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Abstract
Various one and two-dimensional (1D and 2D) nanomaterials and their combinations are emerging as next-generation
sensors because of their unique opto-electro-mechanical properties accompanied by large surface-to-volume ratio
and high quality factor. Though numerous studies have demonstrated an unparalleled sensitivity of these materials as
resonant nanomechanical sensors under vacuum isolation, an assessment of their performance in the presence of an
interacting medium like fluid environment is scarce. Here, we report the mechanical damping behavior of a 1D single-
walled carbon nanotube (SWCNT) resonator operating in the fundamental flexural mode and interacting with a fluid
environment, where the fluid is placed either inside or outside of the SWCNT. A scaling study of dissipation shows an
anomalous behavior in case of interior fluid where the dissipation is found to be extremely low and scaling inversely
with the fluid density. Analyzing the sources of dissipation reveals that (i) the phonon dissipation remains unaltered
with fluid density and (ii) the anomalous dissipation scaling in the fluid interior case is solely a characteristic of the fluid
response under confinement. Using linear response theory, we construct a fluid damping kernel which characterizes
the hydrodynamic force response due to the resonant motion. The damping kernel-based analysis shows that the
unexpected behavior stems from time dependence of the hydrodynamic response under nanoconfinement. Our
systematic dissipation analysis helps us to infer the origin of the intrinsic dissipation. We also emphasize on the
difference in dissipative response of the fluid under nanoconfinement when compared to a fluid exterior case. Our
finding highlights a unique feature of confined fluid–structure interaction and evaluates its effect on the performance
of high-frequency nanoresonators.

Introduction
In the pursuit of miniaturization of devices, low-

dimensional nanomaterials like carbon nanotubes1,2,
graphenes3, and monolayer transition metal dichalco-
genides4 (TMDCs) have been drawing enormous atten-
tion for nearly two decades. One motivation towards
miniaturization is making high-precision resonant
mechanical sensors which can detect extremely small
foreign mass, charge, force, etc.5,6. The unique optical7,8

and electronic properties9–11 of these low-dimensional
materials can be coupled with their mechanical degrees of
freedom to make the next generation sensors. During any
such sensing process, ultra-high sensitivity can be attained
when the resonator has low mass, large surface area, and
very high resonant frequency12,13, all of which are inher-
ently offered by 1D and 2D materials of nanometer
dimension. However, different dissipative processes can
interfere with the mechanical response of the resonators
and limit their performance. The dissipation takes place
due to the coupling of the resonant motion of interest,
either with other internal degrees of freedom in the
resonator, classified as an intrinsic source or with the
external environment, classified as an extrinsic source.
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Typically, the ultimate performance of a resonator is
evaluated under near-vacuum condition13–15, in which
case only the intrinsic dissipation mechanisms are
operative. But, such characterization may prove insuffi-
cient to assess their quality for applications involving
biological16,17 and chemical18–20 sensing where an exter-
nal gas or liquid environment is inevitably present. In
such scenarios of a resonator in a fluid environment,
estimating the net energy loss is not straightforward.
Firstly, because the sources of dissipation can couple with
each other and the coupling effect can manifest in each
dissipation mechanism. Secondly, the response of the
interacting media, fluid, in the parameter space of the
resonant motion, which are gigahertz frequency and
nanometer dimension is poorly understood and conse-
quently, the resulting extrinsic dissipation, i.e., fluid dis-
sipation, is difficult to estimate. In this regard, 1D or 2D
high-frequency nanoresonators in a fluid environment is a
platform not only to understand the individual dissipative
processes and their coupling but also to probe the nature
of fluid–structure interaction at the lower extremes of
length and time scale.
The dominant mechanism behind dissipation varies

significantly with the critical length of the resonator, the
time scale of operation, and the mode of actuation. The
intrinsic dissipation, for instance, in the case of beam
resonators with micrometer cross-section and megahertz
resonant frequency is dominated by thermoelastic
damping21,22 and mediated by its phonons or thermal
degrees of freedom. For smaller resonators of nanometer
lengths operating at gigahertz frequencies, phonon-
mediated dissipation due to Akhiezer mechanism23,24,
anharmonic phonon scattering25,26, becomes more
pronounced. For flexural vibration of 1D and 2D
microresonators, nonlinear mode coupling, mode hybri-
dization, and coupling to phonon bath are the dominant
dissipation mechanisms27–29. Other forms of intrinsic
dissipation could be mediated by the surface30,31 and
structural defects32 and by the two-level states33–35 at low
temperatures. Of all, phonon-mediated dissipation
mechanisms are of major concern because it is ubiqui-
tous to any resonator at room temperature. Viscous
damping starts playing a significant role when the reso-
nator is coupled with the fluid environment. The fluid
can be placed, either outside the volume of the resonator
or encapsulated in a channel inside the resonator. In the
case of exterior fluid, the fluid damping is generally
orders of magnitude higher than intrinsic damping and
becomes a more important concern. This motivated the
characterization of fluid damping interacting with
vibrating micro-nano structures36 and nanoparticles37. It
has been established that even “viscous” fluid can exhibit
“viscoelastic” nature if the time scale for measurement
becomes comparable to molecular timescales in the fluid.

