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Abstract
Optical frequency synthesizers have widespread applications in optical spectroscopy, frequency metrology, and many
other fields. However, their applicability is currently limited by size, cost, and power consumption. Silicon photonics
technology, which is compatible with complementary-metal-oxide-semiconductor fabrication processes, provides a
low-cost, compact size, lightweight, and low-power-consumption solution. In this work, we demonstrate an optical
frequency synthesizer using a fully integrated silicon-based tunable laser. The synthesizer can be self-calibrated by
tuning the repetition rate of the internal mode-locked laser. A 20 nm tuning range from 1544 to 1564 nm is achieved
with ~10−13 frequency instability at 10 s averaging time. Its flexibility and fast reconfigurability are also demonstrated
by fine tuning the synthesizer and generating arbitrary specified patterns over time-frequency coordinates. This work
promotes the frequency stability of silicon-based integrated tunable lasers and paves the way toward chip-scale low-
cost optical frequency synthesizers.

Introduction
In the past two decades, there has been much research

and development in optical frequency synthesizers
(OFSs), which are able to generate accurate and stable
optical frequencies from a single microwave frequency
reference. OFSs have enabled a wide range of applications
in frequency metrology1–3, precise navigation4–6, optical
spectroscopy7–9, microwave photonics10–12, and so on.
However, applications are often limited to scientific
experiments due to the size, weight, power consumption,
and cost of OFSs. To improve their applicability, OFSs
based on chip-scale-integrated photonic devices have
been proposed and demonstrated13–17. Among different
kinds of integrated photonics platforms, silicon photonics
technology has been extensively developed to meet the
increasing demand for data communication bandwidth.

Since it is compatible with the mature complementary-
metal-oxide-semiconductor (CMOS) fabrication technol-
ogy, this technology can cost-effectively mass-produce
chip-scale devices on the wafer level. Therefore, silicon
photonics is a promising candidate to radically reduce the
volume and cost of OFSs and eventually bring all the
benefits of OFSs from the laboratory to our daily lives.
A tunable laser (TL) is one of the most important ele-

ments in an OFS since it acts as the source of the final
output optical signal of the synthesizer. Recently, rare-
earth-doped integrated lasers have been developed on
silicon photonics platforms. These kinds of lasers possess
several advantages that make them suitable for chip-scale
OFSs. First, the gain media can be deposited through a
single-step back-end-of-line process, enabling CMOS-
compatible monolithic laser integration for low-cost mass
production18. Common rare-earth elements such as
erbium, thulium, and holmium have broad gain band-
widths, which enable wide tunability over different
wavelength regions19–23. Furthermore, rare-earth-doped
integrated lasers can achieve narrow linewidths since
these materials do not involve free carriers in the
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pumping process24–26. In addition, the host material of
the gain elements has low thermo-optic coefficients and
hence enables lasers with good thermal stability27,28.
Although the performance of these silicon photonics-
integrated lasers has been fully characterized on the
device level, it is still unknown if they are qualified for
OFSs, which need much more stringent requirements
than free-running integrated lasers in terms of frequency
instability, tuning precision, reconfigurability, and so on.
To this matter, an OFS using a silicon photonics-based

integrated TL is demonstrated in this work. By carefully
designing the tuning mechanism and control electronics,
a large tuning range with precise and flexible tuning, high
frequency stability and self-frequency calibration is
achieved simultaneously. Therefore, the uncertainty
associated with integrated TLs, which is one of the largest
technical risks that prohibit the realization of chip-scale
OFSs, is eliminated.

