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ACUTE MYELOID LEUKEMIA

The infusion of ex vivo, interleukin-15 and -21-activated donor
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Clinical effect of donor-derived natural killer cell infusion (DNKI) after HLA-haploidentical hematopoietic cell transplantation (HCT)
was evaluated in high-risk myeloid malignancy in phase 2, randomized trial. Seventy-six evaluable patients (aged 21–70 years) were
randomized to receive DNKI (N= 40) or not (N= 36) after haploidentical HCT. For the HCT conditioning, busulfan, fludarabine, and
anti-thymocyte globulin were administered. DNKI was given twice 13 and 20 days after HCT. Four patients in the DNKI group failed
to receive DNKI. In the remaining 36 patients, median DNKI doses were 1.0 × 108/kg and 1.4 × 108/kg on days 13 and 20,
respectively. Intention-to-treat analysis showed a lower disease progression for the DNKI group (30-month cumulative incidence,
35% vs 61%, P= 0.040; subdistribution hazard ratio, 0.50). Furthermore, at 3 months after HCT, the DNKI patients showed a 1.8- and
2.6-fold higher median absolute blood count of NK and T cells, respectively. scRNA-sequencing analysis in seven study patients
showed that there was a marked increase in memory-like NK cells in DNKI patients which, in turn, expanded the CD8+ effector-
memory T cells. In high-risk myeloid malignancy, DNKI after haploidentical HCT reduced disease progression. This enhanced graft-
vs-leukemia effect may be related to the DNKI-induced, post-HCT expansion of NK and T cells. Clinical trial number: NCT02477787.
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INTRODUCTION
Acute myeloid leukemia (AML) and myelodysplastic syndrome
(MDS) are heterogeneous group of diseases characterized by
clonal transformation of myeloid hematopoietic precursors.
Although a significant proportion of patients with AML or MDS
can be cured of their disease after allogeneic hematopoietic cell
transplantation (HCT), progression of the underlying disease
remains the most frequent cause of treatment failure. In particular,
disease progression rates exceeding 50% were reported in high-
risk AML and MDS [1–4].
Natural killer (NK) cells, a subset of lymphocytes, express

CD56 but not CD3 [5–7] and exert antitumor cytotoxicity that is

modulated both by activating and inhibitory receptors, notably
killer immunoglobulin-like receptors (KIR) [8]. Lack of the HLA
ligand for donor-inhibitory KIR was found to be correlated with
decreased myeloid leukemia progression after HLA-matched
sibling [9] and unrelated donor HCT [10]. In murine HCT models,
the post-transplant infusion of ligand-mismatched, donor-type NK
cells produced an antitumor effect without graft-vs-host disease
(GVHD) [11, 12]. Interleukin (IL)-12 and IL-15-preactivated murine
NK cells were more effective than non-activated [13] or IL-2-
preactivated [14] murine NK cells in terms of tumor suppression.
Clinical trials of NK cell transfer from allogeneic donors to patients
with malignancies have been performed after HCT [15–26] and
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without prior HCT [27–32]. Donor NK cells were obtained either by
separation from peripheral blood mononuclear cells (PBMCs)
[19, 22, 24, 27, 28, 30] or by ex vivo culture from hematopoietic
progenitor cells [15, 18, 20, 21, 23, 25]. Thus far, most donor NK
cell infusion (DNKI) studies involved small number of patients
(≤30) [17, 19, 22, 23, 25] and limited cell doses (<1 × 108/kg)
[17, 19, 22–25, 29].
Various cytokines including IL-2, IL-4, IL-9, IL-12, IL-15, IL-18, and

IL-21 have been used for the ex vivo expansion and activation of NK
cells [25, 33, 34]. We have previously generated donor NK cells from
the CD3+ cell-depleted portion of a mobilized leukapheresis
product via culturing in media containing IL-15 and IL-21 [20, 21].
The median yield from a single-day leukapheresis was 2.0 × 108

donor NK cells/kg of the patient’s body weight. These cells
expressed activating receptors strongly, produced interferon-γ,
and showed strong cell cytotoxicity in vitro. When the divided doses
of these NK cells were administered to the patients at 2 and 3 weeks
after HLA-haploidentical HCT [21], there was a significant reduction
of disease progression in patients with refractory acute leukemia
compared to historical patients who underwent haploidentical HCT
with the same conditioning regimen, but without DNKI (cumulative
incidence; study cohort, 46% vs historical cohort, 74%; P= 0.038).
No significant differences were observed between our study cases
and historical patients in terms of engraftment, acute and chronic
GVHD, or non-relapse mortality (NRM).
We have thus here investigated the clinical effects of DNKI

administered after haploidentical HCT in patients with high-risk
AML and MDS in a randomized phase 2 trial. The primary endpoint
was progression of the underlying disease. In addition, patient
immune parameters were investigated after HCT to detect any
DNKI effects.

METHODS
Patient enrollment
This was a phase 2, prospective, controlled, randomized, and investigator-
sponsored trial approved by the Institutional Review Board of Asan Medical
Center, Seoul, Korea and the Korean Ministry of Food and Drug Safety
(KMFDS), and registered at ClinicalTrial.gov (#NCT02477787). The hypoth-
esis was that DNKI given after haploidentical HCT was associated with
decreased AML/MDS progression. The initial target accrual was 90 for a
statistical power of 90% with a two-sided type I error rate of 0.05 for the
detection of decreased disease progression from 60% to 30%. Patient
enrollment began in June 2015. By July 2018, however, there were an
excess number of patients experiencing disease progression in the no-
DNKI group. Hence, after review by the institutional Data Safety Monitoring
Board and KMFDS, it was recommended that we close the trial early. When
the study was closed in October 2018, a total of 77 patients had been
enrolled. All patients and donors provided written informed consent.

