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ACUTE MYELOID LEUKEMIA

TET3 promotes AML growth and epigenetically regulates
glucose metabolism and leukemic stem cell associated
pathways
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Acute myeloid leukemia (AML) is considered a poor prognosis malignancy where patients exhibit altered glucose metabolism and
stem cell signatures that contribute to AML growth and maintenance. Here, we report that the epigenetic factor, Ten-Eleven
Translocation 3 (TET3) dioxygenase is overexpressed in AML patients and functionally validated human leukemic stem cells (LSCs),
is required for leukemic growth by virtue of its regulation of glucose metabolism in AML cells. In human AML cells, TET3 maintains
5-hydroxymethylcytosine (5hmC) epigenetic marks and expression of early myeloid progenitor program, critical glucose
metabolism and STAT5A signaling pathway genes, which also positively correlate with TET3 expression in AML patients.
Consequently, TET3 depletion impedes hexokinase activity and L-Lactate production in AML cells. Conversely, overexpression of
TET3 in healthy human hematopoietic stem progenitors (HSPCs) upregulates the expression of glucose metabolism, STAT5A
signaling and AML associated genes, and impairs normal HSPC lineage differentiation in vitro. Finally, TET3 depletion renders AML
cells highly sensitive to blockage of the TET3 downstream pathways glycolysis and STAT5 signaling via the combination of 2-Deoxy-
D-glucose and STAT5 inhibitor which preferentially targets AML cells but spares healthy CD34+ HSPCs.

Leukemia (2022) 36:416–425; https://doi.org/10.1038/s41375-021-01390-3

INTRODUCTION
Nearly a century ago, Warburg et al. postulated aerobic glycolysis
as a metabolic hallmark of cancer [1]. More recently, metabolic
studies in acute myeloid leukemia (AML) confirmed that glucose
metabolism is critical for leukemia initiation and progression,
accompanied by altered glucose metabolism signatures and
overexpression of several glycolytic enzymes [2, 3]. Furthermore,
it has been demonstrated that AML bulk has higher glycolytic
reserves than AML leukemic stem cells (LSCs), as the latter are
mainly dependent on OXPHOS [4].
The TET family (TET1-3) of dioxygenase enzymes regulate active

gene expression via establishment of 5-hydroxymethylcytosine
(5hmC) epigenetic marks and are deeply embedded in the
pathobiology of AML [5–8]. TET1 has been implicated as an
oncogene in AML, while TET2 is frequently mutated and is
characterized as a tumor suppressor of myeloid malignancies [6–8].
In contrast, recent studies demonstrate that TET3 is required for
normal human erythropoiesis and plays a role in suppression of
interferon signaling [9, 10]. However, TET3 is not mutated in AML
patients and its functional role in human AML remains unin-
vestigated. 5hmC levels vary considerably in AML patients and

high 5hmC levels correlate with inferior overall survival [11].
Whether the distribution of 5hmC marks in AML cells is TET3
dependent, the genomic location of TET3 dependent 5hmC marks
and impact on gene expression is also unclear. It is however
noteworthy that TET3 and 5hmC marks promote tumorigenesis in
some human cancers [12, 13].
In this study, we uncover the growth-promoting role of TET3 in

AML and describe a close link between TET3 induced 5hmC
epigenetic marks, glycolysis, and the STAT5 pathway.

METHODS AND MATERIALS
Cell lines and transduction
All human leukemic cell lines used in this study were purchased from
DSMZ. All cell lines except OCI-AML3 and Kasumi-1 were cultured in RPMI
medium with 10% FBS and 1% Penicillin-streptomycin (P/S). OCI-AML3 and
Kasumi-1 cells were cultured in RPMI medium supplemented with 20%
FBS. SKNO-1 cells were cultured in RPMI medium with 10% FBS and 1% P/
S, supplemented with 10 ng/ml Granulocyte macrophage colony stimulat-
ing factor.
Knockout (KO) of TET3 in AML cell lines was generated via transduction

with lentiviral plasmids containing two different sgRNA and Cas9 (TET3
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CRISPR Guide RNA 2 and 3, Genscript). sgRNA and Cas9 expressing cells
were selected using puromycin and KO was confirmed in bulk cells by
western blots. Please see detailed methods in the Supplementary
Information section “Cell lines and transduction”.