Results
Synthesizer setup
The architecture of an OFS is shown in Fig. 1. It consists

of an integrated erbium TL29 and a mode-locked laser
(MLL). We choose a commercial MLL so that we can
focus on the technical limitations of the integrated TL
device in an OFS system. After stabilizing the fceo and frep

of the MLL and locking the frequency of the TL to one
comb line of the MLL, the output of the TL can serve as
the synthesizer output. The detailed circuits of the three
locking blocks, fceo locking, frep locking, and TL-to-comb
locking, are shown in Fig. 2a–c, respectively. Based on
these locking electronics, the synthesizer output fre-
quency is given by:

fSN ¼ 1
4
Mf1 � 25f2 � 16f3 ð1Þ

where M is the comb line mode number of the MLL and
f1, f2, and f3 are the output frequencies of RF synthesizers
1, 2, and 3 in Fig. 2a–c, respectively. Since RF synthesizers
1, 2, and 3 are referenced to the same 10MHz signal, the
RF frequency (10MHz) stability is transferred to the
optical frequency fSN. This frequency stability transfer is
the fundamental purpose of building an OFS.

Mode number calibration
The mode number, M, can be decided by a calibration

procedure30 with the TL-to-comb circuit unlocked. As
shown in Fig. 3a, we use a computer to control the
reference frequency, f1, within the frep locking circuit of
the MLL in Fig. 2a so that the repetition rate of the MLL
always follows a change in f1. We first continuously
increase f1 while tracing the beat note, fb, between the TL
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Fig. 1 Top: the architecture of an OFS. Both the carrier offset frequency, fceo, and the repetition rate, frep, of a mode-locked laser (MLL) are
referenced to a 10 MHz reference signal through an fceo locking block and an frep locking block. The output of the MLL and a TL are combined using a
50:50 fiber coupler and beaten in a balanced photodetector (BPD). The output of the BPD is sent to the TL-to-comb locking block, which also
references the 10 MHz signal. The TL-to-comb locking output is sent to the TL to lock the frequency of TL to one comb line of the MLL. Bottom:
schematic of the TL (not to scale). The laser cavity is located in the Al2O3:Er

3+ layer and the Si3N4 layer. A >4-cm-long bent gain waveguide in the
Al2O3:Er

3+ layer is used to provide sufficient gain. In the Si3N4 layer, there are two microring filters in a Vernier configuration and two longitudinal-
mode phase shifters, which are controlled by the metal heaters on their top layer, to tune the wavelength of the TL.

Xin et al. Light: Science & Applications           (2019) 8:122 Page 2 of 8



and the MLL. When fb has increasingly passed a specified
frequency, fb0, N times, we record the instantaneous fre-
quencies f12 and fb2. Subsequently, we continuously
decrease f1. Once fb has decreasingly passed fb0 N times,
we record the instantaneous frequencies f11 and fb1. Then,
the mode number can be calculated by:

M ¼ Nf12 þ 4fb2 � 4fb1
f12 � f11

ð2Þ
The calibration error is mainly due to the thermal
instability of the free-running TL. To reduce this error,
a large value of 936 is chosen for N. Furthermore, we
repeat the above procedures 1600 times and calculate the
averaged M values using a digital-filter-like method. For

example, a 100-time averaging level means taking the
average from the 1st to 100th measurement, 2nd to 101st
measurement, and so on, until the 1501st to 1600th
measurement. The mode number RMS error decreases
approximately with the square root of the averaging
number, as shown in Fig. 3b. For an averaging level of
1000 times, the mode number error relative to the closest
adjacent integer (766,746) is given in Fig. 3c. Since the
error is well below 0.5 (<±0.2), M can be precisely
determined.

System tuning and instability
To evaluate the frequency instability of the OFS, we use