Enrollment criteria
The criteria for patient enrollment are described in the Supplementary
Appendix.

Randomization
The treatment schema for the study is depicted in Fig. 1A. Patient and
donor HLA–A, –B, –C, and –DRB1 typing and donor KIR typing were
performed using polymerase chain reaction-based methods. Eligible
patients were randomly assigned either to a DNKI or no-DNKI group on
the day before the initiation of conditioning therapy. Patients were
stratified according to their diagnosis (refractory AML vs AML in complete
remission (CR) vs MDS). Patients with refractory AML were further stratified
according to primary-refractory AML vs relapse-refractory/early relapse
AML, as well as according to peripheral blood blasts <5% vs ≥5%. Patients
with AML in CR were further stratified to first vs second CR and MDS
patients were further stratified to intermediate-2 vs high risk [35].

Haploidentical HCT procedure
The haploidentical HCT methodology and supportive care for HCT are
described in the Supplementary Appendix.

DNKI
Patients in the DNKI group received NK cells on days 13 (DNKI-1) and 20
(DNKI-2) after HCT. A delay of DNKI for up to 2 days was allowed, depending
on the patient condition, delayed NK cell production, or holidays. The DNKI
cell dose was based on the quantity of cells available. For DNKI-1, 1 × 108

donor NK cells/kg or about half of cell culture products were administered.
For DNKI-2, the remaining cell culture products were administered. Donor NK
cells were infused over 1 hour through central venous catheter, with
pheniramine 45.5mg administered by intravenous infusion 30min earlier.
Since we administered anti-thymocyte globulin (ATG) as a part of
conditioning regimen for HCT, we measured the ATG levels in the patients’
serum on the day of DNKI [36].

Donor NK cell generation
The methods for donor NK cell generation are described in the
Supplementary Appendix.

Patient monitoring and evaluation
The patient monitoring and evaluation methods are described in the
Supplementary Appendix.

Post-HCT immune parameter monitoring and single-cell RNA
sequencing
To investigate DNKI effect on immune reconstitution, the immunologic
status of the patients was monitored by measuring peripheral blood
lymphocyte subsets, cytokine levels, and cell cytotoxicity before con-
ditioning and 1, 3, 6, and 12 months after HCT. After observing significantly
better expansion of NK and T cells at 3 months after HCT in patients who
received DNKI, we performed single-cell RNA sequencing (scRNA-seq) in
the PBMCs in seven patients (four DNKI and three in no-DNKI patients) to
better delineate the expanded lymphocyte populations. The methods for
these analyses are described in the Supplementary Appendix.

Statistical analysis
Statistical methodology used in the study is described in the Supplemen-
tary Appendix.

RESULTS
Patients and donors
Of the 77 enrolled patients, one in the no-DNKI group withdrew
from the study after randomization (Fig. 1B). The remaining 76
patients were included in the intention-to-treat analysis and their
characteristics are summarized in Table 1 according to the
treatment group. More female patients were assigned to the DNKI
group (53% vs 31%, P= 0.065). Otherwise, the two groups were
well-balanced. Two-thirds of the study patients had refractory AML.

Donor NK cell infusion
Among the 40 patients in the DNKI group, 4 did not receive DNKI,
due to cell production failure, early death, grade-4 acute GVHD, and
subdural hemorrhage in one case each (Fig. 1B). Additionally, four
patients received only one dose of DNKI due to production failure
(N= 2), early death (N= 1), and engraftment syndrome (N= 1). The
characteristics of the donor NK cells infused on day 13 (DNKI-1,
N= 35) and day 20 (DNKI-2, N= 33) are summarized in Table 2. The
median cell dose was 1.0 (range, 0.5–1.0) × 108/kg (of patient body
weight) for DNKI-1 and 1.4 (range, 0.5–4.0)×108/kg for DNKI-2.
Immunophenotype analyses showed a median percentage of
CD56+ cells of 84% for DNKI-1 and 89% for DNKI-2. On the other
hand, the median percentage of CD3+ cell dose was low (<1% for
both DNKI-1 and DNKI-2). All patients tolerated DNKI well without
acute infusion-related toxicity. The median serum ATG levels were
0.99 μg/mL (range, 0.45–5.17) and 0.88 μg/mL (range, 0.24–1.62) on
DNKI-1 and DNKI-2 days, respectively.

CR, disease progression, NRM, and patient survival
Of the 57 patients with active disease (refractory AML or MDS)
at the time of HCT, 23/30 patients (77%) in the DNKI group and
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14/27 (52%) in the no-DNKI group achieved complete remission
(CR; P= 0.049). As of September 2020, among all 76 study
patients, 15/40 patients in the DNKI group and 21/36 in the no-
DNKI group experienced disease progression (30-month cumu-
lative incidences, 35% (95% confidence interval (CI), 21–50%)
and 61% (95% CI, 42–76%), respectively; P= 0.040; Table 3;
Fig. 2A). One patient in the DNKI group experienced primary
engraftment failure (cumulative incidence, 2.5%). Twelve/40
patients in the DNKI group and 10/36 no-DNKI subjects died
without disease progression (30-month cumulative incidence of

NRM, 30% and 28%, respectively; Fig. 2B). The causes of NRM are
listed in Table 3.
To identify patients who benefitted from DNKI, we performed

subgroup analyses for disease progression. The DNKI group
showed a significantly reduced rate of disease progression in
patients with primary-refractory AML (subdistribution hazard
ratio (sHR), 0.29; 95% CI, 0.10–0.81; Fig. 3A), in patients with
refractory AML with peripheral blood blast <5% (sHR, 0.29; 95% CI,
0.10–0.81), as well as in patients with AML with normal/
intermediate-risk cytogenetics (sHR, 0.09; 95% CI, 0.01–0.73).