Proliferation and colony forming cell assays
For normal CD34+ CB cells, FACS sorted CD34+ GFP+ cells were seeded
into the complete culture medium with cytokines (1–2 × 104 cells
cultured in serum free 20% BIT medium (Stemcell Technologies)
containing IMDM media with 10−5M β-mercaptoethanol supplemented
with cytokines (100 µg/ml SCF, 50 µg/ml FLT3-L, 10 µg/ml IL-3, IL-6, and
TPO) and were counted after 7 and 14 days. The cells were subcultured
in appropriate dilutions after first 7 days. The viable cells were counted
using trypan blue exclusion. For CFC assays, 500 CD34+ CB cells were
seeded into MethoCult H4434 methylcellulose medium. The cell colonies
were counted after 14 days and scored as erythroid (BFU-E, CFU-E),
granulocyte/macrophage (CFU-GM, CFU-M, CFU-G) and multipotential
granulocyte-erythroid-macrophage-megakaryocyte (CFU-GEMM) colo-
nies based on their morphology.

Transplantation
All experiments were performed in accordance to the guidelines of animal
care committee of the Regierungspraesidium Tuebingen, Germany.
Transplantation was performed on either C57Bl/6Ly-Peb3b × C3H/HeJ or
NOD. Cg-Prkdcscid Il2rgtm1Wjl/SzJ immunodeficient mice from the Jackson
Laboratory and Charles Rivers, bred, and maintained in the animal facility,
University of Ulm. For transplantation of murine MLL-AF9 (MA9) cells, 8–12
week-old Peb mice were lethally irradiated (1200 cGy) before i.v. injection.
5 × 104 MA9+ transduced cells were injected along with 5 × 105 helper cells
(bulk BM cells from wild type (wt) mice).
For human AML cell lines, 12–15 week-old NSG mice were sub-lethally

irradiated (325 cGy) and conditioned intra-peritoneally with 30mg/kg
human immunoglobulin IVIg (Privigen) 24 h before transplantation. For
shRNA knockdown (KD) experiment, 5 × 105 or 1 × 106 transduced cells
were transplanted to each mouse via tail vein. Mice were under careful
observation for early signs of disease. Peripheral blood (PB) aspiration was
performed after 4 weeks of transplantation and the presence of leukemic
blasts in blood smears was examined. The mice were sacrificed and
analyzed 5–6 weeks posttransplantation as the control mice showed signs
of disease.

Analysis of experimental mice
The diseased mice were sacrificed by CO2 asphyxiation, isolated the total
BM, splenic and PB cells and checked the engraftment of AML cell lines.
The cells collected were resuspended in PBS and lysed RBCs using 1x RBC
lysis buffer. For Peb mice, engraftment was analyzed using GFP positivity
using flow cytometry. The blast percentage was analyzed using cytospins.
For NSG mice, the cells were stained using a human-specific anti-CD45
antibody and determined the percentage of CD45-GFP double positive
cells using flow cytometry. The body of experimental animals was
preserved in 4% formalin solution for the histopathology. The animals
with less than 1% leukemic cell engraftment in BM were excluded from
the study.

Drug treatment of AML cells
AML cells were treated with STAT5i (Stem cell technologies, #73852) and
2-DG (Sigma #D8375) with the following concentrations STAT5i—5, 25, 50,
100 µM and 2-DG—100, 250, 500, 1000, 2000 nM, with the solvent DMSO
as control. Cells were treated for 72 h and cell death was analyzed by flow
cytometry using Annexin V and 7-AAD staining. IC50 was calculated using
Prism software. For combination therapy, calculated IC50 values of 2-DG
and STAT5i were used for treatment of AML cells and CD34+ enriched cord
blood cells for 72 h.
The detailed methods are provided in the Supplementary Information.

