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Abstract

Autosomal recessive (AR) gene defects are the leading genetic cause of intellectual disability (ID) in countries with frequent
parental consanguinity, which account for about 1/7th of the world population. Yet, compared to autosomal dominant de
novo mutations, which are the predominant cause of ID in Western countries, the identification of AR-ID genes has lagged
behind. Here, we report on whole exome and whole genome sequencing in 404 consanguineous predominantly Iranian
families with two or more affected offspring. In 219 of these, we found likely causative variants, involving 77 known and 77
novel AR-ID (candidate) genes, 21 X-linked genes, as well as 9 genes previously implicated in diseases other than ID. This
study, the largest of its kind published to date, illustrates that high-throughput DNA sequencing in consanguineous families
is a superior strategy for elucidating the thousands of hitherto unknown gene defects underlying AR-ID, and it sheds light on
their prevalence.

Introduction populations where parental consanguinity is rare and

families are usually small, most affected individuals are

Intellectual disability (ID) or delayed psychomotor
development are by far the most common reasons for
referral to genetic services, and most severe forms are
caused by single genetic defects. In Western
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of sporadic cases. As shown by array CGH [1] and more
recently, whole exome (WES) or whole genome
sequencing (WGS) of patients and their parents [2, 3],
dominant de novo copy number variants (CNVs) and
mutations in single genes account for ID in the majority
of these individuals [4, 5]. Autosomal recessive
inheritance was rarely observed, at least in the first
larger NGS-based trio studies of this kind [6, 7], where
low sequencing depth may have hampered the identi-
fication of compound heterozygotes (discussed in ref.
[5]). In a recent comprehensive study of children with
severe developmental disorders, autosomal recessive
defects accounted for 11.7% of all cases with a clear
molecular diagnosis, whereas apparently disease-
causing autosomal dominant de novo mutations were
seen almost 5 times as often [8]. Not long ago, a meta-
analysis of 2104 trios identified 10 novel genes for
ID [9].
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These observations, as well as the availability of con-
ceptually simple ‘Trio sequencing’ strategies for their
identification, explain why in recent years, genetic research
into ID and related disorders has been dominated by the de
novo mutation paradigm [2, 8, 10—12]. Most of the domi-
nant de novo mutations identified are inactivate or one copy
of a deleted haploinsufficient gene, whereas gain-of-
function or dominant negative mutations seem to be much
rarer. Since only a minority of the ~20,000 protein-coding
human genes are dosage-sensitive [13], it is not surprising
that according to recent estimates, there may be less than
500 genes in the human genome where functional loss of
one copy is associated with ‘autism spectrum disorder’
(ASD) [14, 15], a collective term that includes ID and
autism. ‘Trio sequencing’ of individuals with ID/ASD and
their parents has already identified more than 400 of these
genes [9, 16, 17].

In contrast, the molecular elucidation of recessive forms
of ID is still in its infancy. By performing large-scale
autozygosity mapping in unrelated consanguineous famil-
ies, we were the first to show that autosomal recessive ID
(ARID) is extremely heterogeneous [18, 19]. Extrapolation
from the hitherto identified ~120 genes for recessive ID on
the human X-chromosome [20] suggests that mutations in
more than 3000 human genes may be associated with
autosomal recessive ID (ARID) [4]. To date, less than 600
of these genes have been identified [16, 17].

Only recently, ARID has gained popularity as a pro-
mising target for research into the development and function
of the human brain (e.g., see ref. [21]). Yet, the elucidation
of ARID is also of considerable importance for global
health care, which is still widely disregarded. Recent
population studies have shown that the prevalence of ID is
highly correlated with the frequency and the degree of
parental consanguinity. In the offspring of double cousin or
uncle-niece unions, ID is 3 to 4 times more common than in
children of unrelated parents [22-25], and there is com-
pelling evidence for the involvement of recessive gene
defects (e.g., see refs. [5, 25-27]). Over 1 billion people live
in countries where consanguineous marriage is common
[28], and it has been estimated that couples related as sec-
ond cousins or closer and their offspring account for 10.4%
of the global population [29].

