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Single cell RNA sequencing of AML initiating cells reveals
RNA-based evolution during disease progression
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The prognosis of most patients with AML is poor due to frequent disease relapse. The cause of relapse is thought to be from the
persistence of leukemia initiating cells (LIC's) following treatment. Here we assessed RNA based changes in LICs from matched

patient diagnosis and relapse samples using single-cell RNA sequencing. Previous studies on AML progression have focused on

genetic changes at the DNA mutation level mostly in bulk AML cells and demonstrated the existence of DNA clonal evolution. Here
we identified in LICs that the phenomenon of RNA clonal evolution occurs during AML progression. Despite the presence of vast
transcriptional heterogeneity at the single cell level, pathway analysis identified common signaling networks involving metabolism,
apoptosis and chemokine signaling that evolved during AML progression and become a signature of relapse samples. A subset of
this gene signature was validated at the protein level in LICs by flow cytometry from an independent AML cohort and functional
studies were performed to demonstrate co-targeting BCL2 and CXCR4 signaling may help overcome therapeutic challenges with
AML heterogeneity. It is hoped this work will facilitate a greater understanding of AML relapse leading to improved prognostic

biomarkers and therapeutic strategies to target LIC's.

Leukemia (2021) 35:2799-2812; https://doi.org/10.1038/541375-021-01338-7

INTRODUCTION
Acute myeloid leukemia (AML) is the most common type of acute
leukemia affecting adults and responsible for the largest number
of leukemia-related deaths, yet there has been no change in the
standard therapy for most patients in over 40 years. Traditional
chemotherapeutics have poor efficacy in patients over the age of
65, with a median survival of less than one year and only 20%
surviving at least two years [1]. Though patients often enter
remission after initial treatment, the majority succumb to their
disease after relapse. It is hypothesized that AML relapse results
from the persistence of AML initiating cells (LICs) that escape
chemotherapy [2, 3]. LICs play a central role in disease progression
and relapse due to their capacity for self-renewal and their ability
to evade chemotherapy induced cell death due to their relative
quiescence [4-13].

Despite the critical importance of LICs in AML, little is currently
known about the heterogeneity of LICs and how they evolve
during AML disease progression. Recently, the heterogeneity of

molecular alterations at the single cell level in cancer has been
demonstrated to be integral to the evasion from therapeutic
interventions and the establishment of therapy-resistant popula-
tions. In one single cell study of metastatic breast cancer, the
establishment of metastatic disease could be traced to a single
founder drug-resistant cell [14]. Previous single cell sequencing
studies of AML samples during disease progression have
primarily focused on DNA mutations and none have focused
on defining the biological processes that confer chemo-
resistance to this crucial LIC population. These studies are
important, as they have revealed that AML undergoes clonal
evolution at the DNA level. DNA mutations are relatively rare
in AML (average of ~13 per patient) as compared to other
malignancies, therefore it is likely that transcriptomic and
epigenetic based changes play crucial roles in the development
and progression of the disease [15-17]. However, little is known
about RNA expression changes during disease progression or
changes specific to LICs [14, 18-24].
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To better understand AML relapse to develop improved
therapeutics and prognostic biomarkers, we performed single cell
RNA sequencing of LICs from matched patient treatment naive
diagnosis and post-treatment relapse bone marrow samples.
Through this single cell approach, we sought to understand the
heterogeneity of LICs and to examine for the presence of RNA
based evolution during disease progression.

RESULTS

Profiles of single leukemic initiating cells from patient bone
marrow samples

We performed single cell RNA-seq on 813 LICs isolated from five
AML patients’ matched diagnosis and relapse bone marrow
samples (Supplementary Fig. 1A). Patients’ diagnosis samples were
treatment naive (Table 1). The patients’ average time to relapse
was 242 days, with a range of 143-302 days (Table 1). All patients
had favorable (inv (16), n=2) or intermediate (normal, n=2;
t (1;8) n = 1) cytogenetic risk classification [25].

Viable LICs were isolated by flow cytometry for single cell
RNA-seq using a stringent panel of cell surface markers that
define LICs (CD34+, CD38—, CD90—, CD45RA+, Lin—, and
7-AAD—) (Supplementary Fig. 1B) [26-28]. This panel was
designed using previously established phenotypic markers and
enabled the discrimination of LICs from normal hematopoietic
stem cells, particularly within the CD34 4+ CD38— compartment.
cDNA was prepared from the individual cells, followed by library
preparation using a modified Smartseq2 protocol [29]. Data from
721 cells passed quality control and had a median of 717,531
reads per cell (range 155,405-2829,737) and a median
library complexity of 2307 genes per cell (range 38-9360)
(Supplementary Table 1 and Supplementary Fig. 2).