RESULTS
TET3 is overexpressed in the majority of AML patients and LSC
populations
Overexpression of TET3 has been observed in solid cancers such
as breast and pancreatic cancers, and is associated with
oncogenicity [12, 13]. To determine the role of TET3 in AML, we

first analyzed its mRNA expression in AML patients and AML stem
cells harboring cell subfractions. Our initial analysis using
published RNA-sequencing data revealed that TET3 is highest
expressed in AML patients compared to the aforementioned
cancers and other liquid and solid tumors (Fig. 1A) [14]. TET3 was
also higher expressed in AML than its family member, TET1, a
known oncogene in AML (Fig. S1A). qRT-PCR analysis revealed that
albeit TET3 had a broad range of expression in AML patients and
cell lines, it was overexpressed in the large majority of AML
patients compared to healthy CD33+ myeloid cells and total bone
marrow (BM) mononuclear cells (MNCs) (Fig. 1B). Among AML
genotypes, TET3 was highest expressed in core binding factor and
cytogenetically normal (CN)-AML patients and cell lines (Figs. 1C
and S1B). TET3 expression did not differ significantly between TET2
or DNMT3A mutated vs. wt gene harboring CN-AML patients.
However, NPM1 mutated and FLT3 wt patients exhibited
significantly higher expression than NPM1 wt and FLT3 mutated
patients (Figs. 1D, S1C, Supplementary Table 1). Furthermore, in
our RNA-Seq data set of functionally validated primary human
AML LSC subpopulations, TET3 exhibited significantly higher
expression in AML LSCs harboring lymphoid-primed multipoten-
tial progenitors (LMPP) and granulocyte macrophage progenitors
(GMPs) compared to their normal counterparts [15] (Fig. 1E). In
normal hematopoietic subpopulations, TET3 expression was high-
est in healthy CD34+ BM derived HSPCS compared to BM myeloid,
lymphoid and total MNCs (Fig. S1D). Among lineage positive cells
TET3 was higher expressed in BM and PB derived myeloid cells
compared to lymphoid cells (Fig. S1D–F).
In line with its overexpression in AML cells, analysis of the TET3

promoter in the myeloid leukemia cell lines, murine MLL-AF9 c-Kit+

LSC harboring cell population, murine MLL-AF9 LSCs vs. healthy
HSCs and GMPs from published data sets revealed an enrichment
of euchromatic histone marks such as H3K4me3, H3K27Ac, H3K9Ac
and the absence of the suppressive H3K27me3 mark (Figs. 1F and
S1G, H). The euchromatic histone marks overlapped with RNA
polymerase II and transcription factor (TF) binding sites, such as the
TF MYC, its binding partner MAX among several others (Figs. 1F
and S1G, H). Notably, MLL-AF9+ LSCs and AML patients exhibited
higher enrichment of H3K4me3 marks on the TET3 promoter vs.
healthy counterparts, suggesting that TET3 overexpression in AML
is potentially epigenetically regulated (Figs. 1F and S1I).

High TET3 levels are required for AML growth and AML LSC,
and its overexpression in healthy human HSPCs perturbs
myeloid differentiation
To test whether high TET3 expression regulates AML growth, we
performed KD or KO studies in AML cells and KD/KO efficiency was
assessed using qRT-PCR and western blot (Fig. S2A, B). TET3
depletion significantly decreased the clonogenic and proliferative
potential of AML cells (Figs. 2A, B and S2C, D). On the other hand,
the T-ALL cell line Jurkat, used as an off-target control, did not
show impairment of growth upon TET3 KD (Fig. S2C). Transplanta-
tion of TET3 KD and KO AML cell lines into xenografts resulted in
severely reduced leukemic engraftment in BM of xenografts
(Figs. 2C, D and S2E). TET3 KD in primary CN-AML patient cells
inhibited their clonogenic potential in vitro (Fig. 2E). Similarly,
stable KD of Tet3 in murine AML-LSC harboring c-Kit+ cell
population from MLL-AF9 (MA9-LSCs) and AML1-ETO9A immorta-
lized cells decreased their clonogenic potential in vitro and
delayed the onset of MLL-AF9+ AML in vivo (Figs. 2F and S2F). The
abrogation of TET3 expression induced loss of 5hmC marks in
human AML cell lines, primary patient cells and murine LSCs,
caused apoptosis, but did not significantly affect the cell cycle
(Figs. 2G and S2G–L).
Interestingly, stable overexpression of TET3FL (TET3 full length)

