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LOEN: Lensless opto-electronic neural network
empowered machine vision
Wanxin Shi1, Zheng Huang1, Honghao Huang1, Chengyang Hu1, Minghua Chen1, Sigang Yang 1 and
Hongwei Chen 1✉

Abstract
Machine vision faces bottlenecks in computing power consumption and large amounts of data. Although opto-
electronic hybrid neural networks can provide assistance, they usually have complex structures and are highly
dependent on a coherent light source; therefore, they are not suitable for natural lighting environment applications. In
this paper, we propose a novel lensless opto-electronic neural network architecture for machine vision applications.
The architecture optimizes a passive optical mask by means of a task-oriented neural network design, performs the
optical convolution calculation operation using the lensless architecture, and reduces the device size and amount of
calculation required. We demonstrate the performance of handwritten digit classification tasks with a multiple-kernel
mask in which accuracies of as much as 97.21% were achieved. Furthermore, we optimize a large-kernel mask to
perform optical encryption for privacy-protecting face recognition, thereby obtaining the same recognition accuracy
performance as no-encryption methods. Compared with the random MLS pattern, the recognition accuracy is
improved by more than 6%.

Introduction
In recent years, owing to the advancements in the

immense processing ability and parallelism of modern
graphics processing units (GPUs), deep learning1 based on
convolutional neural networks (CNN) has developed
rapidly, leading to effective solutions for a variety of issues
in artificial intelligence applications, such as image recog-
nition2, object classification3, remote sensing4, microscopy5,
natural language processing6, holography7, autonomous
driving8, smart homes9 and many others10,11. However,
despite the exponentially increasing computing power, the
massive amounts of data involved in vision processing limit
the application of CNNs to those portable, power-efficient,
computation-efficient hardware to process data on site.
Several studies have been conducted in the field of

optical computing to overcome the challenges of electrical

neural networks. Optical computing has many appealing
advantages, such as optical parallelism, which can greatly
improve computing speed, and optical passivity can
reduce energy cost and minimize latency. Optical neural
networks (ONNs)12–27 provide a way to increase com-
puting speed and overcome the bandwidth bottlenecks of
electrical units. An ONN can be categorized as a dif-
fraction neural network (DNN)12–21, a coherent neural
network22–25, or a spiking neurosynaptic network26–29.
Recently, passive ONN schemes for machine vision have
been proposed that perform all-optical inference and
classification tasks. ONNs have become an alternative to
electrical neural networks due to their parallelism and low
energy cost. However, previously developed ONNs
require a coherent laser as the light source for computa-
tion and can hardly be combined with a mature machine
vision system in natural light scenes. To further improve
the inference capabilities for machine vision tasks, opto-
electronic hybrid neural networks30–34, in which the front
end is optical and the back end is electrical, have been
proposed. Lens-based optical architectures mostly
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complete traditional imaging34 or perform some network
computing functions30–33, such as convolution calcula-
tions based on Fourier transform theory. These lens-based
systems increase the difficulty of use in edge devices, such
as autonomous vehicles. Meanwhile, image capture and
image signal processing still account for the majority of
the total energy consumption associated with the tasks of
opto-electronic hybrid neural network. In fact, all edge
devices would benefit from more streamlined systems,
with resulting decreases in size, weight, and power
consumption20,35,36.
In this paper, we propose a lensless opto-electronic