In outbred Western populations, the search for recessive
causes of ID has turned out to be tedious (e.g., see refs. [30,
31]). Even trio sequencing in several thousand affected
families yielded only a modest number of novel ARID
genes [8, 32]. In 2011, we performed large-scale high-
throughput sequencing in cohorts of consanguineous
families to speed up the search for novel ARID (candidate)
genes [33] but it took several years before other groups
joined in [34-39].
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Here we report on WES and WGS studies in 404 con-
sanguineous families with ID, about three times as many as
analyzed 5 years ago by our group [33]. The vast majority
of these are from Iran, where almost 40% of all children
have related parents [40—43]. These investigations shed
more light on the genetic causes of ARID. Moreover, they
significantly broadened the basis for the diagnosis and
prevention of cognitive disorders in Iran and beyond.

Materials and methods

This study comprised 404 out of 757 families with =2
affected individuals recruited during the past 10 years.
Initial screening revealed Fragile X syndrome in 46 (6.1%)
of these families which were excluded. In other families,
different monogenic causes of ID have been identified prior
to the NGS era (reviewed by refs. [5] and [44]), and many
families could not be reached or were excluded because of
poor parental cooperation, borderline ID or genetic
heterogeneity.

From each family of our cohort, one affected patient was
selected for sequencing.

Genomic DNA (gDNA) was extracted from peripheral
blood, the quality of which was controlled by Nano-
drop2000 (Thermo Scientific), and approximately 2 ug
gDNA was used for constructing deep sequencing libraries.
In the course of this study, four different deep sequencing
protocols were employed, i.e., target enrichment sequencing
(TES) using the Illumina GAII sequencer, whole exome
sequencing (WES) on the Illumina HiSeq2000 sequencer,
and whole genome sequencing (WGS) on the Illumina
HiSeq X Ten sequencer (Macrogen) followed by sequence
alignment and variant calling using the DRAGEN infra-
structure and pipeline (www.edicogenome.com). For some
of the families, WGS was (also) performed by Complete
Genomics, following the service provider’s standard pro-
cedure, using short-read paired sequencing and the CGA™
tools for data analysis (www.completegenomics.com/).
Details about the performance of these protocols, including
the average coverage depth (non-redundant reads only) per
sample and the percentage of the targeted coding regions
covered by 10, 20, or 30 reads, are shown in the Table S6
and discussed below.

We analyzed TES and WES data by using our previously
published Medical Resequencing Analysis Pipeline
(MERAP) [45] (for details, see Materials and Methods
Supplement; MERAP procedure). A particular strength of
this pipeline is the detection of small, medium-sized, and
large copy number variants. Therefore, and because
homozygous CNVs turned out to be very rare in the families
studied, array CGH was soon discontinued.


http://www.edicogenome.com
http://www.completegenomics.com/
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All potentially ID-causing variants detected by NGS
were validated by Sanger sequencing, and for those iden-
tified by WES and WGS, co-segregation studies were per-
formed, including all available and informative family
members. A novel algorithm was developed to detect runs
of homozygous markers (ROHs) encompassing possibly
disease-causing mutations in the exome and genome of
ARID patients, and comparison of ROHs spanning identical
mutations in apparently unrelated families revealed shared
haplotypes for all of them (for details, see Fig. 2, Supple-
ment and Table S7). To further enrich them for pathogenic
mutations, variants were also filtered in several other ways
(for details, see Table S1), including pathogenicity predic-
tion for missense variants using four established prediction
tools, and selected for absence or very low allele fre-
quencies in the EXAC database and our own in-house
cohort which largely consists of Iranian families. Moreover,
we have shown that novel ID genes are functionally related
to known ID genes, either by protein-protein or through
regulatory interaction (for details, see Materials and Meth-
ods, Supplement). Variants in known genes were scored
using the ACMG variant interpretation guidelines [46]. Of
these, 83.3% were classified as pathogenic or likely
pathogenic. A few variants of uncertain significance (VUS)
were retained as likely relevant based on a variety of criteria
(e.g., low allele frequency or not even listed in ExAC;
confined to a single family in our in-house database; called
as pathogenic by at least 2 out of 4 relevant algorithms
[PolyPhen2, SIFT, MutationTaster, CADD]; distinctive
clinical phenotype; location within ROHs; supporting evi-
dence from functional studies and expression data). The
same criteria were also employed to classify mutations in
novel candidate genes. Nevertheless, rigorous confirmation
of the pathogenicity of these variants will have to include
future functional studies and/or the identification of iden-
tical variants in other affected families.