and TET3ΔCXXC (lacking CXXC domain) in AML cell lines increased
the corresponding mRNA levels and protein levels in vitro (Fig.
S3A–C). The overexpression significantly augmented cell growth
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in vitro and enhanced global 5hmC levels (Figs. 3A, B and S3D).
However, overexpression of full length TET1 in our hands (data not
shown) and TET2 in a published study [16] suppressed human
AML growth, suggesting that unlike other TET members, TET3 is a
growth-promoting factor in AML.
Next, we aimed to test whether aberrant expression of TET3

perturbs normal function of healthy HSPCs. Therefore, we stably

overexpressed TET3FL and TET3ΔCXXC in CD34+ CB HSPCs. The
overexpression of TET3FL and TET3ΔCXXC increased global 5hmC
marks in healthy human HSPCs and skewed normal differentiation
program in vitro, with reduction of terminally differentiated
mature myeloid CD11B+ and CD15+ colonies in CFCs and
reduction in absolute cell number of mature myeloid cells in
liquid culture assays (Figs. 3C–E and S3E, F). We also observed an
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“n”, horizontal bars represent median expression values and vertical error bars represent standard error of mean (SEM). C TET3 expression in
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increased number of GLYA+ erythroid cells in the CFC assays,
which goes in line with a previous study which reports that TET3
depletion in healthy human CD34+ HSPCs impairs erythroid
differentiation (Figs. 3C, D and S3E, F) [9]. These data indicate that
balanced expression of TET3 is important for the normal erythroid-
myeloid lineage commitment. In sum, our data demonstrate that
high TET3 levels promote AML growth and its high expression in
normal HSPCs impairs normal myeloid differentiation.

TET3 downregulates expression of genes involved in glucose
metabolism and LSC function in AML cells
Next, we sought to examine the impact of high TET3 levels on the
gene expression patterns in AML cells. RNA-Seq analysis of TET3 KD
NB-4 cells revealed 1409 differentially expressed genes, out of which

60% were significantly downregulated (Supplementary Table 2).
Gene Set Enrichment Analysis (GSEA) revealed the downregulation
of genes associated with LSC function (LSC signature),
STAT5 signaling and glucose metabolism pathways upon TET3
depletion (Fig. 4A). In particular, factors central to glucose
metabolism and glucose transport were downregulated, such as
enzymes HK1, HK2, ENO2, PC, ALDH2, ALDOC, PKFP, PGAM1, PDK1,
PDK3, PDP1, the lncRNA H19, TF ZEB-1, its target SLC2A3 and several
HNF4A targets were also downregulated (Figs. 4B and S4A and
Supplementary Table 2). To ensure that the differential expression of
glucose metabolism genes was specific to the KD of TET3 and not a
general phenomenon the KD of TET family members or other
oncogenes, we conducted a supervised analysis of glucose
metabolism and transport genes in the context of TET1-3 depletion,
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and KD of the AML proto-oncogene CDX2. The analysis using our
own RNA-Seq data set of TET3, TET1 and CDX2 KD in AML cell lines
and published RNA-Seq of TET2 KO in the AML cell line THP-1
revealed that gross downregulation of glucose metabolism genes
was exclusively induced by TET3 depletion in AML cells (Figs. 4B and
S4B–D) [17]. In line with its effect on LSC genes and its high
expression in leukemic LMPP and GMP, CellRadar analysis illustrated
that higher levels of TET3 maintained the expression of early myeloid
progenitor associated gene signature (CMP and GMP) and
suppressed the expression of mature myeloid lineage (monocytes)
associated gene signature in NB-4 cell line (Fig. 4C). We observed a
decreased expression of TET1 in TET3 depleted NB-4 cells, but TET1
has been shown to be dispensable for NB-4 cell growth
(Supplementary Table 2) [18].