To account for the frequency dependent fluid response, a
fluid relaxation parameter is incorporated in the con-
stitutive relationship between shear stress and strain rate,
and the classical Navier–Stokes (NS) equations are
modified accordingly38,39. The effect of the fluid relaxa-
tion was observed in the case of gases through vibrating
micro-nano resonators at kilohertz to megahertz fre-
quencies40 and in case of liquids through vibrating
nanoparticles at gigahertz frequencies41, respectively.
The difference in the frequency range of observation is
due to the difference in molecular timescales between
gases and liquids. In all the cases of exterior fluid, the
damping was consistently found to be directly propor-
tional to the density or viscosity of the fluid. The case of
fluid encapsulation exhibited some distinctive features
like reduced fluid damping42,43 and nonmonotonic scal-
ing with the fluid density or viscosity44. Those features,
however, were shown to stem from the dynamics of
the fluid under confinement. Because of the lower fre-
quency in kilohertz and larger dimension of the fluid
channel in micrometer, the oscillatory flow dynamics
could be explained using classical NS equations without
the fluid relaxation parameter. In this regard, the flexural
phonon damping of nanotube resonators with confined
fluid combines interesting and unexplored features of
both phonon-mediated intrinsic damping and fluid
damping. The confined fluid damping being low and
comparable to the intrinsic dissipation, both become
equally important. Each dissipation channel can exhibit
some effect due to the presence of other entity. A
large surface-to-volume ratio of these low-dimensional
structures provides a scope to capture the effect.
The flexural phonons interacting with the fluid can
attain gigahertz frequencies, a range where the fluid
response behavior is unknown. Additionally, the fluid
interaction at the nanoscale structural interface bears the
effect of slip45,46, density inhomogeneity47, and reorga-
nization due to confinement48, all of which can effect the
dissipation.
We consider a 1D single-walled carbon nanotube

(SWCNT) interacting with an argon environment at
room temperature and study the damping of the funda-
mental flexural phonon with gigahertz resonant fre-
quency. We set-up two different arrangements of the
resonator–fluid system; in one, the fluid is solely confined
inside the SWCNT (shown in Fig. 1b), and in other, fluid
is placed outside the SWCNT (shown in Fig. 1c). Ring-
down simulations of the SWCNT are carried out to
compute the net dissipation during the resonant motion.
The net dissipation, which is contributed by phonons and
fluids in the system, is studied at different fluid densities
for both the cases. A comparison of the fluid interior case
with an empty SWCNT in vacuum revealed that dis-
sipation due to phonons and fluid are comparable and
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that each of them and their cross-interaction can be of
significance. First, we look at intrinsic dissipation due to
phonons. We use the intrinsic dissipation computed for
the empty SWCNT in vacuum to investigate if the
associated dissipation mechanism is affected in the pre-
sence of interfacial fluid interaction. Next, we compute
the fluid dissipation which results from the oscillatory
flow generated in the fluid during the ringdown motion.
We formulate the fluid dissipation in terms of a damping
kernel which can be computed from the equilibrium
fluctuations of the hydrodynamic force on the resonator.
The fluid damping kernel is used to demonstrate (i) the
effect of thermal motion of the resonator atoms at the
interface (surface phonons) on the fluid dissipation and
(ii) the time dependence of the hydrodynamic force from
the fluid with nanoconfinement effects. The damping
kernel is used to quantify the fluid dissipation and explain
its unexpected scaling with the fluid density. Enabled
by a systematic dissipation analysis, we discuss the
origin of intrinsic dissipation. Moreover, we highlight the
difference between the dissipative response of the nano-
confined fluid and the exterior fluid.

Results
System parameters
By varying reservoir pressure, argon can be confined

inside the SWCNT with reduced densities ranging from
~0.01 to 0.57 (16.87–961.87 kg/m3). For the pressure
range considered (~10–104 bars), argon in the reservoir
exists either in the vapor or the supercritical state49,50. For
any higher pressure, argon turns solid and will prevent the
filling of the SWCNT. To compare the dissipation in the
interior and the exterior cases, a correspondence is
established between the reservoir or bulk density ρ�b

� �
and

the confinement density ρ�i
� �

of argon. The procedure is
discussed in Supplementary Section 1.
Ringdown is carried out for fluid densities ranging from

ρ�i � 0:08 to 0.55 (135.0–928.13 kg/m3) in the case of
interior fluid, and ρ�b � 0:01 to 0.19 (16.87–320.62 kg/m3)
in the case of exterior fluid. A snapshot of the deformed
SWCNT during the ringdown process is shown in Fig. 2a.
The fundamental flexural phonon during the ringdown
process is modeled as a damped harmonic oscillator. The
parameters associated with the model are effective mass,
effective stiffness (resonant frequency), and a damping
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Fig. 1 Snapshots of the simulation setups. a The side view of a single-walled carbon nanotube (SWCNT) with its axis aligned along the Z direction.
The clamped atoms, which are kept frozen throughout the simulations, are colored in black. The rest of the atoms, colored in red, constitutes the
vibrating part of the structure with allowed thermal motion. The side view of b an SWCNT with interior argon and c an SWCNT with exterior argon.
The SWCNT is colored in red and the argon is colored in cyan. d An SWCNT in an argon reservoir. The edges of the cuboidal simulation box, which is
periodic in all three directions, are colored in green. e An argon filled SWCNT with all of its atoms frozen. The frozen atoms are colored in black. f An
SWCNT with interior argon and mid-section supported by stiff spring. The SWCNT atoms with thermal motion allowed and frozen are colored in red
and black, respectively
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constant. These parameters for the SWCNT in fluid can
be related to the SWCNT in vacuum case as51

ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m0

m0 þ Δm
ω0
1ð Þ2�

ν21
4

s
ð1Þ

where ω1 and ν1 are the resonant frequency and the
damping coefficient in fluid, ω0

1 is the resonant frequency
in vacuum, m0 is the resonator mass, and Δm is the added
mass due to the fluid during the fundamental flexural
motion. The derivation is shown in Supplementary Sec-
tion 4c. A plot of the resonant frequency ω1 for different
cases of argon coupled CNT system is shown in Fig. 3a.
For the cases with interior argon, Q�1 � 1 and thus
ω1 � ν1=2. Therefore, the resonant frequency change
with density in Fig. 3a is solely due to the added mass of
the fluid. In the argon exterior cases, though the change in

ω1 is majorly due to the added fluid mass, ν1 becomes
significant and can contribute to the change for the
highest densities.
Inserting the values of m0, ω0

1 and ν1 in Eq. (1), Δm1 can
be calculated. A plot of the effective mass of the fluid added

madd
f ¼ Δm1

� �
to the structure during the resonant

motion is shown in Fig. 3b, in terms of madd
f =mtot

f , where

mtot
f is the total mass of fluid present in the fluid-coupled

resonator system. The ratiomadd
f =mtot

f in the interior case is

found to be ~1.0, which is expected as the whole mass of
fluid moves with the structure. In the exterior case,
madd

f =mtot
f corresponds to the fraction of fluid mass that

forms layers around the structure and moves with it.

The magnitude of the initial amplitude A1 depends on
the extra energy imparted in the beginning as the part of
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Fig. 2 Dissipation calculations. a The side view of the deformed SWCNT with interior argon during the ringdown process. The SWCNT, the inside
argon, and the clamped atoms are colored in red, cyan, and black, respectively. b The components of the computed mode shape ϕ1 of the
fundamental flexural mode along the X, Y, and Z directions. c A schematic of the interaction between the resonator atoms (shown with red circles)

and the fluid (shown in light blue). The black arrow indicates the net force ~Fflu
� �

i
on the ith resonator atom from the fluid. d The decay of

displacement amplitude of the fundamental flexural phonon with time during the ringdown process. The oscillatory green line is the displacement
data, q1(t) of the fluid-coupled SWCNT obtained from nonequilibrium MD simulation. An envelope formed from the peaks of the displacement data is
represented by the red circles. The envelope is fitted with an exponentially decaying curve, Ae−t/τ shown with the black line, to characterize the

decay time τ. e The net hydrodynamic force on the fundamental flexural mode of the resonator, P1ð Þthflu plotted against its velocity _q1ðtÞ. The
magenta circles are the data points obtained from nonequilibrium MD during the ringdown process. The black line is a linear fit to the data. The
non-zero slope of the fitted line is visible from the inset. f The change in energy of the fluid-coupled resonator system averaged over a period of
oscillation plotted against the number of periods, Np in the case where all resonators atoms are frozen (setup II)
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the ringdown simulation. Figure 3c shows A1 at different
densities for both interior and exterior argon cases. The
amplitude values are close to each other because the
initially imparted energy is kept approximately constant
for all the cases. The small variation for the different cases
is due to differences in the amount of damping and the
fluid mass loading of the resonator.
The dissipation scaling for the interior and the exterior

case is shown in Fig. 3d. The resonant frequency of the
flexural phonon for all the cases is greater than ~100 GHz.
To the best of our knowledge, no previous studies have
reported dissipation in a fluid-coupled resonator system
at such a high frequency. The dissipation in the interior
cases is found to be lower, in some cases by almost 50
times, than the corresponding exterior cases. Also, in the
exterior case, the total dissipation is found to increase
with the increase in density. Both of these observations
are qualitatively consistent with experiments on

microresonators at KHz to MHz frequencies36,44. How-
ever, in the interior case, the total dissipation decreases
with the increase in density. Conventionally, the increase
in density of a bulk fluid is marked by increase in visc-
osity36 in the hydrodynamic limit52. Thus, increase in total
dissipation in the exterior case can be explained by the
increase in viscous force by the fluid on the SWCNT. By
this argument, the scaling of total dissipation in the
interior case is rather counter-intuitive. To elucidate the
unexpected dissipation scaling, we carefully examine the
individual sources contributing to the dissipation during
the ringdown process.

Sources of dissipation
During the resonant motion, the fundamental flexural

phonon (k= 1) interacts with other phonons (k= 2, …,
3N) of the SWCNT and the fluid atoms. For the fluid-
coupled resonator system (sys), the total dissipation,
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(Q−1)sys (≡Q−1) is accounted by the intrinsic (int) dis-
sipation governed by the phonons and extrinsic dissipa-
tion due to the fluid (flu). In the case of an empty
SWCNT operating in vacuum (v), net dissipation, Q�1ð Þvint
during the fundamental flexural resonance is intrinsic and
is solely mediated by phonons25,26. However, the presence
of fluid (f) in the fluid-coupled resonator can change the
nature of the interaction of the fundamental flexural
phonon (k= 1) with other phonons at the fluid–structure
interface. If that is true, the intrinsic dissipation in the
fluid-coupled resonator can be different from Q�1ð Þvint and
is denoted by Q�1ð Þfint. Similarly, the extrinsic dissipation
due to the fluid during the motion of the fundamental
flexural phonon of the SWCNT can incorporate the effect
of other phonons53 (k= 2, …, 3N) or thermal motion54