Fig. 1 Treatment schema and random allocation of the patients. A Eligible patients were assigned randomly to a donor natural killer cell
infusion (DNKI) group or a no-DNKI group on day–8 of hematopoietic cell transplantation (HCT), day 0 being the first day of HCT. Between
days –7 and –1, the patients received conditioning therapy for HCT with busulfan, fludarabine, and anti-thymocyte globulin. Hematopoietic
cell donors received a daily dose of granulocyte colony-stimulating factor (G-CSF) at 10 μg/kg subcutaneously for 4 days beginning on day–3
and underwent large-volume leukapheresis (Amicus, Fenwal, Inc., Lake Zurich, IL) on day 0 with a goal of collecting at least 5 × 106/kg CD34+

cells. About 20% of the donors required an extra day of G-CSF administration and leukapheresis. These cells were administered to patients
through a central venous catheter on the same day for the purposes of HCT. The donors for the patients who were randomized to the DNKI
group received an extra day of G-CSF administration and underwent extra leukapheresis for NK cell production. B A total of 77 patients were
enrolled. One patient assigned to the no-DNKI group withdrew from the study. The remaining 76 patients were included in the intention-to-
treat analysis. Four patients who had been randomized to the DNKI group did not eventually receive this therapy for the reasons listed.

K.-H. Lee et al.

809

Leukemia (2023) 37:807 – 819



For the entire cohort, the median follow up time among the
survivors is 33.7 months (range, 23.2–60.7 months). Progression-
free survival (PFS) at 30 months was 33% and 11% (P= 0.085;
Table 3; Fig. 2C) for the DNKI and no-DNKI groups, respectively.
The 30-month overall survival was 35% and 19% (P= 0.456;
Fig. 2D) for the DNKI and no-DNKI groups, respectively.

Engraftment, GVHD, and infections
Patients in both treatment groups showed consistent neutrophil
engraftment with 37/40 patients in the DNKI group and 33/36 in
the no-DNKI group achieving initial absolute neutrophil count
(ANC) ≥ 500/μL at a median of 10 days after HCT (Table 3;
Fig. 2E). Twenty-eight patients in the DNKI group and 22 in the
no-DNKI group achieved platelet counts ≥20,000/μL at a median
15 and 13 days after HCT, respectively (Fig. 2F). At 1 month after
HCT, among the cases who showed bone marrow recovery
without leukemia, 32/34 patients in the DNKI group and 26/28 in
the no-DNKI group showed >95% donor hematopoietic chimer-
ism (P= 0.599).
There were no significant differences in the occurrence of grades

2–4 acute GVHD (cumulative incidences, 51% for DNKI and 47% for
no-DNKI groups; Table 3; Fig. 2G), nor of grade 3 or 4 acute GVHD.
There was also no significant difference in the occurrence of
moderate-to-severe chronic GVHD (cumulative incidences, 20% for
DNKI and 25% for no-DNKI groups; Fig. 2H) nor of severe chronic

Table 1. Patient and donor demographics (intention-to-treat cohort).

Characteristics DNKI (N= 40) No DNKI
(N= 36)

Patient age, year, median
(range)

56 (21–70) 53 (21–67)

≥55 21 (53%) 17 (47%)

Gender

Female 21 (53%) 11 (31%)

Male 19 (48%) 25 (69%)

Disease status at HCT

AML, primary-refractory 20 (50%) 17 (47%)

AML, relapse-refractory 7 (18%) 7 (19%)

AML, in relapse 1 (3%) 0

AML, CR1 5 (13%) 5 (14%)

AML, CR2 5 (13%) 4 (11%)

MDS 2 (5%) 3 (8%)

Cytogenetics in AMLa

Good-risk 1 (3%) 0

Normal karyotype or
intermediate-risk

12 (32%) 19 (58%)

Complex without
monosomal karyotype

10 (26%) 4 (12%)

Complex with monosomal
karyotype

10 (26%) 6 (18%)

Other high-risk 5 (13%) 4 (12%)

Molecular abnormality in AML

FLT3-ITD 4 (11%) 8 (24%)

FLT3-TKD+ 1 (3%) 0

NPM1+ 2 (5%) 3 (8%)

CEBPA double mutation+ 1 (3%) 0

Peripheral blood blast, % in refractory AML

<5 18 (64%) 18 (75%)

≥5 10 (36%) 6 (25%)

Donor age, year, median
(range)

32 (9–63) 31 (8-61)

Donor gender

Female 18 (45%) 8 (22%)

Male 22 (55%) 28 (78%)

Donor relation

Parents 4 (10%) 5 (14%)

Sibling 7 (18%) 8 (22%)

Offspring 29 (73%) 23 (64%)

Donor CMV IgG

Negative 3 (8%) 4 (11%)

Positive 37 (93%) 32 (89%)

Number of donor-patient HLA–A, –B, –C, and –DRB1 mismatches, GVH
direction

None 1 (3%) 0

One 1 (3%) 0

Two 2 (5%) 4 (11%)

Three 14 (35%) 13 (36%)

Four 22 (55%) 19 (53%)

Number of donor-patient HLA–A, –B, –C, and –DRB1 mismatches,
rejection direction

One 1 (3%) 0

Table 1. continued

Characteristics DNKI (N= 40) No DNKI
(N= 36)

Two 2 (13%) 3 (8%)

Three 19 (48%) 14 (39%)

Four 15 (38%) 19 (53%)

Donor-patient NK alloreactivityb

Ligand-ligand model

Yes 12/ 40 (30%) 10/ 36 (28%)

Receptor-ligand model

Yes 30/ 37 (81%) 24/ 33 (73%)