Overexpression of TET3 in healthy human HSPCs induces
genes involved in glucose metabolism and AML associated
pathways
Next, we tested whether aberrant overexpression of TET3 in
normal CD34+ CB HSPCs induced expression of glucose metabo-
lism, STAT5 and AML specific and myeloid progenitor associated
gene signatures. Due to the better transduction efficiency, higher
cell number, resultant better RNA quality and similar phenotype of
TET3 ΔCXXC vs. TET3FL transduced HSPCs, we chose to perform
our experiments using TET3ΔCXXC. GSEA analysis showed that
overexpression of TET3ΔCXXC in HSPCs upregulated STAT5A, the

glucose metabolism associated HNF4A pathway and the AML LSC,
progenitor and erythroid development pathways (Fig. 4D, E).
CellRadar analysis illustrated that TET3 overexpression in normal
HSPCs prompted suppression of the mature myeloid cell
associated gene signature (monocytic), which was found upregu-
lated in TET3 KD NB-4 cells (Fig. 4F). Genes associated with
myeloid differentiation (such as CEBPA and TET2) were down-
regulated in TET3ΔCXXC overexpressing HSPCs. However, TET3ΔCXXC

triggered expression of erythroid lineage gene signature (MEP).
These data are in line with our functional data and published KD
data that demonstrate reduced number of mature myeloid cells
and perturbation in erythroid lineage cells, respectively [9].
Notably, 190 genes that were upregulated in TET3ΔCXXC over-
expressing HSPCs were downregulated in TET3 KD NB-4 cells and
were deemed as putative TET3 targets, such as STAT5A and
glucose metabolism associated factors HK1, ENO2, and SLC2A3.

TET3 regulates expression of genes involved in glucose
metabolism and LSC function via 5hmC marks
Next, we analyzed the impact of TET3 depletion on 5hmC marks
genome wide by hydroxymethylated DNA immunoprecipitation-
sequencing (hMeDIP-Seq) and assessed its relationship with
deregulated gene expression. hMeDIP-Seq analysis confirmed that
TET3 depletion in NB-4 cells resulted in a global reduction of 5hmC
marks compared to scrambled control (Fig. 5A and Supplementary
Table 3). Strikingly, 5hmC marks were lost at promoters or gene
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body (GB) regions of genes that are associated with early myeloid
progenitor (CMP and GMP) gene signature (Fig. S5A). The
comparison of the hMeDIP-Seq and RNA-Seq data from TET3 KD
NB-4 revealed that more than 44% (372/845) of downregulated
genes exhibited loss of 5hmC marks on promoters or GB. The
majority of these genes belonged to AML associated, glucose
metabolism pathways and were associated with early myeloid
progenitor gene signature (Figs. 5B and S5A and Supplementary
Table 2). Moreover, glucose metabolism genes and STAT5A were
among the 94 genes that experienced loss of 5hmC marks,
downregulation of expression upon TET3 KD in NB-4 cells and
upregulation in TET3ΔCXXC overexpressing HSPCs (Fig. 5C and
Supplementary Table 4).
5hmC sequencing data, from our own and published data sets,

of AML cell lines and primary patients representing different AML
genotypes revealed that glucose metabolism genes are enriched
with 5hmC marks and hyperhydroxymethylated in AML cells
compared with corresponding loci of glucose metabolism genes
in healthy CD34+ HSPCs, suggesting that their mRNA expression is
in-part regulated by TET proteins across AML subtypes (Fig. S5B,
C). Furthermore, glucose metabolism genes also exhibited binding
sites for TET3 which overlapped with sites of 5hmC enrichment
(Figs. 5D and S5B) [19]. Notably, while TET3 KD lead to the loss of
5hmC marks on glucose metabolism genes, neither TET1 depleted
Kasumi-1 cells nor TET2 mutation harboring AML patients
reflected loss of 5hmC marks on the corresponding loci when
compared to scrambled control and TET2 wt harboring AML
patients, respectively (Figs. 5D and S5B) [20]. Therefore, in sum,
the presence of 5hmC marks across AML subtypes, overlap with
known TET3 binding sites, the exclusive loss of 5hmC marks and