neural network (LOEN) architecture for computer vision
tasks that utilizes a passive mask to perform computing in
the optical field and addresses the challenge of processing
incoherent and broadband light signals in natural scenes
(Fig. 1). In addition, the optical link, image signal proces-
sing, and back-end network are smoothly combined to
achieve joint optimization for specific tasks to reduce cal-
culation effort and energy consumption throughout the
entire pipeline. Compared to electrical neural networks or
opto-electronic neural networks, our optical link performs
established computing functions, such as optical convolu-
tion, using only an optical mask and an imaging sensor
without a lens. Furthermore, LOEN can operate under
incoherent light such as natural light. The structure of the
mask is determined by a pre-trained opto-electronic neural
network for a specific task, and the optimized convolution
layer weights are applied to the mask. A series of machine
vision experiments are conducted to demonstrate the
performance of LOEN. For tasks such as object classifi-
cation, a lightweight network for real-time recognition is
built. The mask is used for feature extraction, while the
single-kernel mask completes the functional verification,
and the multiple-kernel mask improves accuracy. For
visual tasks such as face recognition, we propose the
selection and design methods of the global convolution
kernel, which achieve optical encryption without compu-
tational consumption. There is no private information,
such as recognizable face information, in any links of the
end-to-end network, and user privacy can be protected.
LOEN does not have a lens structure, so the volume of the
system is significantly reduced, and the simple internal
design of the optical mask also reduces its production cost.
The novel architecture, which cascades all links of the tasks
and jointly optimizes them, has numerous potential
applications in many actual scenarios, such as autonomous
driving, smart homes, and smart security.

Results
Optical mask for convolution layer
In this section, we present an optical system that per-

forms the convolution operation of a natural scene with a
pre-trained convolution kernel. As shown in Fig. 2, an

object can be seen as a surface light source, which can be
regarded as a collection of multiple point light sources,
such as A, B, C, D, and E. Based on the theory of geo-
metrical optics that light propagates in a straight line, the
light from the object transforms through the mask onto
the sensor. For instance, the light intensity value S1 is the
sum of the product of the light intensity of the corre-
sponding point on the object and the mask. Transforming
from the equation form to the matrix form, the conclu-
sion can be drawn that the light intensity captured by the
sensor is the convolution of the object and the mask. In
other words, the optical mask can replace the convolution
layer of the neural network, and the light intensity dis-
tribution captured by the sensor can be regarded as the
output of the convolution layer and then given as an input
to the remaining layers of the network.

Network architecture and joint optimization
Figure 1b shows our end-to-end system framework,

from the light from real-world scenes (or light on a
computer screen) to the recognition result of the network.
The framework consists primarily of three components: a
mask that implements the first convolution layer of a
convolution neural network (CNN), an imaging sensor
that captures the output of an optical convolution layer,
and a digital processor that completes the following net-
work, which is referred to as the “suffix layers.” Our
proposed system removes the first convolution layer of a
CNN into the optical domain based on the mask, making
the system lensless and greatly reducing the size of the
entire system.
To maximize the overall network recognition accuracy,

we jointly optimize the optical convolution layer with the
suffix layers in an end-to-end fashion. Figure 3 shows the
end-to-end differential pipeline, which incorporates three
components: an optical convolution model, a sensor
imaging process model, and an electrical network. The
convolution kernel and suffix layer weights are the opti-
mization parameters. A loss function (for example, the
log loss function) is used to measure the system perfor-
mance, which is the same as that of an all-electrical
neural network.

Classification and recognition tasks
Single-kernel system for MNIST handwritten digit recognition
MNIST handwritten digit recognition was selected as

the task for the single convolution kernel and multiple
convolution kernel systems. For the dataset, we used
60,000 images for training and 10,000 images for testing.
As described in the Supplementary Note 5, a feature size
of 40 μm was chosen. As shown in the LOEN prototype in
Fig. 4, the image was displayed on the computer screen,
which was placed 16.4 cm from the optical mask, and
the images were pre-compensated for good contrast.
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As shown in Fig. 5a and b, the entire network consisted of
two parts: optical convolution and an electrical neural
network. The pixel size of the input image was 28 × 28
and the kernel size of the mask was 3 × 3; hence, the
output size of the optical convolution layer was 26 × 26,
which was also the input for the electrical network. The
electrical network of the architecture of a fully-connected
layer (“1 FC layer”) consisted of only 676 input vectors
and a linear activation for the output of 10 units, while the
electrical network of the architecture of two FC layers (“2
FC layers”) consisted of 676 input vectors, which com-
prised an FC layer of 50 neurons with a rectified linear

unit (ReLu) activation function and the other FC layer
with linear activation for the output of 10 units. Because
the convolution layer is achieved in the light field, the
operations and energy consumption are lower than those
of the electrical network with the same architecture.
As shown in Fig. 6a, when a single convolution kernel is