(th) of the atoms in the SWCNT. We denote the fluid
dissipation by Q�1ð Þthflu and Q�1ð Þnothflu corresponding to the
cases when other phonons (or atomic thermal motions)
are present and absent in the SWCNT, respectively.
With these definitions, the total dissipation in the
fluid-coupled resonator system can be written as
Q�1ð Þsys� Q�1ð Þfintþ Q�1ð Þthflu.
During experiments or simulations on ringdown, the

dissipation measured from the amplitude decay of the
structure is (Q−1)sys. In our case of SWCNT resonator in
fluid, (Q−1)sys is obtained using nonequilibrium MD. The
main challenge is the computation of the individual

contributions namely Q�1ð Þfint and Q�1ð Þthflu. For com-

puting Q�1ð Þthflu, we use the total hydrodynamic force55,56

by the fluid on the fundamental flexural mode (k= 1)
obtained from nonequilibrium MD during the ringdown.

The modal hydrodynamic force, P1ð Þthflu is calculated by
projecting the hydrodynamic force, (Fi,α)flu on each
resonator atom (shown in Fig. 2c) along the mode shape
ϕ1. The slope of the hydrodynamic force with the velocity
gives a damping coefficient ~cf ω1ð Þ as shown in Fig. 2e.
This damping coefficient can be seen as the real Fourier
transform of a damping kernel cf(t) from time to fre-
quency domain and evaluated at ω1. The formulation and
subsequent derivation of the quality factor is shown in
Supplementary Section 5. Using the damping coefficient,
the inverse quality factor can be calculated as

Q�1
� �th

flu¼
ω1~cf ω1ð Þ
ξ1m0 ω0

1ð Þ2
ð2Þ

Here, ξ1 is a fraction that depends on the mode shape.
~cf ω1ð Þ is calculated at each fluid density during the

ringdown process, which is then used to compute Q�1ð Þthflu
using Eq. (2). Now, there is no straightforward way to

compute Q�1ð Þfint. So, as a first guess, we approximate

Q�1ð Þfint with Q�1ð Þvint which is obtained by simulating
ringdown of the empty SWCNT in vacuum. From

Q�1ð Þthflu and Q�1ð Þfint approximated as Q�1ð Þvint, (Q−1)sys

� Q�1ð Þvintþ Q�1ð Þthflu
� �

is calculated. A comparison of the

estimated (Q−1)sys with Q−1 obtained directly from
nonequilibrium MD simulation is shown in Fig. 4. A good

agreement between them reveals that, Q�1ð Þfint� Q�1ð Þvint,
is in fact true. This means that the energy exchange
between the fundamental flexural phonon (k= 1) with the
rest of the phonons (k= 2, …, 3N) is not influenced by the
presence of the fluid at the fluid–structure interface. Also,
the inverse scaling of the damping of the fundamental
flexural phonon can be ascribed to the scaling of the fluid
dissipation.

Next, we examine the fluid dissipation by looking at the
response of the hydrodynamic force of the fluid on the
SWCNT resonator.

Fluid dissipation
From the last section, it can be seen that the fluid dis-

sipation Q�1ð Þthflu in Eq. (2) depends on the quantities ω1

and ~cf ω1ð Þ. With the change in fluid density, the variation
of ω1 is found to be almost negligible compared to ~cf ω1ð Þ.
Thus, the dissipation scaling depends on ~cf ω1ð Þ. As
mentioned before, ~cf ω1ð Þ is evaluated from the real
Fourier transform of a time-dependent damping kernel
cf(t). Here, cf(t) parameterizes the dissipative part of the
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hydrodynamic force of the fluid on the SWCNT resonator
in response to the fundamental flexural motion (k= 1).
From the nonequilibrium MD of the ringdown, we can
only compute ~cf ðωÞ at ω= ω1 but not the time-dependent
damping kernel cf(t). So, we compute cf(t) from equili-
brium MD using a formulation based on linear response
theory (LRT). In the next subsection, we verify the for-
mulation by carrying out nonequilibrium MD and equi-
librium MD simulations on a fluid-coupled resonator
system with the resonator atoms frozen, i.e., no phonons
(setup I, shown in Fig. 1e). Note that just the fluid is
thermally equilibrated in this system. The details on the
simulation methodology can be found in the “Materials
and methods” section.

Resonator with no phonons
LRT55,57 states that the response of the thermally equilibrated

system to a small external perturbation can be predicted from
the thermal fluctuations of the system at equilibrium. In the
case of the SWCNT resonator with frozen atoms, flexural
motion is set by artificially moving the atoms along the mode
shape ϕ1 with a time dependence as A1 sin(ω1t). This acts as an
external perturbation. During this process, the hydrodynamic
force response on the mode, P1h ineq can be expressed in terms
of equilibrium thermal fluctuations in the hydrodynamic force
δP1 ¼ P1 � δP1h ieq . Here, :h ineq and :h ieq are nonequilibrium
and equilibrium ensemble averages, respectively. Specifically,
ΔP1ðtÞh ineq¼

R1
�1dt′χP1P1 t � t′ð Þλ t′ð Þ57, where χP1P1ðtÞ ¼�β d

dt δP1ð0ÞδP1ðtÞh ieq , λ(t)=A1 sin(ω1t), and β= (kBT)
−1.