Donor KIR type

2DS1-positive 18/ 37 (49%) 14/ 34 (41%)

3DS1-positive 12/ 37 (32%) 10/ 34 (29%)

A/A-haplotypec 17 (46%) 17 (50%)

B/x-haplotype 20 (54%) 17 (50%)

HCT graft cell number, median (range)

Nucleated cells, ×108/kg 12.4 (5.2–28.2) 11.4 (6.7–25.5)

CD34+ cells, ×106/kg 7.8 (2.6–26.5) 8.9 (1.31–18.1)

CD3+ cells, ×108/kg 3.8 (1.5–7.1) 3.5 (1.4–5.9)

CD56+CD16+ cells, ×108/kg 0.6 (0.2–1.4) 0.5 (0.2–1.5)

DNKI donor natural killer cell infusion, HCT hematopoietic cell transplanta-
tion, AML acute myeloid leukemia, MDS myelodysplastic syndrome, FLT3
FMS-like tyrosine kinase 3, ITD internal tandem duplication, TKD tyrosine
kinase domain, NPM1 nucleophosmin 1, CEBPA CCAAT/enhancer binding
protein α, CMV cytomegalovirus, GVH graft-vs-host, NK natural killer, KIR
killer immunoglobulin-like receptor.
aIn refractory AML cases, chromosomal findings in the bone marrow prior
to haploidentical HCT were used, whereas in cases of AML in remission,
chromosomal findings at the time of diagnosis (CR1) or at leukemia relapse
(CR2) were used. The classifications used were in accordance with NCCN
guidelines 2016.
bDonor-patient NK alloreactivity was determined according to the
ligand–ligand model [12] and receptor-ligand model [50].
cIf at least one of KIR2DL5, 2DS1, 2DS2, 2DS3, 2DS5, or 3DS1 is present, a
haplotype B/x is assigned. Otherwise, a haplotype A/A is assigned [51].
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GVHD. Additionally, there were no significant differences in the
cumulative incidence of either cytomegalovirus infection or Epstein-
Barr virus reactivation between the treatment groups (Table 3;
Fig. 2I and J). Other observed infections are listed in Table 3.

FACS analyses for immune reconstitution
At 3 months after HCT, the median peripheral blood absolute NK
cell count was 1.8-fold higher in the DNKI group (37,200/mL vs
20,550/mL, P= 0.032; Fig. 3B; Supplementary Table S1). Increased
cell counts were observed across all NK cell subsets. In addition, the
median absolute T cell count was 2.6-fold higher in the DNKI group
at 3 months (90,300/mL vs 34,550/mL, P= 0.031; Fig. 3C; Supple-
mentary Table S2). Increases in the T cell population were mainly
due to increased CD8+ cells (34,305/mL vs 12,183/mL), CD45RA+

cells (28,063/mL vs 7626/mL), and CD45RO+ cells (18,278/mL vs
8630/mL). The serum TNF-α level was higher in the DNKI group at
3 months (Supplementary Table S3). Although patients in DNKI
group also tended to show higher cell cytotoxicity, the overall
cytotoxicity was low (Supplementary Table S4).

Table 2. Characteristics of the donor natural killer cells administered
to the patients in DNKI group.

Characteristics DNKI-1 (n= 35) DNKI-2 (n= 33)

Cell dose, ×108/kg 1.0 (0.5–1.0)a 1.4 (0.5–4.0)

Cell viability, % 89 (72–97) 78 (70–90)

Immunophenotype, %

CD3+ 0.6 (0.01–6.4) 0.4 (0.0–5.8)

CD56+ 83.8 (70.5–94.8) 89.0 (72.6–97.2)

CD122+ 45.6 (1.7–93.7) 60.4 (0.0–96.8)

CD45+ 98.1 (77.2–99.7) 98.7 (93.7–99.8)

CD16+ 62.7 (24.5–79.1) 58.6 (19.5–85.1)

CD11b+ 19.9 (1.57–90.5) 15.9 (1.0–70.4)

Receptor expression, %

HLA-A, B, C 98.7 (46.0–99.8) 99.1 (58.3–99.9)

CD94 74.2 (24.4–94.6) 83.5 (31.2–98.1)

NKG2D 78.8 (39.9–95.5) 83.8 (30.0–97.3)

KIR2DL1 (CD158a) 23.3 (1.0–61.5) 27.7 (0.3–75.1)

KIR2DL2/3 (CD158b) 21.6 (8.7–40.3) 25.4 (4.6–40.4)

KIR3DL1 12.5 (2.3–73.1) 11.6 (0.4–75.5)

NKp46 49.9 (0.6–89.3) 59.0 (0.1–92.6)

NKp44 21.5 (4.0–57.9) 45.4 (7.0–83.7)

NKp30 80.3 (15.1–95.7) 87.8 (59.4–96.7)

INF-γ production,
pg/mLb

216.5 (0.0–1764.7) 630.4 (35.3–1649.7)

Cell cytotoxicity against K562 cells, %

ET ratio, 10:1 84.0 (67.6–94.8) 81.9 (70.7–98.5)

ET ratio, 5:1 78.4 (56.3–92.8) 77.6 (62.6–94.6)

ET ratio, 2.5:1 72.4 (38.8–90.6) 72.9 (48.9–90.5)

ET ratio,1:1 69.0 (33.8-86.9) 68.6 (27.0-87.9)

Cell cytotoxicity against Raji cells, %

ET ratio, 10:1 77.3 (5.6–94.8) 72.4 (6.1–95.2)

ET ratio, 5:1 66.9 (4.0–92.0) 69.6 (5.0–87.4)

ET ratio, 2.5:1 60.9 (3.9–90.0) 66.1 (3.4–88.2)

ET ratio,1:1 55.9 (3.9–89.3) 61.1 (0.0–89.1)

DNKI donor natural killer cell infusion, INF interferon, ET effector to target.
aAll values are a median (range).
bMeasured in the culture supernatant by enzyme-linked
immunosorbent assay.