To validate previously reported ARID candidate genes
[33], we have also generated fly models and performed
behavioral tests [47, 48]. Other previously identified ARID
candidate genes could be confirmed by identifying allelic
mutations in unrelated families (for details, see Materials
and Methods Supplement; Fly Models, Drosophila behavior
testing and Table S3).

Results

In 219 out of 404 families investigated (54.2%) we
identified likely disease-causing DNA variants in novel
candidate genes and in known genes, all co-segregating
with ID. As expected for affected offspring of healthy
consanguineous parents, the vast majority of these turned
out to be autozygous for autosomal recessive defects.

Compound heterozygosity was confined to a single family
(M135, see Table S1) with a frameshift and a missense
change in the MADD gene, which has a role in synaptic
vesicle transport.

Likely disease-relevant variants in known or novel X-
chromosomal (candidate) genes were found in 26 (23
genes) out of 219 consanguineous families (11.9%). For all
of these, inheritance patterns were compatible with X-
linkage. Pedigrees of all families with mutations in novel
candidate genes are shown in Fig. S1. Five of the novel
candidate genes had not been implicated in ID before (see
Tables S1), two variants were identified in known non-ID
disease genes (DIAPH2 and XPNPEP?2), and two (KIF4A
[49] and WDRI3 [50]) had been linked to ID in a single
family and are confirmed as X-linked intellectual disability
(XLID) genes by this study. These data suggest that
including Fragile X syndrome, X-linked gene defects may
account for almost 18% of the consanguineous families
with ID in Iran (see also refs. [51, 52]). Pathogenic muta-
tions in DDX3X and PHFS8 were observed in two affected
brother pairs (families M030 and M9100013, respectively,
see Table S1) but not in blood of their mothers, suggesting
maternal germ cell mosaicism. A similar frequency of de
novo mutations shared by siblings had been reported before
[14].

For 26 autosomal and X-chromosomal genes we found
allelic mutations in two or more families (Table 1). Most of
these are known ID genes, and several had already been
described in our previous study [33]. Four genes (IPP,
ITGAV, RNFT2, and TTC5) had not yet been linked to any
disease and PIDD] only very recently [39]. For two known
disease genes (AK/ and ALS2), an association with ID had
not been reported before.

Two hundred and fifteen different, likely disease-causing
variants were identified, 127 in known and 88 in novel
(candidate) genes (Table 2). Of note, 11 out of 127 likely
causative variants were found in genes that had been pre-
viously implicated in diseases other than ID. Of the 127
variants observed in known genes, 57 (44.9%) were loss of
function (LOF) mutations including large deletions, stop-
gain, frameshift, extension, and splice site variants, while 70
(55.1%) were missense variants. With 42%, the proportion
of LOF variants was slightly lower in families with novel
(candidate) genes and the proportion of missense mutations
or small in-frame deletions was a little higher (58%). While
these differences are not statistically significant, they might
indicate that our criteria for selecting missense mutations in
novel genes were slightly too permissive. On the other
hand, it is noteworthy that in a recent study of de novo
mutations causing ‘autism spectrum disorder* (ASD) [14],
the inferred relative contribution of gene-disrupting (43%)
and missense mutations (57%) was very similar to our
findings.

SPRINGERNATURE
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There was almost no overlap between the genes impli-
cated in ARID by our present study and 847 genes thought
to be functionally redundant for which homozygous muta-
tions have been recently identified in healthy adults with
related parents [53]. Only 4 of the genes mutated in our
families (CLN3, CLIP1, POMGNTI, and SASS6) were lis-
ted as potentially redundant, but there is solid evidence
linking all four to recessive cognitive disorders. CLN3
(OMIM #204200) and POMGNT! (OMIM #613151) are
known genes for neuronal ceroid lipofuscinosis and con-
genital dystroglycanopathy with mental retardation,
respectively, whereas for CLIP1 and SASS6, homozygous
deleterious mutations have been identified in at least two
unrelated ARID families (this study and ref. [54]).