To establish we isolated LICs and not normal hematopoietic stem
cells (HSC), we assessed the cells for the expression of known LIC and
HSC signature genes [6, 30]. The sorted LICs had high expression of
LIC and low expression of HSC signature genes (Supplementary
Fig. 3A) (ex. CD47, CD99). Though LICs represent a highly specialized
and rare cell type, single cell gene expression profiling revealed
extensive cellular heterogeneity even within individual samples. We
observed a clear clustering separation of the single LICs from the
pooled AML LICs (Supplementary Fig. 3B). We assessed the gene
expression correlation between single cells from each patient sample
and found a wide range of cell-to-cell similarity (Pearson’s r; median:
0.36, range: 0.08-0.79) (Supplementary Fig. 3C). The relative stability of

gene expression on the single-cell level was quantified using a
Gamma Gaussian mixture-modeling computational framework [31].
This method can quantify heterogeneity by generating a stably
expressed gene index (segindex) as a value from 0 to 1. House-
keeping genes were stably expressed across patients (seglndex > 0.80;
B2M, H3F3A, GAPDH, EEF1A, TPT1, FIL, EEF1G, PTMA, TMSB4X, CFL1,
TMSB10, NACA, UBA52, EIF1; Supplementary File 1). Genes exhibiting
higher levels of heterogeneity across single cells (segindex < 0.25)
were particularly enriched for genes that drive cell cycle progression
(FDR g < 0.0001; ANAPC1, CDC14A, DCTN1, E2F4, LIG3, and SMCTA) and
the innate immune system response (FDR g < 0.0001; CD84, COMM®9,
IRAK4, NFATCT, NLRC5, and PRKCQ).

Single cell sequencing reveals RNA-based evolution during
AML disease progression
Following dimensionality reduction, a parallel consensus clustering
approach was implemented in order to identify RNA cluster groups
that are comprised of cells with similar transcriptional states.
Importantly, every patient in the study demonstrated the presence
of RNA cluster groups and RNA-based evolution during disease
progression, though patterns of evolution varied (Figs. 1-2). Disease
progression was largely characterized by the post-treatment loss of
the cluster group that was dominant at diagnosis, along with the
expansion or emergence of a relapse dominant cluster (Fig. 1 and
Supplementary File 2). For example, in Patient 1 the diagnosis
dominant RNA expression cluster encompassed 65% of LICs at
diagnosis, but was not observed at relapse. Meanwhile, the relapse
dominant cluster was observed in only 2% of diagnosis LICs, but
expanded post-treatment to encompass 72% of relapse LICs (Fig. 1A).

A median of 269 genes per patient were significantly (g < 0.05)
differentially expressed among RNA clusters (range 60-1047) out of
a median of 8675 genes detected per patient (Supplementary File 2).
Genes that significantly and accurately predicted a cell's member-
ship in a cluster group were identified for each patient cluster
(Wilcoxon signed rank test p < 0.05, area under receiver operating
characteristic curve (AUROC) > 0.75). A median of 125 genes (range
31-207) defined patients’ LIC membership in a particular RNA cluster
(Supplementary File 2). Twenty two marker genes defining patients’
LIC membership in a particular cluster group overlapped in at least
three out of five patients (Supplementary File 2). Cluster groups
dominant at relapse exhibited low expression of KLF6, ENOT, TPI1,
and TALDOT1 and high expression of CD44, HLAs, and PTMA.

To reveal biological insights into the observed RNA clonal
evolution, pathway analysis was performed to identify pathways

Table 1. Clinical characteristics of patient cohort.