the setup in Fig. 4a to perform an out-of-loop
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Fig. 2 The locking circuits of the OFS. a In the frep locking circuit, the output of the MLL, whose frep is close to 250 MHz, is first detected by a
detector; the fourth harmonic of frep is filtered out by a bandpass filter (BPF), amplified by a low-noise amplifier (LNA) and filtered again by another
BPF. Then, the amplified and cleaned 4frep signal is mixed with another RF signal at frequency f1 from RF synthesizer 1. The output of the mixer is sent
to a proportional integral (PI) controller to generate an error signal, which is fed back to a piezoelectric actuator (PZT), to lock frep to f1/4. b In the fceo
locking circuit, the output of the MLL is amplified by an erbium-doped fiber amplifier (EDFA) and goes through a highly nonlinear fiber to generate a
supercontinuum spectrum from 1000 to 2100 nm. The supercontinuum signal is launched into a periodically poled lithium niobate (PPLN)
waveguide to double the frequency component from ~2040 to 1020 nm. The temperature of the PPLN is stabilized to 160 °C by a temperature
controller (TEC). The original and new generated 1020 nm signals are filtered out by an optical BPF and beaten in a detector to obtain fceo, which is
amplified and cleaned by an LNA and two BPFs. Then, the signal is divided by 25 and compared with f2 from RF synthesizer 2 in a digital phase
detector (DPD). The output of the DPD is sent to a PI controller to generate an error signal, which is fed back to control the pump current of the MLL,
to lock fceo to 25f2. c In the TL-to-comb locking circuit, the beat note of the MLL and the TL is first amplified and cleaned by an LNA and two BPFs;
then, it is divided by 16 and compared with f3 from RF synthesizer 3 in a DPD. The output of the DPD is fed back through a PI controller to control the
phase shifter of the TL to lock the frequency of the TL to one comb line of the MLL with an offset frequency of 16f3.
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measurement. A full tuning range from 1544 nm
(194.1 THz) to 1564 nm (191.6 THz) is achieved for the
OFS by applying electrical power to the two microring
heaters of the TL. For a tuning range larger than 2 nm, the
approximate electrical power required by the two
microring heaters can be obtained from a lookup table
(see Materials and methods, large-range tuning), and a
new calibration procedure is necessary before fine tuning
the heaters’ power to set the OFS frequency to the exact
target value. Five different wavelengths (1544.46, 1550.69,
1554.93, 1559.41, and 1564.03 nm) are chosen, and the
calibratedM values are shown in the first five rows of Fig. 4b.
Figure 4b also gives the final OFS output frequencies, fSN,
and their corresponding f1 and f3 values in the experi-
ments. By changing the electrical power of the two
microring heaters simultaneously, we can continuously
tune the OFS frequency relative to a calibrated value by
up to ~2 nm (see Materials and methods, middle-range
tuning). Using this method, the OFS frequency is
decreased by 10.25 GHz (from 1564.03 nm), as given in
the last row of Fig. 4b. Figure 4c shows the measured
frequency instability (Allan deviation) of the six synthe-
sizer frequencies obtained in Fig. 4b. For all cases, the
frequency instability approximately drops inversely pro-
portional to the averaging time τ. Figure 4c shows a fre-
quency instability level of 10−12 at an averaging time of

1 s. At 10 s of averaging time, the frequency instability of
each case ranges from 2 × 10−13 to 2 × 10−14 (last column
of Fig. 4b).
For fine tuning at the sub-GHz level, the OFS frequency

can be simply tuned by changing f3 in the TL-to-comb
locking circuit to change the feedback electrical power to
the TL phase shifters (see Materials and methods, small-
range tuning). The RF synthesizer 3 can be programmed
by a PC to generate an arbitrary pattern for the OFS
output over time-frequency coordinates. Figure 4d pro-
vides an example of the MIT logo obtained from this fast
and precise tuning mechanism.