Table 3. HCT outcomes according to the treatment group by
intention-to-treat analysis.

Outcomes DNKI
(N= 40)

No DNKI
(N= 36)

P valuea

Disease progression,
30-monthb

35%
(21–50%)

61%
(42–76%)

0.040

Non-relapse mortality,
30-monthb

30%
(17–44%)

28%
(15–43%)

0.842

Progression-free survival,
30-monthc

33%
(19–47%)

11%
(3–26%)

0.085d

Overall survival,
30-monthc

35%
(21–50%)

19%
(7–35%)

0.456d

Engraftment

ANC > 500/μL, 30-dayb 95%
(54–100%)

92%
(74–98%)

0.824

Median HCT day (range) 10 (7–29) 10 (7–20)

Platelet >20,000/μL,
150-dayb

73% (55-84%) 64%
(46–77%)

0.652

Median HCT day (range) 15 (9–132) 13 (0–45)

Acute GVHD, 120-daysb

All grades 56%
(39–70%)

56%
(38–70%)

0.781

Grades 2–4 51%
(34–65%)

47%
(31–62%)

0.991

Grade 3 or 4 35%
(21–50%)

31%
(17–46%)

0.739

Chronic GVHD, 30-monthb

All 33%
(19–47%)

39%
(23–54%)

0.510

Moderate-to-severe 20% (9–34%) 25%
(12–40%)

0.573

Severe 8% (2–18%) 11%
(4–24%)

0.574

Infections

CMV infection,
100-dayb,e

71%
(54–83%)

56%
(38–70%)

0.362

EBV reactivation,
100-dayb,f

65%
(48–78%)

53%
(36–67%)

0.355

CMV disease

enterocolitis 2 0

gastritis 1 0

Bacteremia sepsis 8 5

Pneumonia

Invasive aspergillosis 1 1

Influenza A virus 1 0

Respiratory syncytial virus 1 0

Enterococcus faecium 0 1

Mycobacterium
tuberculosis

0 1

Pneumocystis jirovecii 1 0

CNS HHV-6 infection 0 1

Clostridium difficile colitis 2 1

Cutaneous
varicella zoster

2 1

Cause of non-relapse mortality

Acute GVHD 2 5

Chronic GVHD 1 1

Sepsis/MOF 3 1
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Single-cell RNA-sequencing
For single-cell RNA-sequencing (scRNA-seq), stored PBMCs from
seven patients (four DNKI and three no-DNKI patients) collected at
three time points (before the conditioning therapy, and 1 and
3 months after HCT) were used (Supplementary Tables S5 and S6;
Fig. 4A B; Supplementary Fig. S1). A total of 79,086 cell data were
integrated. Subsequently, using SCTransform [37], eight major
cell types were identified; B cells, CD4+ T cells, CD8+ T cells,
dendritic cells, monocytes, NK cells, other T cells, and others
(Fig. 4C; Supplementary Fig. S2). The cell types were validated by
calculating cell type-specific signature scores and comparing them
via unsupervised clustering results (Fig. 4D; Supplementary Fig.
S2). A high internal correlation within each cell type and low
correlation with other cell groups indicated that the cell types
were annotated accurately. Furthermore, marker genes showed
high expression in the corresponding cell types (Fig. 4E). When the
NK cell proportions were measured according to DNKI vs no-DNKI
patients, as well as according to the timing of the treatment, the
NK cell proportion was significantly higher in DNKI patients at
3 months after HCT (Fig. 4F).

DNKI expands memory-like and CD56bright NK cells
Via unsupervised clustering analysis we identified various differ-
entiation states of NK cells, including memory-like, CD56bright,
transient, terminally-differentiated, exhausted, and proliferating NK
cells (Fig. 5A). Among these subtypes, memory-like NK cells showed
exclusive expression of CCL3, CCL4, GZMA/B, and IFNG (Fig. 5B;
Supplementary Fig. S3). In addition, gene ontology (GO) analysis
revealed that memory-like NK cells responded to interferon-γ and
had higher cytotoxic activity (Fig. 5C; Supplementary Fig. S4).
CD56bright NK cells showed increased expression of SELL, IL7R, and
XCL1/2 (Fig. 5B) and GO analysis indicated a tendency for cytokine
and chemokine secretion. In addition, exhausted NK cells highly
expressed LAG3 and ZEB2 and showed a tendency for low
cytotoxicity and cell cycle arrest [38].
In the DNKI group of patients, there was a marked increase in

the population of memory-like NK cells from the baseline at
3 months after HCT (34-fold increase; Fig. 5D). Likewise, CD56bright

NK cells increased as well but to a lesser degree (4-fold increases
at 3 months). In the no-DNKI patients, however, there was no
significant increase in the aforementioned NK cell subtypes. In
contrast to memory-like and CD56bright NK cells, the exhausted NK
cells decreased after HCT in the DNKI patients. Among no-DNKI
patients, however, these exhausted NK cells persisted and were

significantly more numerous than in DNKI patients until 3 months
after HCT.