This is worked out in details in Supplementary Section 6. We
note that ΔP1ðtÞh ineq can also be parameterized in terms of any
cf(t) as ΔP1ðtÞh ineq¼

R t
�1dt′cf t � t′ð Þ _λðt′Þ. It can then be

shown that cf ðtÞ ¼ β δP1ð0ÞδP1ðtÞh ieq .

We denote cf(t) for the resonator with no phonons as

cnothf ðtÞ. Also, we refer P1(t) as P1ð Þnothflu . The fluid damping

kernel, cnothf ðtÞ is calculated for setup I (Fig. 1e) at equi-

librium for different interior argon densities. The plot is
shown in Fig. 5a. The initial value, cnothf ð0Þ increases

monotonically with the increase in density. The depen-
dence of cnothf ðtÞ on time also changes with density. With

the increase in density, cnothf ðtÞ becomes more oscillatory

in time which depicts an elastic behavior. This could
result from the solid-like structural reorganization of the
argon due to confinement. Similar to Eq. (2), cnothf ðtÞ is
used to calculate the inverse quality factor as a function of

frequency, Ω as Q�1ð Þnothflu ¼ Ωð~cÞnothf ðΩÞ= ξ1m
0 ω0

1

� �2� �
.

Here, ð~cÞnothf ðΩÞ is the real Fourier transform of cnothf ðtÞ at
Ω1. Q�1ð Þnothflu is calculated for a range of frequencies at ρ�i
= 0.08, 0.33, and 0.55. The dissipation at these three
densities is also obtained from nonequilibrium MD
simulations as outlined in the “Materials and methods”

section. A comparison of the dissipation, Q�1ð Þnothflu
obtained from the two different methods is shown in
Fig. 5b. A good agreement confirms that the fluid
damping kernel, cnothf ðtÞ formulated using LRT can cap-

ture the dissipative response of the fluid.

The simulation setup I with the resonator atoms frozen
is used to verify the formulation of the damping kernel.
However, the computed fluid damping kernel, cnothf ðtÞ
does not capture the effect of thermal motion or phonons
of the resonator at the interface. In the next section, we
describe why LRT cannot be used to compute cf(t) for the
actual system and how another simulation setup, setup II

60

40

20

c fno
th

 (
t)

–20

10–2 10–1 100 101 102

102

101

100

10–1

10–2

�i* = 0.08

�i* = 0.17

�i* = 0.25

�i* = 0.33

�i* = 0.42

�i* = 0.55

50 100

NEMD, �i* = 0.08

Using cf
noth (t)

Using cf
th (t)

NEMD, �i* = 0.03

Using cf
noth (t)

Using cf
th (t)

50 100
Frequency, Ω/(2�) (GHz)

NEMD, �i* = 0.55

Using cf
noth (t)

Using cf
th (t)

50 100

Time, t (ps)

0

a b

(Q
–1

)no
th

 (
×

10
–4

)
flu

Fig. 5 Fluid dissipation using damping kernel. a cnothf ðtÞ versus time at different argon densities for the interior case. b A comparison of fluid

dissipation Q�1ð Þnothflu obtained from nonequilibrium molecular dynamics simulation (empty triangles with error bars) with those calculated using the
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(shown in Fig. 1f) is used to capture those effects in terms
of cf(t).

Resonator with phonons
In the actual case, the SWCNT resonator is vibrating in

the fundamental flexural mode (k= 1) and all other
phonons (k= 2, …, 3N) are also present in the system due
to the thermal motion of the atoms. The thermal motion
of the SWCNT atoms can influence the hydrodynamic
force response by the fluid, and consequently cf(t). How-
ever, in this case, we cannot directly apply the LRT and
calculate cf(t) from equilibrium fluctuations of P1ð Þthflu tð Þ,
where P1ð ÞthfluðtÞ is the modal hydrodynamic force for the
resonator with phonons. This is because the external
perturbation λ(t), defined previously, lies in the phase-
space of the Hamiltonian of the SWCNT resonator with
phonons, at thermal equilibrium57. More precisely, λ(t)
coincides with q1(t). Considering this, a workaround
would be to suppress the fundamental flexural phonon
and allow other phonons in the SWCNT during the
equilibrium simulation. This is achieved by attaching a
stiff spring (kstiff→∞) at the mid-section along the length
of the SWCNT (setup II, shown in Fig. 1f). The stiff spring
keeps the midsection at rest and thus suppresses the
fundamental flexural modes (k= 1, 2). In this scenario,
LRT can be used to calculate cf(t) for the SWCNT reso-
nator, corresponding to a perturbation along ϕ1.
Although the aforementioned fix affects the nature of few
other phonons, the calculated cf(t) can effectively capture
the influence of the thermal motion of the SWCNT atoms

at the fluid–structure interface. For the resonator with
phonon case, we denote cf(t) as cthf ðtÞ.
Figure 6 shows the comparison of cf(t) between the

resonator with phonon case and the resonator with no-
phonon case at different interior argon densities. The
initial values, cf(0) of both the cases are approximately
equal. In terms of the time dependence of cf(t), the two
cases differ increasingly as we go towards higher densities.
Especially for the highest density (ρ�i ¼ 0:55), the reso-
nator with no-phonon case displays more oscillations in
the kernel at longer times whereas the resonator with
phonon case does not. If the oscillations in the no-phonon
case resulted from solid-like structural organizations due
to nanoconfinement, then the thermal motion or phonons
tend to break those organizations, and consequently
suppress the solid-like response behavior. Ultimately, we
are interested, if the absence or presence of phonons in
the resonator reflects in the fluid dissipation. To verify
this, we can compute the fluid dissipation for the reso-
nator with no-phonon cases using the damping kernel
corresponding to the phonon cases, i.e., cthf ðtÞ. The plots
are shown in Fig. 5b. It can be seen that except for the
highest density case ρ�i ¼ 0:55