Discussion
Although the reported TL output power and slope

efficiency are not high29, the power is sufficient for the
OFS application. In the synthesizer setup, the saturation
power of the BPD in Fig. 1 (Thorlabs PDB465C-AC) is
120 µW, which enables a >30 dB signal-to-noise ratio
(SNR) for the electronic beat note after the BPD (using a
20 kHz resolution bandwidth on an electronic spectrum
analyzer (ESA)) with <100 µW optical power from the TL.
After the frequency divider in the TL-to-comb locking
circuit (Fig. 2c), this SNR can be further improved to
>80 dB, which is more than enough to obtain tight
locking.
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During the measurement shown in Fig. 3b, c, the
repetition rate of the MLL needs to be tuned by ~300 kHz
to achieve the value 936 for N. This process takes ~6 s
because we need to move a motorized stage in the cavity
of the MLL. Therefore, the total calibration time is ~3.3 h
with 1000 times of averaging. In the future, by using an
integrated MLL31,32, the repetition rate can be tuned by
~1MHz within 1 ms using integrated heaters, so the
overall calibration time can be reduced to <1 s.
In Fig. 4a, the voltage noise floor of the function gen-

erator is proportional to the output voltage range. In other
words, a high-level output voltage VH usually exhibits a
large absolute RMS noise VN, which can be further
enhanced through (VH+VN)

2, when we convert the vol-
tage noise into the power noise. Thus, the higher the

electrical power imposed on the two microring heaters,
the more thermo-unstable the OFS is. In Fig. 4c, com-
paring two wavelengths of 1544.46 nm (M= 776 433) and
1559.41 nm (M= 768 993), the OFS requires much higher
electrical power for operation in the first case; therefore,
the frequency instability in the first case is almost 10
times higher than that in the latter case. The frequency
instability performance can be improved by developing
a low-noise voltage/power source with noise filters at
the source output. With a better voltage/power source,
it is also possible to tune the OFS within the full erbium
gain bandwidth, showing good frequency instability
performance.
In summary, we have demonstrated an OFS using a fully

integrated erbium-doped TL on a silicon photonics
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Fig. 4 OFS characterization results. a The characterization setup. A frequency comb (FC), which is located in a different laboratory from the OFS, is
used for an out-of-loop measurement. The carrier offset frequency and repetition rate of the FC are locked to the 10 MHz reference with a 100m RF
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frequency tuning to generate the MIT logo pattern (the averaging time of the frequency counter is 200 ms).
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platform. The synthesizer can be self-calibrated and
supports a 2.5 THz (20 nm) tuning range. The typical
frequency instability is 10−13 at a 10 s averaging time.
Precise and flexible tuning capability is also demonstrated
by generating an MIT logo pattern. Using the techniques
in this work and other key components on a silicon
photonics platform, including an octave-spanning super-
continuum generator33, second-harmonic generator34,
and integrated MLLs31,32, there is great potential to build
a completely monolithically integrated low-cost OFS in
the near future.

Materials and methods
Numerical simulation
Effective indices and guided modes in waveguides are

simulated using a vector finite-difference 2D eigenmode
solver with a discretization of 20 nm. The code is written
in MATLAB, and it solves the wave equation of the
transverse electric field.

Erbium TL fabrication
The TL is largely fabricated on a 300-mm silicon wafer

in a state-of-the-art CMOS foundry at CNSE SUNY. The
wafer has etched laser trenches for gain film deposition.
After the wafer-scale fabrication, the wafer is diced, and
an Al2O3:Er

3+ gain film is deposited as a single-step back-
end-of-line process at MIT, allowing direct access to the
laser design23. The 1.1-µm-thick Al2O3:Er

3+ thin film
within the laser trench together with the trench sidewall
provides the mode confinement for the gain waveguide.
The deposition is performed by a reactive co-sputtering
process using both aluminum and erbium targets. The
substrate temperature during deposition was measured to
be 380 °C. Deposition runs with different doping levels

reveal an optimum Er3+ doping concentration of 1.5 ×
1020 cm−3. Given the same pump power, a lower doping
concentration will decrease the lasing power due to lower
gain, while too high of a concentration will also result in
lower lasing power due to severe ion clustering or
quenching35,36. To keep the metal pads open after the
Al2O3 thin film deposition process, the metal pads are
placed in one area of the layout mask, and this area is
covered by a glass plate during the Al2O3 thin film
deposition. More details about the area selective deposi-
tion can be found in ref. 37.