Patient 1
Age at diagnosis 7.5 mths
Sex Female
Event-free survival (days) 277
Overall survival (days) 1464
Drug treatment NA
Complete Remission end course 1 CR
Complete Remission end course 2 CR
Stem cell transplant No
Mutations identified clinically FLT3, KIT
FAB subtype M4
Cytogenetics inv (16)
White blood cell count at diagnosis (per mm3) 45.8
Leukemic blasts at diagnosis (percent) 62
LIC at diagnosis (percent) 0.08
LIC at relapse (percent) 04
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Patient 2 Patient 3 Patient 4 Patient 5
51 yrs 18.6 mths 61 yrs 73 yrs
Female Male Female Male

259 228 143 302

1299 370 1460 431
Cyta/lda NA Cyta/lda Aza/Midostantin
CR CR No No

CR CR CR No

No No No No

None None None CEBPA
M4 M5 M4 M2

inv (16) Normal t(1;8) Normal
196 75.1 16 37

88 82 80 15

0.07 0.8 0.006 0.1

0.16 0.8 0.1 0.2
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Fig. 1 RNA clonal evolution. A-E Patient 1-5, respectively. Left panel, visualizing disease progression with fish plots illustrates the distribution
of single AML initiating cells (LICs) in RNA cluster groups during disease progression, where each cluster group 1-4 is illustrated, respectively,
by the colors red, blue, yellow, and green. Relative cluster group prevalence within the LIC population is depicted on the Y axis in the plots.
Center panel, multi-dimensional scaling plot shows the distribution of single diagnosis LICs, plotted as circle, and relapse LICs, plotted as
triangles. LICs are plotted with distance between cells based on LogFC between top 500 most variant genes. The cells are colored according to
k-means cluster group 1-4, respectively, by the colors red, blue, yellow, and green.
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Fig.2 RNA cluster group biomarkers. A-E for patients 1-5, respectively, genes that significantly and accurately predicted a cell's membership
in a cluster group were identified for each patient cluster (Wilcoxon signed rank test p < 0.05, area under receiver operating characteristic
curve (AUROC) > 0.75). The expression of the top ten predictive genes for each RNA cluster group are shown in the heatmap. Individual AML
initiating cells are represented by columns and their log (count) expression is shown for cluster marker genes which are indicated in rows.
A cell's RNA cluster group membership and state (diagnosis or relapse) is indicated by color-coded labeling in horizontal bars above the

heatmap.

enriched in the dominant RNA cluster group at diagnosis as
compared to the RNA cluster groups present at relapse. In the
majority of patients, we found that the dominant RNA expression
cluster at relapse was significantly enriched for several potentially
therapeutically targetable pathways including IL6/JAK/SAT3 and
TNFa (Supplementary File 3).

AML initiating cells exhibit common changes in gene
expression during disease progression

We next performed differential expression analysis between
each patient’s diagnosis and relapse LICs to assess

SPRINGER NATURE

commonalities in disease progression across patients. We
identified a total of 105 genes significantly (g <0.05) down-
regulated in relapse LICs and 123 genes significantly (g < 0.05)
upregulated in relapse LICs in at least four out of five patients
(Supplementary File 4).

All patients exhibited broad and significant downregulation
of histone expression during disease progression, particularly
in Histone H1 family genes (Supplementary Fig. 4A). Histone
H1 depleted cells are hyper-resistant to DNA damage and
cell death, therefore, this downregulation may be an evolutionary
mechanism to evade treatment [32-35]. The silencing of Histone

Leukemia (2021) 35:2799-2812



H1 has been shown to promote cellular self-renewal by inducing
downstream effectors of oncogenic pathways [36].

While Histone H1 downregulation was observed in LIC’s, similar
downregulation was not observable in total AML cells as assessed
in two independent RNA sequencing studies of matched patient
diagnosis and relapse total AML samples that includes both LIC
and non-LIC populations (TARGET (n =31 patients) and Mason
(n =16 patients)) [17, 21]. In contrast to the downregulation of
Histone H1, GADD45A and other DNA damage response genes,
whose transcript levels are known to increase following treatment
with many therapeutics including DNA-damaging agents, were
upregulated in relapse LIC's (Supplementary Fig. 5) [37].

A number of IncRNAs were also significantly upregulated during
disease progression (AGPAT4-ITI, LINC01372, and LOC1005076)
while the IncRNA MALATT was significantly downregulated in
the relapse LICs in four out of five patients (Supplementary
Fig. 4B). Finally, we also observed the upregulation of two
phosphodiesterases (PDE4B and PDE1B) in relapse LICs (Supple-
mentary Fig. 4C). PDE4B is a phosphodiesterase that has been
shown to be an important marker in the progression from
myelodysplastic syndrome to AML and a drug target for B cell
tumors and colon cancer, but its role in AML relapse has not been
previously reported [38-40].