� �
, the fluid dissipation

estimated using cnothf ðtÞ (dashed lines) and cthf ðtÞ (solid
lines) are almost overlapping. The only difference in the
fluid dissipation is for the highest density case which can
be ascribed to the difference in the time dependence of
cf(t) at longer times (Fig. 6, last panel). This suggests that,
for low to moderately high densities ρ�it0:4

� �
, the fluid

dissipation, which actually results from the oscillatory
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fluid flow due to the resonant motion of the structure is
not affected by its interfacial atomic thermal motion or
phonons. Specifically, (Q−1)sys at lower densities can be
approximated as Q�1ð Þsys¼ Q�1ð Þvintþ Q�1ð Þnothflu . Next, we
use cthf to examine different cases of confined fluid
damping under the fundamental flexural motion of the
resonator.

Scaling of confined fluid damping
Having computed cthf ðtÞ at different densities of interior

argon for the actual system, we can estimate Q�1ð Þthflu at
any frequency Ω similar to the no-phonon case. First, we
estimate Q�1ð Þthflu at the resonant frequency ω1 of the
fundamental flexural mode at all interior argon densities.
The comparison is shown in Fig. 7. A good agreement
clearly reveals that the inverse scaling of the fluid damping
is directly related to the fluid response behavior under
confinement. This fluid response under confinement is
captured by cthf ðtÞ. The time dependence of cthf ðtÞ signals a
frequency-dependent scaling of the confined fluid dis-
sipation. We examine this by estimating Q�1ð Þthflu at two
additional frequencies, 25 and 5 GHz which are lower
than the resonant frequency ω1 of the actual system. The
frequencies may correspond to SWCNT resonator of
much larger length (>20 nm) with the same radius. The
scaling is shown in Fig. 7. It can be seen that the scaling
behavior changes at different frequencies. At the inter-
mediate frequency, i.e., 25 GHz, the dissipation scaling is
nonmonotonic and at the lower frequency, i.e., 5 GHz, the
fluid dissipation scales directly with the increase in den-
sity. The frequency-dependent scaling behavior can be
attributed to a coupled effect of the viscoelasticity and
nanoscale confinement of the fluid. It should also be
noted that a ~5-fold reduction in frequency leads to an
~100-fold reduction in fluid dissipation. Thus, a high-
quality factor can be achieved.

Discussion
In this section, we discuss our findings in the light of

previous studies on fluid damping in fluid channel-based
resonators and intrinsic damping of flexural phonons in
1D and 2D resonators. The nonmonotonicity in fluid
dissipation with density or viscosity of the fluid was first
observed in microchannel resonators44 with confinement
length (lc) in ~1–10 μm and resonant frequency (f1) in
~100–500 of KHz. A formulation using classical NS
equation with no-slip boundary condition by Sader et al.58

could quantify the fluid dissipation and nonmonotonic
scaling. The nonmonotonicity was also observed in the
case of nanochannel resonators with lc ~ 100–700 nm and
f1 ~ 0.5–25MHz42,43. However, in these nanochannel
resonators the fluid dissipation could not be quantitatively
explained using the formulation by Sader et al. This could
be due to slip-effects at the fluid–structure interface and

frequency dependence of slip length and viscosity46 which
can be expected in our argon filled SWCNT system with
lc ~ 1.3 nm and f1 ~ 107 GHz. Though Sader et al. model
can be corrected by incorporating these effects under a
multiscale approach47, it is not pursued in this study.
Instead, a more direct method is employed where the
dissipative behavior of the fluid is parameterized in terms
of a damping kernel. Indeed, the fluid dissipation esti-
mated using the damping kernel reveals a frequency
dependent scaling behavior in the case of SWCNT with
confined fluid.
The scaling for the confined fluid case is considerably

different from the fluid exterior case which displays a
conventional increase in fluid dissipation with density36,37.
This prompted in comparing the fluid damping kernel
cthf ðtÞ in the fluid interior and exterior case. Figure 8
shows the comparison. Each panel in Fig. 8 displays cthf ðtÞ
for SWCNT coupled with argon at some exterior density
ρ�b and interior density ρ�i , where ρ