Large-range tuning
There are two microring filters in the TL. Each ring has

a periodic transmission spectrum (blue and red curves in
Fig. 5a), with free spectral ranges (FSRs) of 2.23 and
2.13 nm at room temperature, respectively. This vernier
configuration provides a combined FSR of 50 nm within
the erbium gain bandwidth, which guarantees a single
lasing wavelength of the TL. By changing the electrical
power of the integrated heater on top of each ring, the
FSR of each ring can be varied slightly; therefore, the TL
will lase at a different wavelength where the new trans-
mission spectra of the two rings overlap. For example, in
Fig. 5a, the third red curve of ring 1 overlaps with the
third blue of ring 2; if we change the voltage on the
integrated heater of ring 2 to increase the FSR of ring 2,
the fourth red curve may overlap with the fourth blue
curve, thus achieving wavelength tuning. Based on this
mechanism, a lookup table can be created to record all
possible voltage combinations applied to the two ring
heaters and their corresponding lasing wavelengths. In
practice, with the help of the lookup table, by simply
modifying the voltages of the ring heaters, an arbitrary
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output wavelength of the TL within the erbium gain
bandwidth can be provided.

Middle-range tuning
Different from the large-range tuning, if we change the

voltages applied to the two ring heaters simultaneously,
two specific transmission spectrum curves (e.g., the third
red curve and the third blue curve in Fig. 5a) of the two
rings can move synchronously; therefore, the combined
ring response (magenta-color curves in Fig. 5b–d) can be
continuously tuned without wavelength hopping. We can
use the cavity transmission response of the TL (orange
curves in Fig. 5b–d), which has an FSR of Δf ≈ 2 GHz, to
calculate the exact tuning frequency of the combined ring
response. To maximize the TL output power, the peak of
the combined ring response needs to overlap with one
peak of the cavity response, as shown in Fig. 5b. When we
synchronously change the voltages on the two ring hea-
ters, the combined ring response can be tuned from the
position in Fig. 5b to that in Fig. 5c, d. At the same time,
the cavity response FSR, Δf, is also slightly changing (from
Δf0 to Δf1 to Δf2) because of the optical length change of
the two rings. When the combined ring response is in the
middle of two cavity response peaks, as shown in Fig. 5c,
the TL can output two longitudinal modes, which can
generate four beat notes fd1, frep− fd1, fd2, and frep− fd2 in
[0, frep] after beating with an MLL, where frep is the
repetition rate of the MLL. Suppose fd1 and fd2 decrease
with increasing ring heater voltage; then, the current
cavity response FSR, Δfnew, can be calculated by

Δfnew¼ Δfest þ fd1 � fd2
frep

� �
int

frep þ fd2 � fd1; ð3Þ

where Δfest is the estimated FSR value from an earlier
calculation or measurement, and the square bracket
“[x]int” returns the integer closest to x. In practice, Δf
can be initially estimated from the design parameters or
measured from the self-beating frequency of the TL by
setting the device into a double-longitudinal-mode state
with little ring heater power. Then, by synchronously
increasing the voltages applied to the two ring heaters and
tracing the beat notes between the TL and MLL on an
ESA, Δf can be iteratively updated by Eq. 3. Therefore, the
frequency of the TL can be accurately tuned across many
cavity longitudinal modes. Theoretically, the laser can be
tuned over the full erbium gain bandwidth using this
middle-range tuning mechanism. However, in practice,
we cannot unlimitedly increase the heater voltage without
breaking the heater, and if the tuning range is larger than
one FSR of the ring response (~2 nm), we can already use
the large-range tuning mechanism, so one FSR of the ring
response is chosen as the maximum tuning range of the
middle-range tuning.

Small-range tuning
There are two longitudinal-mode phase shifters in the

TL. The heaters for the two phase shifters are controlled
by the same voltage. By varying this voltage, the frequency
of TL can be continuously tuned within one FSR of the
cavity transmission response, that is, ~2 GHz.
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