Further, albeit indirect support for the reliability of our
findings had been obtained from the confirmation of pre-
vious results. Of the 50 novel ARID candidate genes pre-
sented previously [33], > 30 have been firmly implicated in
ARID through identification of additional families with
allelic mutations, our investigation of fly models (Table S2
and Fig. S2) or in other ways (for a comprehensive over-
view, see Table S3). For many of the remaining candidate
genes, mouse models with behavioral abnormalities have
been reported (e.g., see http://www.informatics.jax.org).
Moreover, the introduction of MERAP, a comprehensive
Medical Resequencing Analysis Pipeline with its integrated
Logit pathogenicity score [45] has greatly improved the
identification and ranking of likely disease-causing
sequence variants. Therefore, we believe that eventually,
most of the candidate genes presented here will be con-
firmed. Indeed, this expectation has already been met for a
variety of (former) candidate genes identified in the course
of this study, including FMN2 [55], CLIP1 [56], CAPNI0
[57], MFSD2A [58, 59], SLC6A17 [60], HNMT [61],
DDX3X [62], TAF6 [34], and TAF1 [20, 63], which have
been recently published by us and/or other groups.

ARID is often associated with microcephaly

In our previous study [33], novel forms of ARID had been
considered as non-syndromic if index patients showed no
obvious clinical symptoms other than ID. In many of these
families, however, re-examination including affected sib-
lings revealed additional clinical signs that had been over-
looked before. In the present study, thorough clinical
examination of all affected family members and comparison
with families carrying allelic mutations allowed us to clas-
sify as syndromic 200 out of 219 families with a defined
disease-causing variant. In 86 of the 219 ‘identified’ ARID
families, the average occipito-frontal diameter (OFC) of
affected individuals was at least 2 SD lower than the mean,
and mutations in 30 novel candidate genes for ID were
found to be associated with microcephaly (see Table S1,

SPRINGER NATURE

Table 1 ID and non-ID disease genes mutated in two or more
consanguineous families

No. Gene symbol Chrom. location Known/ No. of
Novel families
1 VPS13B 8q22—q23 K 5
2 AP4M1 7q22.1 K 4
3 ASPM 1q31 K 4
4 AP4Bl1 1p13.2 K 3
5 WDR62 19q13.12 K 3
6 AK1 9q34.1 K1 2
7 ALS2 2q33.1 K1 2
8 AP4S1 14q12 K 2
9 ATRX Xq21.1 K 2
10 B3GALNT2 1q42.3 K 2
11 CAPNI10 2q37.3 K 2
12 CASK Xpll4 K 2
13 CEP104 1p36.32 K 2
14 DDX3X Xpl1.3-p11.23 K 2
15 DYM 18921.1 K 2
16 GAMT 19p13.3 K 2
17 IPP 1p34-p32 N 2
18 ITGAV 2q31-q32 N 2
19 LINSI 15926.3 K 2
20 ORC1 1p32 K 2
21 PIDDI 11p15.5 N** 2
22 RNFT2 12q24.22 N 2
23 TMEM67 8q22.1 K 2
24 TRMTI 19p13.2 K 2
25 TTCS 14q11.2 N 2
26  ZNF335 20q13.12 K 2

Keys to column 3: K: known ID gene; K1: known non-ID gene; N:
novel gene, detected in this study; N**: novel gene detected in this
study, recently published by other groups

Table 2 Likely causative variants observed in 219 identified families

Mutation type Known genes Novel (candidate) genes

Large deletion/CNV 5 2 3
Frameshift 44 26 18
Extension 2 1

Stop gain 23 15

Splicing 20 13

In-frame deletion 3 0 3
Missense 118 70 48
Total 215 127 88

column G, and clinical description, Text File S1). Very
severe microcephaly, with OFC < —7 standard deviations
(SD) [64] was observed in families with homozygous, likely
damaging mutations in the genes PPPIR35, GUFI,


http://www.informatics.jax.org

Genetics of intellectual disability

1031

METTLS5, PUS7, and TBCI1D23 (see more detailed infor-
mation in Supplementary Text).

ID with moderate microcephaly (OFC: —5 SD to —3 SD)
was observed for 11 novel genes. For three of these, a
second affected family with an allelic mutation has estab-
lished their involvement in ID and microcephaly.

Defects in three genes, i.e., SP2, CLPTM1, and MADD,
were found to be associated with enlarged head size. The
most striking head enlargement (OFC:+4 and + 5 SD,
respectively) was observed in two children with mild to
moderate ID (see family M135 in Supplementary Text S1)
and compound heterozygosity for two allelic MADD
mutations.

Of note, in two of three genes previously linked to non-
ID disorders, PLINI (OFC: —3.5SD) and YARS (OFC:
—9.5SD), we observed likely causative variants associated
with microcephaly, and for AK/ mutation, an association
with enlarged head size has been observed.