used, the recognition accuracy of handwritten digits can
reach 89.95% and 93.47%, respectively, under the 1-FC
layer and 2-FC layer network structures, respectively. The
results are slightly lower than those of the simulator
owing to the acquisition noise and convolution calibration
deviation (The discussions of the noise model and other
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Fig. 3 Flow chart of joint optimization
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Fig. 4 LOEN prototype for single-kernel and multiple-kernel systems. Prototype consists of a Sony IMX264 sensor with an optical mask placed
approximately 1 mm from the sensor surface
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parameters effects is shown in the Supplementary Note 8).
The computational cost (the number of multiplication
addition operations) is reduced by 47.2% compared to the
entire electrical network of the 1-FC layer architecture.
Meanwhile, the opto-electrical network also saved 47.2%
of the energy consumption per image. Similarly, the
computational cost and energy consumption were
reduced by 15.1% in the 2 FC layers.
We also demonstrated whether image signal processing

(ISP) was necessary. The data labeled “raw data” corre-
spond to the accuracy without ISP from the image sensor,
while that labeled “with ISP” corresponds to the accuracy
with ISP, and the data are captured in bmp format by the
sensor. As the results in Fig. 6a show, the accuracy
based on raw data was at least approximately 1% higher
than that based on the bmp format, which shows that in
the LOEN structure, the ISP can be removed from the
full link.

Multiple-kernel system for MNIST handwritten digit
recognition
To increase the classification accuracy of the task, we

changed a single kernel to multiple kernels under the
condition of spatial reusability. Each convolution kernel
was a reversed optimization obtained by training the

network. The multiple convolution kernels were placed
on the mask in square form, and the distance between
every two kernels was determined from the object and
kernel pixel size.
In general, the pixel size of the object n × n is larger

than that of the mask m × m, whereas the pixel size of the
full convolution kernel size is (n + m− 1) × (n + m− 1).
Therefore, the spatial distance between each kernel dM
should satisfy:

dM � nþm� 1ð Þ � Δ ð1Þ

Based on the simulation described in the Supplemen-
tary Note 5, we chose 40 μm as the feature size Δ, and the
numbers of convolution kernels were chosen to be 4, 9,
and 16. For example, the pixel size of objects in the
MNIST dataset was 28 × 28, while the convolution kernel
size was 3 × 3, so the size of the full convolution result
was 30 × 30. Therefore, the spatial distance between each
kernel in this experimental condition should satisfy dM ≥
1.2mm.
The convolution network for the multi-kernel system

is shown in Fig. 5c. The entire architecture consists of
two parts, like that of a single-kernel convolution net-
work. Assume that n is the number of channels of the
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Fig. 5 Network architecture for MNIST handwritten digit recognition. a Network architecture of a single-kernel convolution neural network
based on 1 FC layer. b Network architecture of a single-kernel convolution neural network based on 2 FC layers. c Network architecture of multiple-
kernel convolution neural network. The networks are divided into two parts, and the optical convolution is completed in the optical domain, without
calculation and energy consumption
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convolution kernel. The input size is 28 × 28, and the
kernel size is set to 3 × 3; the output of the optical
convolution layer (that is, the input of the electrical
network) is 26 × 26 × n. The electrical part consists of
the input vector with 2 FC layers each with 200 and 50
neurons and the ReLu activation function, and one fully
connected layer with linear activation for the output of
10 units.
A schematic diagram of each link and the classification

accuracy for multiple kernels are shown in Fig. 7. The
accuracy for the 16 convolution kernels system can reach
97.21%, which is approximately 3–5% higher than that of
the single-kernel system, and the corresponding accu-
racy of the 40-μm feature size is higher than that of the
50-μm system, which proves the conclusion in Fig. S4e.
It should also be noted that the 16-kernel LOEN saved
2.7% of the energy consumption per image, and when the
convolution size was larger, the energy consumption was
further reduced.