Memory-like NK cells induce the clonal expansion of CD8+

effector-memory T cells
To determine the DNKI effect on the proliferation and differentia-
tion of CD8+ T cells, we inferred the clonality of CD8+ T cells using
TRUST4 [39], which extracts T cell receptor (TCR) reads from BAM
files and assembles these reads against human TCR contigs.
Based on the re-aligned TCR sequences from scRNA-seq of CD8+

T cells, we annotated TCR repertories and inferred T cell clones
(Supplementary Fig. S5A). By comparing the clonality of expanded
CD8+ T cells, we determined that these clonally expanded T cells
had the characteristics of CD8+ effector-memory T (TEM) cells
(Supplementary Fig. S5B, C). Thereafter, we compared the frequency
of clonally expanded CD8+ T cells in the PBMCs of the patients.
The DNKI patients showed a significantly higher frequency of
clonally expanded CD8+ T cells when compared to no-DNKI
patients (Supplementary Fig. S5D).
Using NicheNet, which can infer intercellular networks by

combining known cell-cell interaction and single-cell transcrip-
tome data [40], we next evaluated the interaction between NK cell
subsets and CD8+ TEM cells. In the inferred NK cell-T cell
intercellular network, there was an increased number of links
between memory-like NK and CD8+ TEM cells (Fig. 5E). Memory-
like NK cells prominently expressed NicheNet-predicted ligands,
such as IFNG, CALR, ANXA1, GZMB, and ITGB2. Among these, IFNG
and ITGB2 were the expected ligands that potentially bind to
IFNGR1 and CD226 proteins, both of which were abundantly
expressed in CD8+ TEM cells (Fig. 5F) [41].

PRDM1 and TBX21 are dominant transcription factors that
induce memory-like NK cells after haploidentical HCT and
DNKI
To better understand the molecular mechanisms of memory-like
NK cell expansion in AML patients undergoing haploidentical
HCT and DNKI, we reconstructed gene regulatory network (GRN)
from NK cell scRNA-seq data to infer transcription factor (TF)
activity [42]. By comparing the TF activity of NK cells, we
identified 12 TFs which showed statistically significant difference
between DNKI and no-DNKI patients. These were considered as
master TF candidates (Supplementary Fig. S6). Furthermore, we
reconstructed the differentiation trajectory of NK cells into
memory-like NK cells using Monocle3 [43], and then selected 9
TFs with a correlation with this differentiation trajectory (rho >
0.3; Supplementary Fig. S7). PRDM1 and TBX21 met the criteria
of the above two selection processes (Fig. 5G). For validation, we
performed GO analysis on the 84 regulons of PRDM1 and TBX21
and they were significantly related to NK cell activation,
cytotoxicity, and inflammation (Fig. 5H) [44, 45].

DISCUSSION
Thus far, DNKI trials have been hampered by limited cell doses and
limited efficacy. Our donor NK cell production method involved
ex vivo culture in the presence of IL-15 and IL-21 for two to three
weeks. The starting cell population was a CD3-depleted portion of
mononuclear cells collected from the donors after mobilization.
From a single-day leukapheresis product, a median 2.0 × 108

donor NK cells/kg was generated [20, 21]. This methodology
produced a much higher number of NK cells than the separation
methods (CD3-depletion/CD56-selection) from mononuclear cells
collected at a steady state, which yields donor NK cells in the
range of 1 × 107 cells/kg (Supplementary Table S7) [17, 19, 22, 24].
In terms of the quality of the donor NK cells, cell viability was 70–
97% with a purity of 71– 97% with respect to CD56+. The median
CD3+ rate was low at 0.5% (Table 2). These cells expressed known
inhibitory and activating NK cell receptors, produced interferon-γ,

Table 3. continued

Outcomes DNKI
(N= 40)

No DNKI
(N= 36)

P valuea

Pneumonia 2 3

Secondary graft failure 1 0

GI bleeding 1 0

SCMP 1 0

Sudden cardiac death 1 0

HCT hematopoietic cell transplantation, DNKI donor natural killer cell
infusion, ANC absolute neutrophil count, GVHD graft-vs-host disease, CMV
cytomegalovirus, EBV Epstein-Barr virus, HHV-6 human herpesvirus-6, MOF
multiple organ failure, SCMP stress-induced cardiomyopathy.
aP values were determined by a Gray test with the exception of
progression-free and overall survival.
bCumulative incidence (95% confidence interval).
cKaplan-Meier estimate (95% confidence interval).
dFor which a log-rank test was used.
eCMV infection was defined as the detection of CMV pp65 antigen or DNA
copies >103/mL in the peripheral blood within 100 days of HCT.
fEBV reactivation was defined as the detection of EBV DNA copies >103/mL
in the peripheral blood within 100 days of HCT.
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Fig. 2 HCT outcomes in each treatment group determined by intention-to-treat analysis. A. B. E–H The cumulative incidences of
disease progression, non-relapse mortality, neutrophil engraftment, platelet recovery, grade 2–4 acute graft-vs-host disease (GVHD), and
moderate-to-severe chronic GVHD, respectively. C, D Kaplan-Meier plots of progression-free survival and overall survival, respectively. I The
cumulative incidences of cytomegalovirus (CMV) reactivation, determined by the detection of either CMV pp65 antigenemia or CMV DNA
copies >103/mL. J The cumulative incidences of Epstein-Barr virus (EBV) reactivation by detection of EBV DNA copies >103/mL.
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and showed a strong in vitro cell cytotoxicity. It was shown
previously that the in vitro stimulation of NK cells with cytokines,
such as IL-12, IL-15, and IL-18, can generate memory-like NK cells
[29, 46, 47], whose characteristics include high expression of
activating receptors, strong antitumor cytotoxicity, and enhanced
recall response to subsequent cytokine stimulation.