Epilepsy is also common, but autism is rare

Epilepsy was observed in 62 families of our cohort (28%),
involving 33 known and 29 novel candidate genes (see
Table S1, column H, and Supplementary Text). Of note,
three out of 33 known genes (ALS2, FDPS, and XPNPEP2)
had not been linked to ID before. Thus, after microcephaly,
epilepsy was the most common additional finding in
families with ARID. As judged from MRI results, which
were only available for a minority of the ARID families,
structural brain abnormalities and/or leukoencephalopathy
are also fairly common (Table S1).

Prominent signs of autism were only present in 8 of the
219 families, involving 5 known and 3 hitherto unknown
ID genes. These findings corroborate our earlier obser-
vation that compared to sporadic forms of ID seen in
outbred populations, autism is rare in patients with
recessive forms of ID [33]. Among the relevant known ID
genes, four genes (ADSL, SHANK3, GRMI, and
CNTNAP2) have been implicated in autism before. Novel
ID- and autism-associated (candidate) genes included
SP2, TRIM47, and EZHI. The association of SP2 muta-
tions with autism and large head size is noteworthy
because it has been reported that autistic children tend to
have large brains [65]. SP2 is a cell cycle regulator gene,
in which, deletion leads to the interruption of neurogen-
esis in embryonic and postnatal brain [66]. TRIM47 is
expressed in fetal astrocytes and may be involved in brain
development [67]. The homozygous truncating mutation
observed in the EZHI gene is of particular interest. Het-
erozygous de novo mutations in the paralogous EZH2
gene are associated with Weaver syndrome [68], char-
acterized by developmental delay, overgrowth and dys-
morphic signs. Both EZHI and EZH2 catalyze mono-

methylation, di-methylation, and tri-methylation of his-
tone H3 at lysine 27 (H3K27me2/3) [69], but EZH] is less
abundant in embryonic stem cells and has weaker
methyltransferase activity. We show here that homo-
zygous loss of EZHI function is also associated with
overgrowth (see clinical description of family M8800071
in Supplementary Text and Fig. S3), but otherwise there
was little phenotypic overlap with Weaver syndrome. In
another family with ID and autism, we found a likely
disease-causing variant in the XPNPEP2 gene. XPNPEP2
may be involved in cleavage of neuropeptide Y [70], a
neuromodulator implicated in controlling the energy bal-
ance and behavior.

Allelic mutations causing recessive or dominant ID

In six previously described genes for autosomal dominant
ID (ADID) or related disorders (CACNAIC, SCNSA,
SETBP1, SHANK3, ATPIA3, PRRT2), we have identified
recessive sequence variants that co-segregated with ID in
consanguineous ARID families (Table S1). Four of these
are likely mild missense mutations, as evidenced by mod-
erate Logit pathogenicity scores (see Table S1). This may
explain why heterozygous carriers in the respective families
are healthy and only homozygotes have ID, as shown for a
Pro—~His mutation in CACNAIC, an Arg—His mutation in
SCNS8A, a Glu—Gly mutation in SETBPI and a Val-Ala
mutation in SHANK3 (Table S1). Dominant ATPIA3
mutations (see OMIM *182350) have been identified in
dystonia, alternating hemiplegia of childhood and in the
severe CAPOS syndrome. The Arg476Cys variant found in
family M204 has high pathogenicity scores, but has not
been linked to disease before. It is listed 65 times in the
ExAC database, but exclusively in heterozygotes. In family
M204, the phenotype of two homozygous females born to
healthy second cousin parents overlapped with CAPOS
syndrome, including severe ID, cerebellar ataxia with
quadrupedal gait, short stature (< 3% ile) and in one, sei-
zures since infancy. Reduced body size has also been
noted in a mouse model for this disorder (see OMIM
*182350).

For PRRT2? (see OMIM *614386), heterozygous loss-of
function (LOF) mutations have been described in families
with three different dominant disorders, i.e., infantile con-
vulsions with paroxysmal choreoathetosis, episodic dyski-
nesia and infantile benign familial seizures. A recurrent
¢.649dupC frameshift mutation in the PRRT2 gene has been
identified as the most common cause of all three conditions,
which have been observed in different members of the
respective families [71]. In family MOO3 reported here,
homozygosity of ¢.649dupC is associated with moderate
ID, strabism, seizures, and spasticity; their parents are
healthy and do not have a history of infantile seizures. To
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our knowledge, homozygous truncating PRRT2 mutations
with ID have not been described before.