�
b is the reservoir density

required to fill the SWCNT with a confined density ρ�i
(refer to Figure 1b in Supplementary Section 1). The plots
reveal that the time dependence of cthf ðtÞ in the interior
case is significantly different from the exterior case. For
example, the cthf ðtÞ in the highest density case (last panel),
exhibits a highly dissipative behavior (indicated by the
decay in the response) in the exterior case, whereas in the
interior case, the dissipative nature of the response is
negligible.
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The fact that Q�1ð Þfint is approximately equal to Q�1ð Þvint
during ringdown of the fundamental flexural phonon
provides some insights on the intrinsic dissipation
mechanism. The known intrinsic mechanisms by which
the flexural phonon can dissipate energy are nonlinear
mode coupling27,28, mode hybridization29, and Akhiezer
mechanism59. The nonlinear mode coupling is the cou-
pling of the fundamental mode (k= 1) with the rest of the
phonon ensemble due to the anharmonic terms in the
resonator potential. Under this mode coupling, one way
the fundamental mode can dissipate is by directly ther-
malizing with the rest of the phonons at some decay rate.
In another way, the fundamental mode first transfers
energy to a group of modes it is nonlinearly coupled with,
and the mode group then thermalizes with their respec-
tive baths at particular rates. Here, a mode’s bath com-
prises the rest of the phonon modes and the fluid if fluid is
present. Thus, the energy of the fundamental mode
decays at a rate which is an average over the direct and the
indirect thermalization rates and this phenomenon is
called mode hybridization29. If the flexural motion
associates a strain field in the structure, dissipation due to
Akhiezer mechanism can play a role. Under Akhiezer
mechanism, the strain coupling due to finite Grüneisen
constants perturb the energy of all the phonons and they
relax at some microscopic timescales by exchanging
energy with their respective baths. Both the decay chan-
nels due to mode hybridization and Akhiezer mechanism
would be affected by the presence of fluid60. Since, we
found that Q�1ð Þfint� Q�1ð Þvint, we infer that dissipation

due to mode hybridization and Akhiezer mechanism is
not significant. This could be true as the amplitude con-
sidered during the ringdown process is reasonably
small29,59.

Conclusions
In conclusion, we report the mechanical energy dis-

sipation during the fundamental flexural resonance of an
SWCNT resonator coupled with interior and exterior
argon. Our dissipation calculations involve ringdown
simulations using molecular dynamics (MD). In the fluid-
coupled resonator, we identify the two sources of dis-
sipation as phonon-mediated intrinsic dissipation and
extrinsic dissipation due to the fluid. The intrinsic dis-
sipation results from the anharmonic coupling and direct
thermalization of the fundamental flexural phonon with
the rest of the phonon ensemble. The intrinsic dissipation
under this mechanism remains unaffected by fluid inter-
actions. The fluid dissipation component contributes to
the unexpected scaling of the net dissipation with density
in the fluid interior case. To understand the mechanism
underlying the unexpected behavior, a fluid damping
kernel is formulated using the LRT. The fluid damping
kernel captures the dissipative response of the fluid to the
flexural motion. The magnitude of fluid dissipation is
shown to be accurately quantifiable using the fluid
damping kernel. The kernel is used to examine the effect
of thermal motion of the resonator atoms (or phonons) on
the fluid dissipation. It is found that the thermal motion
does not affect till moderately high fluid densities
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ρ�it0:4
� �

. The fluid dissipation computed using the
kernel can reproduce the unexpected scaling as obtained
from ringdown simulation for interior argon cases.
Comparing the fluid damping kernel for the exterior and
interior case, it becomes apparent that the hydrodynamic
response of the fluid under a nanoconfinement is indeed
different from a bulk fluid. Our finding of extremely low
dissipation in nanoconfined fluids can eventually solve the
long-standing challenge of high-precision sensing of
analytes from dense fluids.

Materials and methods
A (10, 10) SWCNT of length (lz) 20 nm is constructed

which forms the resonating structure. The structure is
made of 3280 carbon atoms and resembles a tube (as
shown in Fig. 1a) with an approximate radius (r) of 0.68
nm. Argon is considered as the fluid medium. The
interaction between the resonating structure and the fluid
is studied in two different cases: (i) SWCNT with interior
fluid and (ii) SWCNT with exterior fluid. In the case of
SWCNT with interior fluid (shown in Fig. 1b), all the fluid
atoms (or molecules) were placed inside the tube. A
periodic boundary condition is applied in the axial
direction of the tube to keep the fluid confined during the
simulation. In the case of SWCNT with exterior fluid
(shown in Fig. 1c), the fluid is placed outside the tube. A
large enough simulation box (with dimensions lx × ly × lz)
is defined to surround the fluid outside SWCNT in the
radial direction and a periodic boundary condition
is applied in all the three directions. The bonded inter-
action between the carbon atoms in the SWCNT is
described by the modified Tersoff potential61. Two-body
Lennard–Jones (LJ) potential62 is used to model the non-
bonded interaction between the argon atoms of the fluid
and between the argon atoms of the fluid and the carbon
atoms of the SWCNT.
We use the LAMMPS package63 for the MD simula-

tions. The first stage of simulations involves preparing the
equilibrated samples of the fluid–resonator system for a
range of fluid densities. The SWCNT is pre-stretched by
5% to avoid any buckling. Two rings of atoms, which
correspond to 40 carbon atoms at each end of the
SWCNT, are kept frozen to impose a clamped boundary
condition. The thermal motion is allowed in rest of the
(N) SWCNT atoms. Then, the argon atoms are placed at a
pre-defined spacing in the cylindrical region inside the
SWCNT in case of interior fluid and in the region
between the cylindrical SWCNT and the cuboidal simu-
lation box in case of exterior SWCNT. A different number
of argon atoms are fitted inside those regions by altering
the spacing, which results in different densities. The case
with no argon atoms corresponds to an SWCNT reso-
nator in the vacuum. A non-dimensional density can be
calculated in each case as ρ�λ ¼ Mσ3=Vλ where λ is i or b,

corresponding to the interior and exterior fluid case
respectively,M is the number of fluid atoms in the system,
σ is its LJ diameter, and Vλ is the volume of space available
for the fluid, which is Vi= πr2lz in case of interior fluid
and Vb= (lxlylz− πr2lz) in case of exterior fluid, respec-
tively. The fluid and the SWCNT atoms are, then,
assigned some initial velocity drawn from a Gaussian
distribution corresponding to a temperature, T (=300 K)
and integrated under NVT64 ensemble for 5 ns to reach
thermal equilibrium. The final structure of SWCNT with
interior and exterior fluid is shown in Fig. 1b, c,
respectively.
To compare the interior and the exterior fluid cases, we