Unlike our approach, NK cells can be expanded using feeder
cells [15, 26, 31, 32]. In a recent study [15], donor NK cells were
expanded from 500 mL of peripheral blood using IL-21/4-1BBL-
expressing K562 feeder cells. Eleven of the 12 patients with
myeloid malignancy in an extension phase cohort were able to
receive intended high doses of 1.0 × 108 donor NK cells/kg three
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times (HCT days of 2, 7, and 28). When all 24 evaluated patients
in the study were compared to a contemporaneous registry
cohort of patients, there was a significant reduction of disease
recurrence (4% vs 38% at 24 months, P= 0.014), as well as a
non-significant improvement in disease-free survival (66% vs
44%; P= 0.1).
To our knowledge, our current trial represents the first

randomized study of the clinical effects of post-transplant DNKI.
Our analyses showed that DNKI after haploidentical HCT in patients
with high-risk AML and MDS results in a significant reduction in
disease progression (35% vs 61% at 30 months; sHR, 0.50). Among
the 57 patients with active disease of AML or MDS, the CR rate was
significantly higher in the DNKI group than in the no-DNKI group
(77% vs 52%). Other HCT outcomes, i.e., engraftment, acute and
chronic GVHD, and, importantly, NRM were similar between the two
groups. These data suggested that DNKI given after haploidentical
HCT enhanced the graft-vs-leukemia effect without compromising
GVHD. The net effect of decreased disease progression and a similar
NRM resulted in an improved PFS in the DNKI group, although this
difference was not statistically significant (33% vs 11% at 30months;
P= 0.085). These findings corroborated the results of earlier studies
that investigated DNKI effects through comparison with registry [15]
or historical cohort [21]. Subgroup analysis in our limited number of
patients showed that the anti-leukemia effect of DNKI was more
pronounced in patients with primary-refractory AML, with a
peripheral blood blast <5%, and with normal/intermediate-risk
cytogenetic changes.
In our previous DNKI study [21], we administered high-dose

DNKI (median, 1.0–2.0 × 108/kg cells) and measured the NK cell
contents in the peripheral blood of nine patients by FACS analysis.
There was no increase in NK cell count immediately after DNKI (1,
3, and 7 days later). It was speculated that the DNKI doses we gave
may be still too low to be detected in the peripheral blood. Also, a
rapid extravascular redistribution of donor NK cells might have
occurred. In our current study, consistent with above findings,
there was no significant difference in NK cell contents between
DNKI vs no-DNKI groups at 1 month after HCT (about 10 days after
the DNKI-2). A 3 months after HCT, however, peripheral blood NK
cell contents were significantly higher for DNKI vs no-DNKI
patients (median counts, 1.8-fold higher). These findings sug-
gested that a significant NK cell proliferation occurred in the DNKI
patients between 1 and 3 months after HCT. To further
characterize the expanded NK cell population, we performed
scRNA-seq using the stored PBMC samples from seven of our AML
patients (4 DNKI and 3 no-DNKI cases). Uniform Manifold
Approximation and Projection (UMAP) plotting and clustering
analysis revealed that memory-like NK cells and CD56bright NK cells
represented the main population of NK cells after HCT in the DNKI
patients. These cells markedly increased from baseline (i.e., prior to
HCT) in the DNKI patients but not in the no-DNKI patients (Fig. 5D).
Exhausted NK cells, on the other hand, showed a contrary
trend with a decrement in the DNKI patients and an increment in

no-DNKI patients. Similar findings of NK cell expansion after DNKI
from the same HCT donor have been observed in other studies
[15, 16]. Further GRN and pseudotime analyses showed that
PRDM1 and TBX21, known regulators in diverse immune cell
development [44, 45], were the two important TFs generating
memory-like NK cells in the DNKI patients.
The DNKI patients in our study also showed better expanded

CD8+ T cells by FACS analysis when compared to no-DNKI subjects
(median counts, 2.6-fold higher). Analysis of the clonality of TCR
reads from scRNA-seq using TRUST4 [39] revealed that the main cell
type of CD8+ T cells in our DNKI patients was CD8+ TEM, a subset of
CD8+ memory T cells with a strong cytotoxic function [48]. Analyses
using NicheNet documented a strong intercellular network
between memory-like NK cells and CD8+ TEM cells mediated by
interferon-γ and ITGB2. Hence, DNKI after haploidentical HCT
facilitated NK cell expansion, with the dominant subsets being
memory-like NK cells. These expandedmemory-like NK cells, in turn,
may have activated and expanded CD8+ TEM cells (Fig. 5F).
Although our finding of decreased disease progression after

DNKI after haploidentical HCT is encouraging, our study is limited
by small patient numbers. Furthermore, we used non-intensive
preparatory regimen along with ATG/cyclosporine for GVHD
prophylaxis. Therefore, our results need to be confirmed by
further studies involving larger numbers of patients, using
different haploidentical HCT methodologies, such as dose-
intensive conditioning therapy and post-transplantation cyclo-
phosphamide for GVHD prophylaxis [49]. In addition, the NK/
CD8+ T cell expansion after DNKI needs to be confirmed and their
dynamics to be better defined by more frequent lymphocyte
subset measurement.
NK alloreactivity between the donor and patient [12, 50], as well

as donor KIR haplotype [51] showed differential antileukemia
effects after haploidentical HCT. In our study, NK alloreactivity
determined by ligand-ligand and receptor-ligand models, as well
as donor KIR haplotype were well-balanced between the DNKI and
no DNKI patients (Table 1). There was no significant difference in
disease progression according to these donor NK-related variables
in our study patient cohort (data not shown). However, these
variables need to be investigated further for their role in the DNKI
treatment.
In vitro NK cell cytotoxicity assay performed using PBMCs

collected from the patients showed no significant difference
between the DNKI and no-DNKI patients (Supplementary Table S4).
This may be due to different mechanisms of in vivo vs in vitro
cytotoxicity. Or, the sensitivity of in vitro assay may be too low to
detect the difference. Clinical utility of such assays in DNKI therapy
remains to be investigated.
ATG given as a part of conditioning regimen is known to have a

long serum half-life [36]. ATG was detected in varying levels at the
time of DNKI in our study patients. ATG contains diverse
antibodies against various immune cells including NK cells [52].
Although ATG given as a part of conditioning was shown to delay