Large-kernel system for privacy-protecting face recognition
When using a large-kernel convolution, the lensless

system provides a natural condition for privacy protec-
tion. Our general strategy is to jointly optimize the lens-
less optical system and the face recognition network.
Specifically, we optimize the mask to degenerate the
image and conceal the identity while retaining the features
required by the face recognition task as much as possible.
To achieve this, we built an end-to-end framework that
consists of two parts, as shown in Fig. 8.
In the optical part, we used a designed mask to

modulate the incident light amplitude. In the electrical
part, we used a deep convolutional neural network to
extract features and realize face recognition. The optical
and electrical parts were jointly optimized to obtain a
pattern suitable for the system and task. The lensless
system not only reduces the size and cost of the imaging
element but also encrypts the scene using optical con-
volution. Our lensless privacy-protecting imaging
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system includes a sensor with a pixel size of 3.45 μm. We
place the designed mask close to the sensor; thus, the
distance between the mask and sensor is determined by
the thickness of the glass on the sensor surface. The
pattern of the mask is a square with a length of 510, and
the feature size is 10 μm. The feature extraction network
consists of a trainable inversion, a U-net backbone
(Block1), and an Inception-Resnet-v1 backbone
(Block2). For trainable inversion, the initial value of the
point spread function (PSF) can be calibrated according
to the optical system; otherwise, it is iterated from the
pattern directly. In Block 2, we use the model pre-
trained on ImageNet as the initial weights to avoid
overfitting. During training, we alternately opened

Block1 and Block2. Subsequently, the extracted features
were input into the classifier to identify the ID.
It is necessary to propose a suitable loss function for

jointly optimizing LOEN. The intention is to optimize
the PSF to extract more accurate features to achieve an
identity classification vision task. Therefore, we used
several weighted sums of loss as the total loss function of
the training process. The losses used in the model are as
follows:

Mean squared error (MSE)
We use MSE to measure the gap between the enhanced

output of Block1 and the ground truth. Assuming the
ground truth image Igroundtruth and the Block1 output
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Iblock1, this is given as:

LMSE ¼ Igroundtruth � Iblock1
�
�

�
�
2
2

ð2Þ

Perceptual loss
To evaluate the face recognition feature extraction in

Block1, we use perceptual loss to measure the cosine
difference (after Block2) between the ground truth and
the enhanced output of Block1. Assuming the enhanced
feature vector ϕblock1 and the ground-truth image feature
vector ϕgroundtruth, this is given as:

Lperceptual ¼ 1� cos ϕblock1 � ϕgroundtruth

� �

ð3Þ

Negative Log Likelihood (NLL) loss
To evaluate the accuracy of classification, we use NLL

loss to measure the gap between the output of the clas-
sifier and the target. Assuming the probability distribution
P and label yk, this is given as

LNLL ¼ � 1
N

XN

k¼1

yk log Pkð Þð Þ ð4Þ

Triplet loss
In face recognition, triple loss minimizes the distance

between samples of the same category (an anchor and a
positive) and maximizes the distance between samples of
different categories (an anchor and a negative). Assuming
an anchor denoted as a, positive samples denoted as
p, negative samples denoted as n, and the margin as a

constant, the triplet loss is given as:

Ltriplet ¼ max d a; pð Þ � d a; nð Þ þmargin; 0ð Þ ð5Þ

Finally, the total loss for joint optimization in our fra-
mework is given as

L ¼ λ1LMSE þ λ2Lperceptual þ λ3LNLL þ λ4Ltriplet ð6Þ

We first perform an optical simulation by convolving
the images of the face with the PSF to obtain an optically
encrypted image. Next, Block1 and Block2 extract features
from the encrypted image. To simulate the real optical
process, we considered the light intensity attenuation due
to distance and noise. During training, we used a dataset
containing 1000 Face IDs, 50,000 images as the training
set, and 5000 images as the test set.
We optimized a square pattern with a length of 510

and compared the optimized mask pattern with a mask
of the same size using a random binary pattern that
opened 50% of the features. The random binary pattern
is produced by repeating the maximum length sequence
(MLS). We set the MLS pattern at a 50% open rate;
increasing the number of transparent features beyond
50% deteriorates the conditioning of the system37,38.
Figure 9 shows the random pattern and the optimized
pattern. As shown in the sequence, the mask we opti-
mized maintains a more appropriate luminous flux as the
MLS pattern. The peak signal-to-noise ratio (PSNR) and
the structural similarity index measure (SSIM) are used
to evaluate the gap between the images before and after
encryption and the degree of privacy protection39. We
expect to obtain low PSNR and SSIM while obtaining a
high face recognition accuracy.
Table 1 reports the degree of privacy protection and

face recognition accuracy in the simulation and experi-
ment. Compared with the MLS pattern, both in