concomitant downregulation of mRNA expression upon TET3
depletion together indicated that factors critical for glucose
metabolism are targets of TET3 and 5hmC mediated gene
regulation, not involving TET2 and TET1. However, our study does
not rule out that TET1-2 could regulate the expression of the
aforementioned genes in other cancers or cell types.
qRT-PCR and western blots further confirmed the decreased

expression of TET3 targets, Hexokinase 2 (HK2) and STAT5A, in KD
and KO experiments in other AML cell lines, such as SKNO-1 and
OCI-AML3 (Fig. 5E, F). The majority of the above-mentioned genes
positively correlated with TET3 expression in AML patients, i.e.,
patients that exhibited higher expression of TET3 also exhibited
higher expression of STAT5A, HK1, HK2, ENO2, etc. (Fig. S5D).
Concordant with TET3 expression, these genes were also highly
expressed in functionally validated LSCs compared to healthy
counterparts (Fig. S5E, F). Taken together, our and published RNA-
Seq and 5hmC sequencing data suggest that in the context of
AML cells, TET3 regulates the expression of glucose metabolism
and STAT5A via 5hmC marks.

TET3 depleted AML cells are vulnerable to glucose deprivation
or chemical inhibitors targeting TET3 downstream genes HK2
and STAT5A
Next, we tested whether TET3 could alter the ability of AML cells
to metabolize glucose. Time course measurements of glucose
uptake using 2-NBDG revealed that TET3 depleted NB-4 cells
exhibited a trend toward increased glucose uptake and L-Lactate
production analysis revealed a clear decrease in lactate production
in TET3 depleted NB-4 cells (Fig. 6A, B). These data were further
supported by, colorimetric enzyme assays for hexokinase activity
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which demonstrated that TET3 depleted AML cells exhibited
decreased hexokinase activity and showed reduced ability to
convert glucose to glucose-6-phosphate (Fig. 6C). Conversely,
TET3FL overexpressing AML cells exhibited enhanced hexokinase
activity (Fig. 6D). In sum, these data demonstrated that TET3 has a
direct impact on the ability of AML cells to metabolize glucose.
The association of TET3 with glucose metabolism was further
supported by the fact that short term glucose deprivation (72 h)
lead to the upregulation of TET3 expression and its downstream
targets HK2 and STAT5A in AML cell lines, while the expression of
TET1-2 remained unchanged (Figs. 6E and S6A, B). This suggests
that TET3 likely shares a feedback link with glucose levels and
maintains glucose metabolism via regulation of vital genes in AML
cells. Consistent with this hypothesis, TET3 depleted AML cells
were unable to survive 48 h of glucose deprivation while TET1
depleted AML cells were unaffected by glucose deprivation even
up to 72 h, demonstrating that TET3 depletion renders AML cells
sensitive to glucose deprivation (Figs. 6F and S6C).