For TBCID23 and HIVEP3, presented here as novel
ARID (candidate) genes (families M268 and M8700057 in
Table S1), heterozygous de novo mutations have been
described in individuals with autism and schizophrenia,
respectively [17, 72].

Discussion

Many of the ~570 genes hitherto implicated in ARID [5, 16,
17, 44] code for metabolic enzymes, and their defects often
cause severe or even lethal inborn errors of metabolism. In
our study, we have focused on familial ID, and many
affected individuals were recruited as adolescents or even
adults. This may explain why in our cohort, the proportion
of families with metabolic defects is much lower. Detailed
information about the function of all novel ARID (candi-
date) genes is provided in Table S1 (see column U).
Grouping them into functional classes is somewhat arbitrary
because many genes have pleiotropic functions. As

CNPY3
GPAA1

oy BCAS3

previously reported [33], ARID is often caused by muta-
tions in genes with essential ‘housekeeping functions’ such
as DNA transcription and translation, cell division, protein
degradation, or energy metabolism. Here we show that the
spectrum of recessive gene defects leading to ID is much
wider. In particular, novel ARID genes are tightly con-
nected with known ARID genes at the level of
protein—protein interactions often functioning in funda-
mental biological processes such as TFIID, elongation and
7SK RNP complexes (Fig. 1). A detailed functional char-
acterization of the novel ARID (candidate) genes is sum-
marized in Tables S4.1-4.7 and different aspects are shown
in Figs. S4-S6.

Apart from the functional classes mentioned above,
defects involving synaptic function, cell migration, cell
signaling and remarkably, innate immunity form visible
clusters (see Table S1, column T). In total, 7 of the novel
ARID (candidate) genes presented here have a role in innate
immunity, and at least three (HIVEP3, PIDDI, and
TMED7-TICAM?2) are upstream regulators of NF-kappa B
(see Table S1). Two ARID genes, CC2DIA [73] and
TRAPPC9 [74] have been linked to innate immunity before;
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Fig.1 Protein-protein interaction network linking 39 known (green
nodes) and 48 novel genes (orange nodes) for recessive forms of ID
that were identified during this study. Five genes have been identified
as well by other studies during the course of this work (light yellow
nodes). Interactions were retrieved from the ConsensusPathDB
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Fig. 2 Regional clustering of recurrent ARID mutations suggest short half-life and rapid replacement of serious recessive disease-causing gene

defects in Iran

inactivation of these genes leads to up-regulation of NF-
kappa B signaling. Recently, excessive NF-kappa B sig-
naling has also been implicated in the pathogenesis of Rett
syndrome and presented as possible new route for alle-
viating the course of this severe X-linked neurodevelop-
mental disorder [75]. Using homozygosity mapping,
Gamsiz ED et al., (2015) identified novel rare, recessive
loci, which include a protein truncating mutation in
CC2DIA in consanguineous families with syndromes such
as autism symptoms [76].

Functions of ARID and ADID genes

Dominant de novo mutations in fragile X mental retardation
protein (FMRP)-interactors and chromatin-remodeling
genes are common in sporadic forms of ID and autism,
and the same is true for genes coding for post-synaptic
density proteins (e.g., see refs. [14, 15, 72, 77]). In contrast,
only two of the novel ARID genes identified by our present
study qualify as chromatin-remodeling genes (SMYD5 and
EZHI, with ATF7IP as possible third). Three of the novel
ARID (candidate) genes (CTNNA2, FSCNI, and ITSNI),
and a known disease gene reported with non-ID phenotype
in OMIM (AKI) code for postsynaptic density proteins
(http://www.genes2cognition.org/db/GeneList) [78]. ALS2,

another known non-ID disease gene, is the only ARID gene
among the top 40 FRMP targets that have been linked to ID
or autism [79]. Most FMRP targets and genes implicated in
sporadic forms of ID and autism code for exceptionally
long, highly brain-expressed proteins [80] whereas ARID
proteins tend to be shorter, and as shown here, they are less
often involved in multi-protein complexes. These differ-
ences may explain why protein interaction and regulatory
networks for recessive forms of ID show little overlap with
published ones (e.g., see refs. [81, 82]), (see Fig. S7 and
Tables S5.1-5.13).