Fine-tuned layers

�
+noise

Convolution

Trainable
inversion

Face ID
LossLoss

Electronic convolution neural network Face recognition

Trained layers

Forward pass
Backward pass

Optical convolution

U-net Inception-ResNet-v1

Block 1

C C C C C C C C C C C C

Block 2

Scene

Feature map

Point source

Amplitude mask

Sensor

C C

Fig. 8 Proposed end-to-end framework for privacy-protecting face recognition. The optical part consists of a sensor and an amplitude mask to
achieve encryption by optical convolution. The electrical part consists of two blocks to extract features. We achieve face recognition by jointly
optimizing the optics and training the electronic convolution neural network
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simulation and experiment, our optimized pattern leads
to better performance in privacy-protecting face recog-
nition, and the recognition accuracy of the optimized
pattern is more than 6% better than the MLS pattern.
Moreover, the recognition accuracy achieved by our
optimized mask is very close to the result without
encryption. The gap between simulation and experiment
may be due to hardware errors. The increase of the
dataset will further improve the ability of fine-tuning in
the backend neural network and improve the robustness
of the system.
To evaluate the effectiveness of the proposed privacy-

protecting face recognition system, we built an optical
system. The experimental setup was similar to that shown

in Fig. 4. The LOEN prototype for the large kernel system
is shown in Fig. 10. Our sensor was a Sony IMX264 placed
at a distance of 16.4 cm from the recognized object. After
calibrating the system, we obtained the measured PSF as
the initial value for Block1. Finally, we obtained the face
ID after training Block1 and fine-tuning Block2.
The speed of completing an optical convolution to

achieve face encryption is the speed of light. Compared
with completing electrical convolution operations based
on the same kernel size, the calculation time and the
amount of calculation are significantly reduced. In our
system, the total time to complete optical encryption and
identification is approximately 23 ms. LOEN has the
potential to achieve real-time face recognition.

Line 1 Line 2

Line 1 sequence for random MLS pattern

Line 2 sequence for optimized pattern

a

b

c d

Random MLS pattern of length 510
(mask feature size = 10 μm)

Optimized pattern of length 510
(mask feature size = 10 μm)

1

0.5

0

1

0.5

0

100 200 300 400 500

100 200 300 400 500

Fig. 9 Mask used in our experiment. a Line 1 (the 255th line) sequence of random MLS pattern; b Line 2 (the 255th line) sequence of our optimized
pattern; c random MLS pattern of length 510; d our optimized pattern of length 510

Table 1 Privacy protection degree and face recognition accuracy in our method and MLS pattern

Method Encryption PSNR SSIM Simulation accuracy Experiment accuracy

Ground truth ✗ — — 73.6% —

MLS pattern ✓ 10.534 0.107 67.4% 65.1%

Optimized pattern ✓ 11.378 0.049 72.8% 71.6%
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Discussion
LOEN has been proposed to simplify machine vision