In AML cells, skewed metabolic pathways are pivotal for
proliferation but also serve as therapeutic vulnerabilities. In this
regard, altered glucose metabolism and overexpression of several
glycolytic enzymes in AML cells can be targeted via the
competitive chemical inhibitor of HK, 2-deoxy-D-glucose (2-DG).
As HK was a downstream target of TET3, we utilized the 2-DG to
antagonize AML cells. In addition, we targeted another TET3
downstream gene, STAT5A (STAT5i), previously shown to induce
death of AML cells [2, 18, 21]. We tested the impact of 2-DG and
STAT5i on MA9-LSC harboring cells and observed an IC50 of
500 nM and 28 µM, respectively (Fig. S7A, B). Importantly, 2-DG
and STAT5i exhibited 2.5 times lower IC50 levels on Tet3 depleted
MA9-LSC harboring cells compared to scrambled (Fig. 7A, B).
Combination therapy with STAT5i and 2-DG on MA9-LSC
harboring cells also resulted in a 2.5-fold reduction in IC50
concentrations of both drugs compared to monotherapy (Fig. 7C).
Comparable effects were observed on human AML cell lines and
primary AML patients with regard to cell viability and AML cell
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lines with regard to clonogenicity (Figs. 7D–F and S7C). Contrary to
the impact on AML cells, 2-DG and STAT5i, neither mono nor
combination therapy induced any significant impact on cell
viability of healthy CD34+ HSPCs and only the combination
therapy induced a minor impact on colony formation (Fig. S7D, E)
compared to AML cells. Importantly, combination therapy reduced
colony formation by an average of 96% in AML cells compared to
only 28% in healthy HSPCs. Taken together, our data supported
the use of inhibitors against TET3 downstream pathways, glucose
metabolism, and STAT5 signaling, to preferentially target AML
bulk and stem cell population over healthy stem cells.

DISCUSSION
TET family of DNA demethylases was subjected to number of studies
on malignant hematopoiesis in the last decade, yet the role of TET3
in human AML has remained obscure. In this study, we demonstrate
that TET3 is aberrantly overexpressed in the human AML bulk and
functionally validated AML-LSC populations and its overexpression is
potentially regulated by euchromatic histone marks in AML cells.
This study shows that higher TET3 level is required for the growth of
AML bulk, LSCs and the maintenance of 5hmC marks as its
deficiency in human AML cells and murine AML LSCs impairs their
growth in vitro, in vivo, induces apoptosis and the loss of 5hmC
marks. Furthermore, in contrast to wt TET1 and TET2, overexpression
of wt TET3 in AML cell lines further enhances cell growth
demonstrating that unlike other TET members, wt TET3 is a
growth-promoting factor in AML. In line with our data, published
studies in solid cancers such as esophageal squamous cell

carcinoma and breast cancer demonstrate that the overexpression
of TET3 is associated with cancer growth and cancer stem cell
maintenance [22, 23]. Interestingly, the DNA binding domain lacking
TET3ΔCXXC could also augment AML growth, which is not surprising
as TET3 isoform lacking the CXXC domain can also bind DNA,
presumably through its interacting partners, and is able to alter gene
expression and 5hmC marks [24]. Our study indicates that the
balanced expression of TET3 is important for the normal human
HSPC function, as its forced expression in normal HSPCs impairs
myeloid and erythroid differentiation in vitro. These data are
consistent with a previous study which reports that TET3 depletion
in healthy human HSPCs impairs erythroid differentiation [9].
Reports in the murine Tet2 KO model suggests that Tet3 could

be a tumor suppressor in murine AML, especially in the context of
Tet2 deletion [25, 26]. However, in human AML, the lack of
spontaneous TET3 mutations, in the context of TET2 mutation or
otherwise, indicates that TET3 mutations do not confer a selection
advantage in human AML as they do in the murine model. On the
contrary, our data suggest that human AML cells harboring TET2
mutations would be more dependent on TET3 enzymatic activity
and thereby vulnerable to TET3 depletion. This notion is
supported by a recent study where TET3 depletion in TET2
mutated AML cells caused a dramatic impact on 5hmC marks,
apoptosis and AML growth [27]. In sum, its overexpression in the
majority of AML patients and our functional data in human AML
strongly suggest that TET3 function varies according to the cellular
and species context, and is a dependency factor in human AML.
Our RNA-Seq and hMeDIP-Seq data illustrate that TET3 supports