reference the density of the interior fluid in terms of
density and pressure of the bulk reservoir corresponding
to the exterior fluid case. For this, we set up separate
simulations of SWCNT inside a bulk argon reservoir
(shown in Fig. 1d) and carry out SWCNT filling and
equilibration. A considerably smaller SWCNT is con-
sidered in these simulations to reduce the computational
cost. Different densities are achieved by controlling the
pressure of the fluid in the reservoir under NPT65

ensemble, with the temperature set to 300 K. The simu-
lation box of the reservoir adjusts its dimension to equi-
librate at a particular fluid density for a given pressure. A
relation of the bulk pressure with the bulk density ρ�b

� �
and the interior density ρ�i

� �
is obtained from these

simulations.
The dissipation study involves ringdown measure-

ments28,66 using non-equilibrium MD simulations. The
equilibrated samples form the starting configuration for
the non-equilibrium MD simulations. In the equilibrated
samples, all the phonon modes of the SWCNT resonator
share the same thermal energy equal to kBT where kB is
the Boltzmann constant and T is the temperature. Ring-
down is carried out by imparting some extra energy to the
fundamental flexural phonon (ϕ1) of the SWCNT. The
mode shape, ϕ1 corresponds to one of the two degenerate
fundamental flexural phonons of the doubly-clamped
SWCNT resonator and is obtained using real space qua-
siharmonic (QHMR) method (see Supplementary Sec-
tion 2). In MD, the extra energy is imparted by rescaling
the velocities of the SWCNT atoms from the starting
configuration. If the velocities of the SWCNT atoms are
denoted by vi,α in the equilibrated starting configuration,
then the velocity perturbation along ϕ1 leads to
vi;α  vi;α þ ϵvϕ

i;α
1 . Here, ϕ1 (shown in Fig. 2b) represents

the shape of the phonon mode which is a vector of length
3N where N is the number of SWCNT atoms in thermal
motion and 3 corresponds to their degrees of freedom.
For any atom indexed as i and α= 1, 2, and 3, corre-
sponding to the x, y, and z directions, respectively, ϕi;α

1 is
the contribution of ith atom to the mode shape along αth
direction. The scaling parameter ϵv is kept small such that

De and Aluru Microsystems & Nanoengineering             (2019) 5:2 Page 11 of 13



the change in thermal energy of the sample due to the
perturbation is within 0.7% of the initial thermal energy of
the system, i.e., 3NkBT. Following the velocity rescaling,
both the SWCNT and the fluid are evolved under con-
stant energy (NVE) ensemble as an isolated system.
During this ringdown process, the extra energy of the
fundamental flexural phonon is redistributed among all
other phonon modes and fluid atoms. Consequently, the
displacement, q1(t) and the velocity, _q1 tð Þ of the funda-
mental flexural phonon exhibit a decaying oscillatory
nature. The decay in the displacement amplitude of q1(t)
(shown in Fig. 2d) can be associated with a time scale τd1 ,
called the damping time. From τd1 , the inverse quality
factor, which is a non-dimensional measure of dissipation,
can be calculated as Q�1 ¼ 2= ω1τd1

� �
(see Supplementary

Section 4e), where ω1 is the angular frequency of the
fundamental flexural phonon obtained by taking fast
Fourier transform of the velocity history, _q1ðtÞ.
For the purpose of dissipation analysis, we consider two

more simulation setups of the fluid-coupled resonator
system; setup I and setup II. In case of setup I (shown in
Fig. 1e), the thermal motion of all the resonator atoms is
kept frozen throughout the simulations. Under this con-
dition, the equilibrium simulations entail updating the
positions and velocities of just the fluid atoms during
NVT or NVE integration. The dissipation study under
nonequilibrium simulations involves deforming the reso-
nator atoms along ϕ1 by artificially setting their position
at each step and evolving the fluid atoms by NVE inte-
gration. If the positions of the frozen SWCNT atoms are
denoted by xi,α before the start of the nonequilibrium MD
simulation, then their position, xi,α at any instant during
the dissipation study is set as xi;αðtÞ ¼ x0i;α þ AsinðΩtÞϕi;α

1 .
Here, A corresponds to the values obtained from the
ringdown simulation of the actual system. In the actual
system, the fundamental flexural resonance occurs at a
fixed frequency ω1. In setup I with artificially imposed
deformation, we have control over the deformation fre-
quency, Ω. Ω is varied over a range of frequencies,
including ω1 corresponding to the actual system. Due to
fluid dissipation, the energy of the system increases with
the periods of deformation. The amount of dissipation per
period, D is calculated from the slope of the average
energy of the system with the number of periods (shown
in Fig. 2f). Using D, the inverse quality factor is calculated
as Q−1=D/(2πEsto). Here, Esto is the maximum energy
stored during the prescribed deformation. The simulation
setup corresponding to setup II (shown in Fig. 1f) involves
attaching stiff springs (kstiff→∞) to 160 carbon atoms at
the mid-section of the resonator. The purpose is to
restrict these atoms from moving in any of the three
directions. Setup II is used to carry out equilibrium
simulations only.
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