tasks without imaging. The entire pipeline consists of
optical and electrical parts that are jointly optimized.
The convolution is realized in the optical domain using
pre-designed masks. Two types of machine vision tasks
have been demonstrated for optical convolution and
optical encryption. In the MNIST handwritten digit
recognition task, the proposed structure used an optical
mask to replace the single-kernel or multiple-kernel
convolution layer on the electrical field, which achieved
94.54% and 97.21% accuracy, respectively. The compu-
tation and energy consumption of the convolution layer
were reduced to zero. When considering the entire
pipeline, the two components of an imaging pipeline, the
sensor and the ISP, have comparable total power costs.
The power consumption of imaging sensors ranges from
139 mW for OmniVision OV6922 to 190 mW OmniVi-
sion OG02B1B. For ISP, the typical power consumption
ranges from 130 mW for the ONsemi AP0101CS image
signal processor to 185 mW for the ONsemi AP0100CS
image signal processor. Because the two components
contribute to the system’s power, the system, when
capturing the raw data (without ISP), saves approxi-
mately 50% of the energy of traditional pipelines. In the
privacy-protecting face recognition task, an optimized
optical mask is used to achieve a large-kernel convolu-
tion layer and replace digital encryption, which achieves
close recognition accuracy performance as the no-
encryption methods. Compared with the random MLS
pattern, the recognition accuracy is improved more than
6% based on our jointly optimized mask. Meanwhile,

there is practically no time cost associated with optical
convolution encryption, which enables real-time privacy-
protecting face recognition.
LOEN is free of lenses, utilizing parallelism to trans-

form convolution calculations from electrical to optical
fields. Unlike DNNs, we are oriented to the visual tasks
of the actual scene, not just for optical computation, so
the system needs to work with incoherent illumination.
All operations for the task are considered jointly. It is
expected that the ISP can be optimized for specific
functions in more detail to simplify the acquisition
process and reduce the power consumption of the sen-
sor. Our approach is based on a single convolution layer.
Dynamicity and optical nonlinearity are essential ele-
ments of ONNs19. When combined with nonlinear
materials, such as saturation absorber40,41, optical phase
change memory25 and other novel materials42, the
nonlinear layer can also be operated on the light field if
the material nonlinear threshold can be reached. This
enables multiple convolution layers to achieve a closed-
loop all-natural-light neural network. The calculation
speed is further increased, and the energy consumption
is further decreased. When reconfigurable optical ele-
ments, such as those based on a liquid crystal mod-
ulator43–45 or metasurfaces46,47, are incorporated into
LOEN, the convolution kernels can be programmable.
Thus, the convolution in the space and time domains
can be realized48,49, while the structure can be trans-
ferred to other tasks. The method paves the way for a
novel solution with small size, intelligence, and low
energy consumption to be applied to smart devices for
vision tasks.

Before encryption After encryption

MLS pattern Optimized patternGround truth

Sensor

Pattern

d =16.4cm

Face ID : 192Capture

Fig. 10 LOEN prototype for large-kernel system to achieve privacy-protecting face recognition
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Materials and methods
Optical setup
The system consists of the object (displayed on a

screen), a joint-optimized mask, and a CMOS sensor. The
sensor used in the experiment is FLIR BFS-U3-51S5C-
BD2, and the pixel size is 3.45 μm. The mask is placed
close to the sensor. Another critical factor in the system is
the feature size. The value of the feature size is deter-
mined by many factors, for example, diffraction and
geometrical blurs. The specific task and the size of the
object will also affect feature size. The detailed discussion
is shown in Supplementary Note 1 and Note 5. In addi-
tion, the calibration is needed by adjusting the size of the
object and the distance between the object and the mask.
The calibration of the optical convolution is discussed in
Supplementary Note 3.

Mask selection and fabrication
The mask is obtained by photolithography on a chrome-

coated glass substrate. The fabrication process includes
photolithography, development, etching, demolding and
other steps. The pattern of the mask fabricated in this way
is fixed. Another way to form an optical mask is to use a
spatial light modulator (SLM), which makes it convenient
to adjust the parameters. The selection of the mask type
should take the contrast requirement of the machine
vision task into consideration. The specific calculations
are listed in Supplementary Note 2.

Dataset processing and neural network training
All the images of the classification and recognition tasks

are converted into greyscale and resized to match our
system. The networks are trained and tested on a work-
station with a 3.3-GHz Intel Core i9-9940X central pro-
cessing unit (CPU) (32 GB RAM) and two Nvidia GeForce
RTX2080Ti GPUs while using the Pytorch framework.
The structure and parameters of the Face Recognition
task are shown in Supplementary Note 11.
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