Next, we compared all of the single cell LIC differential
expression results to expression changes in the TARGET and
Mason datasets of matched patient diagnosis and relapse bulk
total AML samples. We identified only 40 out of 661 genes that
were significantly differentially expressed in the Mason or TARGET
total AML datasets and in the single cell LIC dataset. There was no
significant change at the bulk AML cell level in the expression of
the Histone H1 family, MALAT1, or PDE4B (Supplementary Fig. 4).
We performed a transcriptome-wide correlation analysis of the
fold-change between diagnosis and relapse states between our
single cell LIC analysis and the bulk total AML samples in the
Mason and TARGET databases (Supplementary File 5). There was
an overall negative correlation of changes in gene expression
during disease progression in the single LIC samples as compared
to the Mason bulk total samples (Pearson’s r range —0.18 to 0.002)
and TARGET bulk total samples (Pearson’s r range —0.13 to 0.02).
This indicates that traditional analysis of bulk total AML cells can
be a poor representative for LIC biology and demonstrates the
importance of focused expression studies of this important
cell type.

AML initiating cells downregulate glycolysis and upregulate
fatty acid oxidation and amino acid metabolism during
disease progression

An extension of the gene expression analysis to the pathway level
revealed that disease progression in our patient set was
characterized by significant changes in cell metabolism, apoptotic
signaling and chemokine signaling across patients (Fig. 3A).
Metabolic reprogramming, a known hallmark of cancer cells,
presumably enables the LICs to maintain a more quiescent state
and avoid chemotherapy induced cell death [41]. We confirmed
the majority of LICs were quiescent (GO) utilizing a previously
reported prediction method to classify cells into cell cycle phases
based on the gene expression data [42].

Global downregulation during disease progression in glycolysis
(ex. ALDOA, ENO1, and GAPDH) and fatty acid synthesis was
observed (Figs. 3B, C). In contrast, there was an upregulation in
mitochondrial metabolism as well as in fatty acid oxidation and
amino acid metabolism. Both fatty acid oxidation and amino acid
metabolism have been reported to supply intermediates to the
Krebs cycle in AML cells [43]. In the case of mitochondrial
metabolism there was a particular increase, log-fold change >1.5,
in the expression of electron transport chain genes (ex. COX and
NDUF family genes) as well as the pyruvate dehydrogenase
complex that catalyzes the conversion of pyruvate to acetyl-CoA

Leukemia (2021) 35:2799 - 2812
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for use in the Krebs cycle (Fig. 3D). Fatty acid oxidation and amino
acid metabolism have both been reported to supply important
intermediates to the Krebs cycle. Not only were genes involved in
fatty acid oxidation itself upregulated across patients (ex. CPT1C,
CPT2), but transporters of fatty acids such as CD36 were increased
(Fig. 3Q). In the case of amino acid metabolism, we identified an
upregulation of a large number of SLC transporter genes, which
transport exogenous amino acids into the cell (Fig. 3E). In addition,
metabolism of branched-chain amino acids was observed to be
upregulated in LICs during disease progression (Fig. 3E). While
these metabolic pathways were observed to evolve as described
during disease progression, there was significant heterogeneity
observed in the expression of these metabolic genes (median
seglndex 0.652; range 0.291-0.865) (Supplementary File 1). In
summary, we observed decreased expression of glycolysis and
fatty acid synthesis genes coupled with an upregulation in
mitochondrial metabolism, fatty acid oxidation, and amino acid
transport and metabolism.

Single cell sequencing reveals evolution of a common
apoptotic signaling network in AML initiating cells during
disease progression

Detailed examination of the apoptotic pathway revealed a
network of significantly correlated co-expressed genes that
evolved during disease progression at the single cell level. We
found that anti-apoptotic interleukins (/IL2/6) were upregulated in
the relapse LICs (Fig. 4A). IL.-2 and IL-6 have been shown in
multiple cancer types to promote the upregulation of anti-
apoptotic genes in response to DNA damage [44-47]. Transcrip-
tion factor (TF) analysis revealed that anti-apoptotic transcription
factors EP300 and JUND were upregulated during disease
progression in the LICs, while the expression of pro-apoptotic
transcription factors (BCLAF1, HMGB2, and TP53) were down-
regulated (Fig. 4A). Using the ENCODE database we identified the
target genes of these TFs and found that a subset of the
downstream target anti-apoptotic genes, such as BCL2A1, c-FLIP,
MCL1, and SOCS3, were upregulated in relapse LICs across patients
(Fig. 4B). Conversely, pro-apoptotic target genes were down-
regulated (ex. BAX, CASP1/2/6, and FAS) (Fig. 4B). The anti-
apoptotic machinery is also controlled via interferon signaling,
which we show to be upregulated during disease progression in
the subsection below.