Geographical clustering of recurrent mutations

The scarcity of compound heterozygosity in Iran may reflect
the tradition to marry within families or large clans with
‘private’ recessive defects (e.g., see refs. [52, 83]). This is
supported by regional clustering of apparently unrelated
families with identical mutations. Six likely disease-causing
variants were observed in two different families of this
cohort. One of these (AP4M1 p.E193K) had already been
described in our previous study (family M004 in ref. [33]),
and a mutation in another, seventh gene (PRRT2 p.
Arg217Profs*8, family M003, Table S1) had also been
observed before (family MO10 [33]). Most of the families
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carrying matching mutations turned out to be from the same
or neighboring provinces or even the same town (see Fig.1).
Haplotype analyses confirmed their identity by descent,
even for three families with the recurrent AP4M1 p.E193K
mutation living in different regions of Iran, thereby ruling
out the possibility of a mutational hotspot (see Table S7).
To our knowledge, none of these recurrent mutations has
been described outside Iran so far. On the other hand, the
relatively small size of the shared haplotypes argues against
the possibility that these mutations are evolutionarily
young. While in consanguineous demes, genetic drift will
rapidly lead to loss of internal diversity at a given locus,
there is evidence that the overall gene diversity in the
population as a whole will remain remarkably stable [84],
which may explain these observations.

Spectrum of ARID genes in neighboring populations

Recently, several groups have looked for genetic defects
causing neurodevelopmental disorders in neighboring
countries where parental consanguinity is also common. We
have compared the outcome of our previous [33] and the
current investigations with combined data from Arab
countries [34, 37, 38, 85], and with the results of studies
conducted in Turkey [35] and Pakistan [36, 39]. Of the 228
known and novel ARID (candidate) genes carrying muta-
tions in our (mainly Persian) cohort, only 28, 11, and 25,
respectively, were found to be mutated in the cohorts from
Arab countries, from Turkey and from Pakistan (Fig. 3,
Table S8).

Of note, no single ARID gene was found to be mutated
in all 4 cohorts, which corroborates the conclusion that in
highly consanguineous populations, most severe recessive
disease-causing mutations are confined to clans and do not
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spread much farther, and that in ARID, the locus hetero-
geneity is extremely high [19]. Thus, compared to the
estimated 500 genes involved in ADID [14, 15] the number
of ARID genes must be large and is likely to run into the
thousands [4].

Marrying within families or clans should also favor the
regional clustering of genetic risk factors for related com-
plex diseases. Thus, genetic factors predisposing to other
neuro-psychiatric disorders are not likely to spread in these
countries either, and common associated markers are
expected to be rare, not only in conditions such as autism
and schizophrenia where GWAS cannot work due to
reduced fecundity of affected individuals and rapid turnover
of the predisposing genetic factors [21, 86].

The quest for ID genes: an unaccomplished mission

In view of the rapidly growing capacity for whole exome
or whole genome sequencing, the detection of genetic
variants is no longer a problem, but assessing the clinical
relevance of genetic variants is still a bottleneck. Algo-
rithms predicting the pathogenicity of missense variants in
known disease-associated genes have improved, but their
reliability is still limited. Gene- or pathway-specific
functional tests have been employed to study mutations
implicated in immunodeficiencies [87] and defects in the
blood coagulation pathway [88], but devising analogous
functional tests for neuropsychiatric disorders [21] is a
much greater challenge. For ARID, this approach is no
realistic option given the plethora of functionally different
ARID genes and the high proportion of families with
likely causative mutations in novel genes, indicating that
most ARID genes have not been identified yet (see also
Fig. 3).
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Therefore, the search for gene defects that cause or
predispose to ID and/or related disorders has to remain a
priority of research into neuropsychiatric disorders until
most of the underlying gene defects are known. In line with
previous considerations [89], our results suggest that there
are more recessive than dominant forms of ID, and their
overdue systematic elucidation will generate a wealth of
new data on the development and function of the central
nervous system. Searching for multiple allelic mutations in
cohorts of consanguineous families with two or more
affected children is the strategy of choice for identifying
hitherto unknown ARID genes. The success of this
approach is primarily dependent on the number of families
studied, and at least in principle, it does not rely on func-
tional clues which are often scant or absent. The identifi-
cation of most or all single-gene defects causing ID and
related neurodevelopmental disorders will be a major step
towards understanding the function of the human brain in
health and disease.

Where are the missing mutations?