Fig. 3 Subgroup analysis for disease progression and NK and T cell recovery after haploidentical HCT with or without post-HCT DNKI
infusion. A A forest plot of the subdistribution hazard ratios (sHR) for disease progression according to the prognostic subgroups of patients
in the intention-to-treat populations. sHR (donor natural killer cell infusion (DNKI) group vs no-DNKI group) was estimated using Fine-Gray
proportional hazard regression model according to patient age, gender, acute myeloid leukemia (AML) disease status, peripheral blood blast
percentage in refractory AML, and AML cytogenetic risk. B, C As a part of immune parameter monitoring conducted in this study, lymphocyte
subsets were counted in the peripheral blood of the patients. The median counts obtained before the initiation of conditioning therapy, and
at 1 and 3 months after hematopoietic cell transplantation (HCT) were plotted. B The NK cell population as measured by CD3 ̶ /CD56+ showed
cell count recovery to pre-HCT level at 1 month after HCT, when the median cell counts were similar between the DNKI and no-DNKI groups of
patients (10,300/mL vs 10,500/mL). At 3 months after HCT, however, the median NK cell count was significantly higher in the DNKI group of
patients (37,200/mL vs 20,550/mL, P= 0.032). All NK cell subsets were more numerous in the DNKI group with statistically significant
differences in the NKG2D+, NKp46+, and CD158b+ cell numbers (see also Supplementary Table S1). C Unlike NK cells, the T and B cell count
recovery was delayed until 3 months after HCT. At that time, the CD3+ T cell count was significantly higher in the DNKI group than in the no-
DNKI group (90,300/mL vs 34,550/mL, P= 0.031). The higher T cell count in the DNKI group of patients was mainly due to increased CD8+,
CD45RA+, and CD45RO+ cells. On the other hand, the CD4+ T cell and CD19+ B cell counts were similar between the two groups (see also
Supplementary Table S2). sHR, subdistribution hazard ratio. *P < 0.05 by Mann-Whitney test. Error bars represent upper quartile range.
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Fig. 4 Single cellular landscape of PBMCs after haploidentical hematopoietic cell transplantation (HCT) with or without post-
transplantation donor natural killer cell infusion (DNKI). A Single-cell RNA-sequencing (scRNA-seq) was performed using the stored PBMC
samples from seven patients with acute myeloid leukemia [AML; four DNKI patients (numbers 2, 24, 29, and 45) and three no-DNKI patients
(numbers 17, 19, 23)]. All seven patients survived for at least 4 months after HCT without AML progression. The samples were collected at 3
time points, i.e., before the conditioning therapy, and at 1 and 3 months after HCT. A total of 87,584 single-cell data were produced from the
21 thawed samples. Of those, 79,086 cell data passed the computational quality check (unique feature counts >200 and <7000; and
mitochondrial read per cell <15% (Supplementary Fig. S1). Data from a total of 79,086 cells were obtained using a 10X genomics platform.
B The bar plot shows the numbers of single cells, as well as the median numbers of genes obtained per cell, from each study patients.
C Uniform Manifold Approximation and Projection (UMAP) plotting identified eight major cell types, i.e., B cells (n= 2575), CD4+ T cells
(n= 13,618), CD8+ T cells (n= 28,047), dendritic cells (n= 1285), monocytes (n= 12,291), NK cells (n= 13,508), other T cells (n= 6038), and the
others (n= 1724). In addition, 31 sub-cluster cell types were discerned. D Heatmap of the scaled average expression of marker genes in each
major cell types. The marker genes for each cell type were expressed exclusively in their annotated cluster. E Evaluation of cell type marker
gene expression via UMAP embedding, i.e., CD3E in T cells, KLRF1 in NK cells, CD14 in monocytes, MS4A1 in B cells, and CD1C in dendritic
cells. F Proportion of NK cells according to the DNKI vs no-DNKI patients, as well as according to the timing after HCT. The proportion of NK
cells was higher in the DNKI patients at 3 months after HCT. These findings corroborated our FACS data which showed higher 3-month NK cell
contents in the DNKI group of patients. TCM, central memory T cell; TEM, effector memory T cell; CTL, cytotoxic T lymphocyte; Treg, regulatory
T cell; dnT, double negative T cell; MAIT, mucosal-associated invariant T cell; gdT= γδ-T cell; ASDC, AXL+, and SIGLEC6+ dendritic cell; pDC,
plasmacytoid dendritic cell; cDC1, conventional dendritic cell 1; cDC2, conventional dendritic cell 2; HSPC, hematopoietic stem progenitor cell;
ILC, innate lymphoid cell; ns, non-significant. *P < 0.05; Error bars represent standard error of the mean.
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T and B cell reconstitution, NK cell recovery was not affected [53].
The significance of ATG affecting DNKI remains to be determined.
In conclusion, ex vivo culture of mobilized, CD3-depleted donor

mononuclear cells using IL-15 and IL-21 produced a large number
of activated NK cells. When these donor NK cells were
administered 2 to 3 weeks after haploidentical HCT to patients

with high-risk AML and MDS, disease progression was reduced
without increased GVHD or NRM. Furthermore, this treatment
seemed to facilitate immune reconstitution with higher blood
contents of NK and CD8+ T cells at 3 months after HCT. The main
populations of these cells were memory-like NK and CD8+

TEM cells.
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For the patient-level data generated in the study, please contact Dr. Kyoo-Hyung Lee
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