A correlation analysis demonstrated that the apoptotic
regulating TFs (EP300, JUND, BCLAF1, HMGB2, and TP53) were
positively and significantly correlated with the expression of
their target genes at the single cell level across patients
(Fig. 4C-G). The correlation analysis also demonstrated that
anti-apoptotic genes (BCLA2A1, CFLAR, and MCLT) were sig-
nificantly co-expressed at the single cell level across patients
(Supplementary Fig. 6). We examined the heterogeneity of
expression of the apoptotic regulating TFs and their target
genes in single cell LICs across study patients. We found that
apoptotic genes exhibited a heterogenous expression pattern at
the single cell level (median seglndex 0.557; range 0.210-0.791)
(Supplementary File 1).

Examination of apoptotic dysregulation also revealed poten-
tial novel AML biomarkers in the calcium-regulated membrane
binding proteins of the annexin family, which have been
shown to regulate p53 signaling [48, 49]. ANXA1/2 were
downregulated during disease progression in the LICs in most
study patients, identified as significant leading-edge genes in
apoptotic pathway downregulation, and their expression
was positively correlated with TP53 downregulation at the
single cell level (Figs. 4B, F). There are reports that decreased
ANXA1/2 can lead to drug resistance outside of the context of
AML [50, 51]. Further, downregulation of ANXAT in an
erythroleukemia cell line must reported to lead to resistance
to AML therapeutics [52].

SPRINGER NATURE
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(green color) and (+) LogFC indicates upregulation in relapse (red color).

Interferon, CXCR4, and Wnt signaling are upregulated during
AML disease progression

Interferon regulatory factors (IRF) IRF4/8, which control the
expression of downstream chemokines such as CXCR4, were
upregulated in relapse LICs across study patients. In contrast, IRF5
which inhibits CXCR4 was downregulated (Fig. 5A) [53-55]. STATSs,
downstream of interferon signaling, have also been shown to

SPRINGER NATURE

regulate the expression of CXCR4. We found that expression levels
of STAT3/5 were not significantly altered during disease progres-
sion. However, the activity of these important regulators is
governed by phosphorylation, so we assessed STAT3/5 activity
using a transcription factor analysis. Significant upregulation in
the activity of STAT3 and STAT5A/5B (GSEA g <0.05) during
relapse was observed (Fig. 5B). Downstream target genes of IRFs

Leukemia (2021) 35:2799-2812
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Fig. 4 Apoptotic dysregulation. A LogFC of apoptotic transcription factors and apoptotic regulating interleukins are shown for patients 1-5
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and STAT3/5 involve anti-apoptotic machinery, metabolism, and
migratory signaling, including but not limited to CXCR4 and Wnt/
[-catenin signaling.

In support of the connection between interferon and CXCR4
signaling, expression of CXCR4 was significantly positively
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correlated with the expression of IRF4/8 and negatively correlated
with the expression of IRF5 (Fig. 5C). The upregulation of IRF8 in
relapse LICs is consistent with previous human AML studies that
demonstrated increased IRF8 expression is associated with
decreased relapse free survival [56]. Furthermore, we found that
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not only were CXCR4 and its ligand, CXCL12, upregulated in
relapse LIC's, a number of genes in the CXCR4 signaling axis (ex.
BCAR1, MTOR, MAP2K1, PKCs, and PTPN11) were also upregulated
in relapse LICs across all patients (Fig. 5D). As described for the
other pathways above, there was also significant heterogeneity at
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the single cell level in LSCs in the these IRF4/8 pathways (median
seglndex 0.428; range 0.242-0.633) (Supplementary File 1).
CXCR4 signaling has been shown to affect numerous down-
stream signaling pathways including Wnt/B-catenin, which
promotes self-renewal of LICs [10, 57-64]. We found that many

SPRINGER NATURE



L.C. Stetson et al.