We detected likely disease-causing variants in 219 out of
404 consanguineous ID families (54.2%). This finding was
comparable to that of our previous, smaller study (57%
[33]), but lower than in two other recent investigations [34,
35]. The lower mutation yield of our present study may
reflect the inclusion of families which had been unsuc-
cessfully screened by targeted exon sequencing before. Of
note, 11 families harbored variants in genes known to be
associated with diseases other than ID.

These studies and the unexpected paucity of compound
heterozygosity highlight the importance of linkage infor-
mation and suggest that combining autozygosity mapping
with WES is a superior strategy for identifying disease-
causing mutations in consanguineous families. Autozygous
genomic segments harboring most of the recessive muta-
tions can also be identified by sequencing several indivi-
duals per family, which is a time-saving, albeit more
expensive alternative to prior linkage studies [35].

Not unexpectedly, the additional diagnostic yield of
WGS was limited suggesting that the vast difference
between WES and WGS reported by others may in the first
place reflect technical differences rather than indicating that
WGS is fundamentally superior to WES. In principle, of
course, WGS should allow to detect all kinds of mutations
everywhere in the genome, not only in coding regions and
exon-flanking splice sites. In practice, however, this
advantage is rather theoretical as long as we cannot reliably
identify functionally relevant sequence variants in the non-
coding portion of the genome, including deep intronic or
even exonic mutations affecting splicing, but also enhancer,
repressor or insulator mutations in intergenic regions.

Recent studies suggest that exonic variants enhancing or
silencing splicing [90] or generating novel splice sites [91]
are important ‘sinks’ of disease-causing mutations, and
novel algorithms have been developed that promise to
facilitate their identification.

Other mechanisms that may cause ID in sporadic patients
such as dominant de novo mutations, polygenic inheritance
or epigenetic changes that are not directly related to changes
in the DNA sequence are unlikely to cause ID in multiple
children of healthy consanguineous parents, and recurrent
parental germline mutations are also rare.

Many of the mutations missed by the afore-mentioned
studies may involve non-coding regulatory sequences.
Therefore, their identification and functional characteriza-
tion is of central fundamental and diagnostic importance.
For defining regulatory sequences in the genome ([92] and
references therein) it is advantageous to study defects with
highly specific, recognizable phenotypes; thus, ID does not
qualify. It is also unlikely that algorithms for assessing the
functional relevance of non-coding sequence variants will
be available soon. However, searching for regulatory
mutations in autozygous genome intervals of large ARID
families is a viable option, as previously documented for X-
linked ID [93]. Large ARID families from our cohort where
even WGS failed to identify a likely causative mutation
should be particularly suitable for this purpose.

The spectrum of ARID gene defects identified in pre-
dominantly Iranian, Arabian, Turkish, and Pakistani famil-
ies shows little overlap, as illustrated above. In countries
where parental consanguinity has been practiced for many
generations, deleterious recessive mutations are expected to
differ between demes or clans, and the gene defects present
in the entire population are a more or less stochastic sample
from the large pool of gene defects that can give rise to
ARID. Secondly, in samples of limited size, the frequency
of specific gene defects causing ARID will differ from their
prevalence in the population. Given the relatively small
cohorts of ARID families studied to date and the very high
number of potential ARID genes, this sampling error is
presumably large. Indeed, this is supported by the limited
number of overlapping gene defects identified in two
separate cohorts of families sampled from the Iranian
population [33] (this study, see Fig. S8). Therefore, it may
be possible to consider these cohorts and those from Arab
countries, Turkey and Pakistan as independent samples
from the same gene pool, and the combined outcome of
these studies may provide a sufficiently broad basis for
estimating the total number of ARID genes [94].

In conclusion, this study has identified numerous novel
ARID genes, as well as likely ID-causing mutations in a
large number of genes that had not been implicated in ARID
before. It revealed that most forms of ARID are syndromic,
with microcephaly being present in almost half of the
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families, while autism is rare; and that genomic sequencing
and autozygosity mapping in consanguineous families is the
strategy of choice for identifying novel ARID genes. Our
study showed that the implementation of WES or WGS
might be an efficient diagnostic strategy for countries where
parental consanguinity is common and recessive disorders
are a central problem of health care. In outbred Western
populations, large consanguineous families are rare, and
even the largest pilot studies may be too small for eluci-
dating recessive disorders in a systematic fashion.
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