include genetic
information [124]. Pedigree-based designs, in addition to
being of value for detecting genetic loci, enhance the study
of environmental factors influencing mental illness as they
provide a relatively straightforward method for optimally
statistically controlling for genetic influences. Recently,
we developed a best linear unbiased predictor estimation
procedure to obtain individual-level estimates of genome-
wide genetic effects [130]. This procedure uses all phe-
notypic information available for an individual and his or
her relatives to infer the underlying genetic component of
a phenotype. The estimated genetic value is then sub-
tracted from the original phenotypic value to obtain an
estimated environmental value devoid of the average
additive genetic signal. Polygenic effect estimates derived
in this way can be used to control for genetic influence
when investigating non-genetic (environmental) contribu-
tions to mental illness.
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Endophenotypes

An endophenotype is a trait influenced by some or all of the
genes predisposing to an illness [131, 132]. As endophe-
notypes are measureable in both affected and unaffected
individuals, they are theoretically capable of providing
greater statistical power to localize and identify disease-
related genes than affection status alone [26, 133]. Fur-
thermore, as demonstrated by Steinberg and colleagues
[105], endophenotypes can provide insight into unaffected
carriers of putatively causal illness variants. Despite the
consistent use of endophenotypes in other areas of human
disease genetics (sometimes referred to as allied phenotypes
or simply risk factors), their application in larger scale
psychiatric genetics studies designed to identify novel risk
loci has been limited [132]. However, methods for empiri-
cally selecting endophenotypes for specific illnesses based
upon shared genetic covariance using related subjects [134,
135] or based upon common variants [46] have been
developed and overlapping genetic influences for cognitive,
electrophysiological, neuroimaging and transcriptional
measures and various psychiatric disorders have been dis-
covered [132]. Regardless of the genetic design employed,
we strongly advocate deep phenotyping, including quanti-
tative diagnostic/symptom measures and cognitive, imaging
and molecular endophenotypes. While myriad of potential
endophenotypes for psychotic and affective disorders exist,
selecting those that are heritable, genetically correlated with
illness risk and amenable to large scale data collection is
critical [132]. Tools for such deep phenotyping are now
available in the public domain (e.g., PhenX Early Psychosis
Translational Research Collection https://www.
phenxtoolkit.org/index.php?pageLink= browse.nimh.eptr).

Effects of ascertainment

How families are selected for study may influence both the
phenotypic spectrum of the sample and the underlying
genetic contributors. Probands recruited as part of families
may differ from those recruited as singleton cases, pre-
sumably as an effect of selecting individuals with intact
family relationships. For example, the Consortium on the
Genetics of Schizophrenia (COGS) examined neurocogni-
tive measures and other endophenotypes in families selected
through a proband (COGS-1) and in a case-control (COGS-
2) study [136]. Patients ascertained through the family-
based design, compared to case-control, were younger, had
higher educational attainment, better educated parents and
superior performance on some neurocognitive tests. Thus,
studies that use case-control ascertainment may tap into
populations with more severe forms of illness that are
exposed to less favorable factors compared to those ascer-
tained through designs that require family participation.

However, designs that require multiple affected individuals
in a family may result in a more severe phenotypic profile
and a different underlying genetic architecture as compared
to simplex families. For example, a comparison of multiplex
and simplex ASD families found an enrichment of CNVs in
ASD risk loci in both but a lower rate of de novo CNVs in
the multiplex families [137]. Family selection also impacts
the distribution of phenotypes among unaffected family
members, with members of multiplex families generally
having greater endophenotype impairment than simplex
family members [138–140]. In addition to enriching for
inherited, as opposed to de novo, risk alleles selection on
multiplex families may enrich for loci of larger effect which
are presumably rarer [102, 107, 141].

Pedigree-based whole genome sequencing of
affective and psychotic disorders consortium

To capitalize on the benefits of family-based designs for
variant localization and gene identification, we formed an
eight-site international consortium to use whole genome
sequence data and novel analytic methods to identify rare
variants that increase risk for affective and/or psychotic
illness. Initially, participating studies included: individuals
from large families of Amish and Mennonite descent
ascertained for bipolar disorder and living in Pennsylvania,
Ohio, and Indiana [142, 143]; individuals from 88 multiplex
families living in Western Australia [144]; persons from
extended families living in Costa Rica’s central valley who
were identified via a sibling pair concordant for either
schizophrenia or bipolar disorder [145]; large multiplex
multigenerational families from Pennsylvania selected for
schizophrenia [146]; individuals with from Scottish families
multiply affected with bipolar disorder or schizophrenia
[147, 148]; and large extended Mexican–American pedi-
grees living in Texas and selected without regard to phe-
notype [77]. Our cost-effective approach leverages existing
DNA, phenotypic data and some existing sequence data
from extended pedigrees with at least three affected family
members. Together, we have marshaled over 4000 indivi-
duals in approximately 269 families (see Table 2). Other
research groups who have generated WGS in additional
well-characterized families are encouraged to join us.

Conclusion

It is clear that common and rare variants, as well as envir-
onmental factors, play a role in risk for mental illness. Large
meta analytic GWAS have likely localized most or all of the
common variants with moderate to large effect sizes for the
major psychiatric disorders [10]. Following this logic,
Boyle, Li and Pritchard [10] recently suggested that after
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the biggest hits from GWAS have been identified, “the next
most promising step is to hunt for lower-frequency variants
of larger effects” (page 1184). Given the recent progress
with common variation, it would seem that the field of
psychiatric genetics should now capitalize on those suc-
cesses by identifying and characterizing analogous rare
variation and confirming those previously identified [149].
Extended pedigrees represent an implicit enrichment strat-
egy for identifying rare variants since Mendelian transmis-
sion maximizes the chance that multiple copies will exist in
the family. Given this enrichment, the associated improve-
ment in statistical power, plus the economic advantages of
pseudo-sequencing through genotype imputation, we
formed the “Pedigree-Based Whole Genome Sequencing of
Affective and Psychotic Disorders” consortium, a group of
international scientists dedicated to using family-based
designs to identify rare variants that increase risk of psy-
chiatric disorders. WGS in multiplex pedigrees provides an
important complementary experimental approach for iden-
tifying genes that confer risk for mental illness.
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