2808

EE @
2]
Qo -
z
2| D
[
19
» T T T
ECR 0 2
TSNE1
15K 1
10K
E™ 1 1ls
< o fif
0

TSNE2

TSNE1
GADD45A -500mm m 10000

TSNE1
IRF8 -862.9 M W 1864.6

TSNE2

TSNE1
BCL2 -928.7 mm m 17904

TSNE1
CXCR4 -866.8 M W 43908

TSNE2

1.0k

IRF8

5001

GADD45A

-5001

TSNE2
TSNE2

39-19 0 20 40
TSNE1
GADD45A 222.2, mmm w8000.3

39-19 0 20 40
TSNE1
IRF8 -622.3, mm m 1537

3.0K1

2.0K

1.0K

CXCR4
N
R
BCL2

TSNE2
TSNE2

-19

-39
-39-19 0 20 40
TSNE1
CXCR4 -1283.4, mmm m5019.8

-39-19 0 20 40
TSNE1
BCL2 -1296.3, W W3434.2

Fig. 6 Flow cytometry validation study. A, B Median fluorescence intensity (MFI) for each of the indicated markers in total AML cells (CD34+)
(A) or LICs samples (Lin—, CD34+, CD38—, CD45RA+) (B) for the 32 patients analyzed. The diagnosis cells are represented by black dots and
relapse cells as red dots. White arrows on the plots point the direction of the increase or decrease. The median fluorescent intensity values are
also shown for each sample (C-D) TSNE plots based on clustering analysis performed for both total AML (C) and LIC AML (D) populations. E-F
Plots of the cluster frequencies from total AML (E) or LIC (F) cluster heatmaps showing the expression of the markers of interested on the
highlighted clusters. On the top of each TSNE-heatmap cluster, the histogram compares the MFI of the specific clusters (color-coded) with the
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Wnt/B-catenin pathway genes (ex. WNT1, WNT2B, WNT5A, DVL1/3,
and LEFT) promoting cell proliferation in the bone marrow niche
were also upregulated (Fig. 5E).

Flow cytometric analysis of AML initiating cells validates

changes in selected markers during disease progression

Major genes associated with AML progression identified by single
cell RNAseq were validated at the protein level by flow cytometry
in an independent AML cohort of 32 patients (Clinical character-
istics shown in Supplementary Table 2). The downstream analysis
was performed in both the bulk AML cell population (CD34+) and
LICs (Lin-CD34 4 CD38-CD45RA+). A comprehensive unbiased
analysis using TSNE (t-distributed stochastic neighbor embedding)
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was performed in both cell subsets comparing diagnosis and
relapse subjects. Initially, the per cell level expression of chosen
markers was plotted independently (MFI: Median of Intensity
fluorescence) in total AML cells or LICs comparing both groups of
patients. In addition, clustering analysis led to the identification of
specific modulated clusters on those subjects. Flow panels were
run and validated to assess the protein expression of GADD45,
CXCR4, IRF8, BCL2 and f-catenin. Consistent with gene expression
analysis of LICs, the levels of BCL2, IRF8 and (-catenin were
significantly increased in relapse samples as compared to
diagnosis samples in total AML cells (Fig. 6A). In contrast,
GADDA45A and CXCR4 that were highly expressed in relapse LIC
samples, were instead found to be significantly increased in
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diagnosis samples in total AML cells. Importantly, when analyzing
the LIC component of the AML samples, the expected phenotype
found in single cell RNAseq analysis was supported by the protein
analysis. GADD45A, CXCR4, IRF8, BCL2, and [-catenin (Fig. 6B)
were all significantly upregulated in relapse samples, contributing
to the long-term survival and stemness profile of these cells at
relapse.

Next, we evaluated if there were any specific cell clusters
among total AML or LIC cells that were significantly enriched
between the groups. In total AML cells, we found that cell cluster
20 was significantly enriched in diagnosis samples when
compared to relapse samples (p<0.05 - Fig. 6D). This cell
population presented significantly lower expression of GADD45A,
IRF8, CXCR4 and BCL2, as shown in the cluster heatmaps and the
histograms on the top of each plot (Fig. 6D). Interestingly, four
clusters were significantly increased in diagnosis LIC cells (cluster
4, 10, 13, and 22 - Fig. 6E) when compared to relapse samples.
These clusters presented significantly lower expression of all the
aforementioned markers as shown on the heatmaps and
histograms (Fig. 6F). In summary, key-proteins of the significantly
enriched pathways at single cell RNAseq analysis are indeed
modulated in LIC populations when comparing diagnosis and
relapse. The importance of certain molecules such as GADD45A
and CXCR4 are lost when considering total AML cells. In summary,
the flow cytometry validation study supports the single cell
RNAseq analysis.