AML growth via the epigenetic regulation of proliferation, stem cell
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and cell survival associated pathways. Higher TET3 levels positively
regulate gene expression by maintaining 5hmC marks on the
promoters of genes associated with early myeloid progenitor
signature, glycolysis and STAT5A signaling. Our CellRadar analysis
illustrates that TET3 maintains the expression of early myeloid
progenitor associated gene signature (CMP and GMP), which is in
line with its high expression in human leukemic LMPP and GMP.
Our and published data collectively demonstrates that the
aforementioned pathways, especially glycolytic pathway genes,
are direct targets of TET3 and not TET1 or 2 in AML cells. Among the
direct targets, the glucose metabolism pathway genes are of great
interest due to their established role in AML metabolism, cell
survival and their potential as drug targets. Enzymes, HK1, HK2,
ENO2 and ALDH2 and lncRNA H19, are all critical players in
glycolysis, while HK2 is also an anti-apoptotic factor [2, 3, 28, 29]. We
demonstrate that TET3 not only regulates their expression but also
in-turn regulates the glucose metabolism rate of AML cells.
Furthermore, our data also hint at the existence of a feedback
loop between serum glucose levels and TET3 expression and
involvement of TET3 in glucose homeostasis in AML cells, as
glucose deprived AML cells upregulate TET3. This is consistent with
a study in hepatic cells where TET3 is acutely induced upon fasting
and plays a critical role in hepatic glucose production to maintain
systemic glucose homeostasis [30]. Furthermore, acute and chronic
hypoxia is associated with upregulation of glycolysis. Hypoxia also
triggers TET3 expression in cancer and healthy erythroid cells
[31, 32]. It is likely that TET3 is a mediator of hypoxia and glucose
deprivation stress associated upregulation of glycolytic enzymes,
but this hypothesis requires detailed investigation.
Our RNA-Seq analysis also shows that higher TET3 levels not only

in AML cells but also in healthy human HSPCs induces the
expression of genes associated with STAT5A signaling and glucose

metabolism associated HNF4A pathway. Interestingly, contrary to
expectation, TET3 overexpression led to a greater downregulation of
gene expression in healthy HSPCs, especially of myeloid differentia-
tion genes possibly through a repressive function. In support of this,
CellRadar analysis showed that mature myeloid lineage (monocytes)
specific genes expression signature was suppressed in TET3
overexpressing healthy HSPCs and upregulated in TET3 KD AML
cells. Since TET3 contains a highly conserved Sin3 interaction
domain and is known to associate with gene expression suppressing
factors SIN3A and histone deacetylases (HDACs), it is possible that
TET3 function in AML cells extends beyond 5hmC mark mediated
positive gene regulation of growth-promoting factors to suppression
of myeloid differentiation genes via association with repressive
complexes [10]. This hypothesis is backed by evidence that TET3,
independent of its catalytic function, inhibits interferon production
by recruiting HDAC1 to promoters of interferon genes [10, 19].
Lastly, our study makes a case for the combination therapy of

AML cells with inhibitors of TET3 downstream targets, glucose
metabolism, and STAT5A signaling. Activation of STAT5 signaling is
required to maintain AML growth and LSC function, at least in-part,
relies on the STAT5 pathway [33, 34]. Quiescent LSCs preferentially
depend on OXPHOS [35]. However, it is likely that non-quiescent,
cycling AML LSCs, as in the case of MLL leukemia [36], depend on
glucose metabolism and TET3 expression. Our data demonstrate
that MLL-AF9 c-kit+ LSC population harboring cells are dependent
on TET3 expression. The close association of glucose metabolism
and STAT5A signaling with AML growth and the minimal impact of
their inhibitors on healthy HSPCs in our data provides a good
rationale for targeting the pathways in AML patients [2, 18]. The
collective inhibition of glycolysis and STAT5A signaling pathways
attenuates growth of AML bulk and AML LSC harboring cells in vitro
and induces their near complete cell death at IC50 concentrations
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within 48 h and reduces IC50 of both inhibitors by 2.5-fold. In sum,
our study extends the knowledge about TET proteins in AML
beyond TET1 and TET2 and links TET3 to the epigenetic regulation of
metabolic and growth associated pathways in AML.
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