Co-targeting BCL2 and CXCR4 signaling demonstrates
enhanced AML efficacy in vitro and in vivo

As AML is highly heterogeneous at the single cell level, it is
challenging to develop targeted therapies that are effective as
single agents as well as to identify optimal combinations. Our
RNAseq results and flow validation study reveal that
CXCR4 signaling and BCL2 are both upregulated in LSCs during
AML progression. Both of these molecules have been targeted in
patients with AML with varying degrees of success, though never
in combination. For example, Plerixafor has been used clinically to
target CXCR4 and studies suggest it can both lead to direct
apoptosis of target cells as well as mobilize AML cells to sensitize
them to other agents. In addition, Venetoclax targets BCL2 leading
to apoptosis and has shown promise in AML therapy [65, 66]. To
explore the potential of this combination, we initially assessed the
co-expression of BCL2 with activated CXCR4 signaling. Interest-
ingly despite the fact that CXCR4 signaling and BCL2 can be
upregulated during AML progression, there is a very poor
correlation between expression of BCL2 and activation of the
CXCR4 signaling pathway at the single cell level. For example, a
nonparametric Kendall tau correlation comparing BCL2 and the
CXCR4 signaling pathway per patient shown in Fig. 5D showed a
poor correlation (mean —0.019; range —0.077 to 0.120; p=
0.656). Similarly, there was a poor correlation of BCL2 and CXCR4
(mean 0.025; range —0.095 to 0.128; p = 0.588). As these results
suggest that co-targeting these pathways may lead to enhanced
efficacy we assessed the effects of Plerixafor, Venetoclax or the
combination on primary AML cells derived from relapsed AML
patients. While Venetoclax had significant effects on the viability
of most samples as a single agent, Plerixafor had little effect
alone. Interestingly, there was a further decrease in cell viability
with the combination regimen as opposed to single agent
treatment in five out of six samples tested (Fig. 7A, B). To further
explore the therapeutic potential of this combination, we
assessed the impact of the agents using a previously character-
ized immunodeficient mouse model of circulating human AML
that employs a PDX AML patient sample from an elderly patient
with relapsed AML that exhibits EZH2 and TET2 mutations [67].
This model is known to lead to the replacement of the majority
of normal hematopoietic cells in the bone marrow with AML
cells in approximately six weeks. The mice were treated with
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either vehicle, Venetoclax (50 mg/kg), Plerixafor (5 mg/kg) or a
combination and then assessed for survival. Plerixafor alone did
not demonstrate any survival advantage in this model and
Venetoclax alone led to only a modest benefit. However, the
combination of Venetoclax and Plerixafor led to a marked
increase in survival in this aggressive AML model system (log
rank < 0.0001) (Fig. 7C).

DISCUSSION

Here, we report that RNA cluster groups evolve during AML
disease progression and demonstrated that an individual LIC's
membership in a specific RNA cluster group can be predicted with
sensitivity and specificity based on cluster-specific gene expres-
sion markers. This is the first description of the phenomenon of
RNA clonal evolution during cancer progression. Further, our
studies reveal the vast transcriptional heterogeneity of LICs at the
single cell level that may facilitate the evolution of these cells
upon treatment with chemotherapeutics. These findings suggest
that AML therapy selects for specific patterns of gene expression
among AML initiating cells and that these gene expression
changes facilitate treatment escape and resistance as LICs evolve
at the RNA level. Of note, RNA expression pattern is dynamic and
the analysis in this study is focused on a fixed transcriptional state
of the cells. It will be of interest to assess the transition of cells
between clusters in future studies. Due to the selective pressures
from AML therapy, it is likely that the transition of transcriptional
states present in cells from the relapse dominant clusters will not
frequently revert back to those found in the diagnosis dominant
clusters.

Through the study of serial AML patient samples, we identified
that several pathways were commonly modulated during disease
progression including signaling networks involving metabolism,
apoptosis and chemokine signaling. Though many of these
pathways can be targeted using existing therapeutics, LICs were
found to be highly heterogeneous. Therefore, this work suggests
curative treatment will require the simultaneous targeting of
multiple pathways to fully eradicate LICs.

AML cells have previously been shown to have immense
metabolic plasticity that enables them to utilize diverse fuels such
as fatty acids and amino acids to support mitochondrial
metabolism [43]. Oxidative phosphorylation, in particular, has
been reported to be important for AML cells to become drug
resistant [68]. Here we show for the first time, using cells from
matched patient treatment-naive and post-treatment bone
marrow samples, how LICs evolve their metabolic programming
over time in response to treatment. Across all patients, LICs
became less dependent on glycolysis while upregulating mito-
chondrial metabolism. During disease progression, the LICs
increased both fatty acid oxidation and amino acid metabolism,
both of which are known to supply the Krebs cycle with
intermediates [43]. In particular, branched-chain amino acid
metabolism was found to be increased which supports previous
studies demonstrating its importance in myeloid malignancy [69].
The upregulated expression of key transporters of fatty and amino
acids such as CD36 and a large number of SLCs were also found to
evolve during AML progression [70, 71]. Of note, LICs targeting
fatty acid oxidation may be a desirable strategy as previous
studies have demonstrated LICs may exploit fatty acid oxidation to
evade chemotherapy [72].

Amino acid metabolism and transport has been previously
shown to be upregulated in LICs as compared to the total
leukemic cell population and amino acids in general have been
found to be important alternative fuel sources for many types of
cancer [73, 74]. For example, cysteine depletion has been reported
to induce death in LICs. Our data, showing upregulation of the
SLC7AT1 transporter, which transports exogenous cysteine into
the cell, suggests this approach as well as targeting other amino
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Fig. 7 Co-targeting BCL2 and CXCR4 leads to enhanced efficacy against AML cells in vitro and in vivo. A Characteristics of relapsed AML
patient samples utilized in (B). B Relative viability of primary AML cells treated with 10 uM Plerixafor (P), 50 nM Venetoclax (V) or a combination
after 72 hr as measured by the MTT assay. (C) Survival curve of NSG mice (n=5 per group) injected with AML PDX cells and Plerixafor,
Venetoclax or a combination. Plerixafor (2.5 mg/kg s.c). and Venetoclax (50 mg/kg oral gavage) were administered five days a week for three
weeks starting five days after AML cell injection. *p < 0.05, **p <0.001, NS not significant.

acid pathways may be promising strategies to target LICs in
relapsed AML patients [75].

Of further clinical relevance, the heterogeneous expression of
CXCR4 signaling in single LICs, which has not been previously
described, has direct implications for therapeutic targeting of this
pathway. Indeed, none of the agents inhibiting CXCR4 in AML
have reached Phase Il trials [76]. The heterogenous nature of
CXCR4 expression suggests, CXCR4 inhibitors should be combined
with other inhibitors of the leukemia-stroma interaction or other
non-overlapping targets expressed in LICs [76, 77]. We also found
that anti-apoptotic genes such as BCL2, c-FLIP, SOCS3, and MCL1
were upregulated and co-expressed in LICs. Recently, targeted
treatments that inhibit the expression of many of these pro-
apoptotic genes have been used to treat hematological cancers,
but overall response rates have been highly variable in trials [78-
83]. As BCL2 and CXCR4 signaling have clinically available targeted
agents, were found to be upregulated during AML progression
and demonstrate high levels of heterogeneity at the single cell
level, we explored the combination of co-targeting these path-
ways. Combined targeting using Venetoclax and Plerixafor
demonstrated potential that may be worthy of future clinical
testing. Our work sheds light on the failure of single agent
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treatments targeting these genes in isolation and highlights the
need for combination therapies to completely eradicate LICs.

Our work is distinctive in several crucial ways. First, to our
knowledge, this study is the first to perform single cell RNA
sequencing on matched treatment-naive diagnosis and post-
treatment relapse AML patient samples—enabling comprehensive
assessment of clonal evolutionary changes at the transcriptome
level. Second, our analysis is focused on stem-like AML-initiating
cells, which compose only a small fraction of all AML cells, but
drive AML relapse [2, 3, 10, 13, 84]. Finally, we have prioritized
deep sequencing in an effort to thoroughly examine the LIC
transcriptome to generate statistically significant differential
expression and pathway analysis at the single cell level.

Recently, studies by Chen et al. [23] and van Galen et al. [21]
have reported single cell sequencing results on AML samples.
Chen et al. utilized matched patient samples, but their single cell
DNA sequencing study investigated the transition from myelo-
dysplastic syndrome to secondary AML [23]. Van Galen et al.
analyzed a large number of cells (13,489 AML cells) at a low read
depth (<5000 UMI counts per cell) that enabled the detection of
<1000 genes expressed per cell which would preclude a detailed
assessment of RNA-based evolution [24].
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This study revealed new insights into the evolution of LICs
during disease progression through single cell RNAseq of matched
patient treatment-naive diagnosis and post-treatment relapse
samples. Despite variability in patient age, mutation status, and in
some cases treatment regimens, this work still revealed common-
alities in the biology of AML relapse. This is particularly important
as there are needs for more effective therapeutic interventions
among patients without known driver mutations.

METHODS
Please see Supplementary Materials.
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