REVIEW ARTICLE Antenatal Magnesium Sulfate and adverse gastrointestinal outcomes in Preterm infants—a systematic review and meta-analysis

Arun Prasath¹, Nell Aronoff², Praveen Chandrasekharan ^{b¹} and Shivashankar Diggikar ^{3[∞]}

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2023

INTRODUCTION: To evaluate the effect of antenatal magnesium sulfate (MgSO₄) on mortality and morbidity outcomes related to the gastrointestinal system (GI) in preterm infants.

METHODS: Data sources: A systematic literature search was conducted in November 2022. PubMed, CINAHL Plus with Full Text (EBSCOhost), Embase (Elsevier), and CENTRAL (Ovid) were searched. There were 6695 references. After deduplication, 4332 remained. Ninety-nine full-text articles were assessed and forty four articles were included in the final analysis.

STUDY ELIGIBILITY CRITERIA: Randomized or quasi-randomized clinical trials and observational studies that evaluated at least one of the pre-specified outcomes were included. Preterm infants whose mothers were given antenatal MgSO₄ were included and whose mothers did not receive antenatal MgSO₄ were the comparators. The main outcomes and measures were: Necrotizing enterocolitis (NEC) (stage \geq 2), surgical NEC, spontaneous intestinal perforation (SIP), feeding intolerance, time to reach full feeds, and Gl-associated mortality.

STUDY APPRAISAL AND SYNTHESIS METHODS: A random-effects model meta-analysis was performed to yield pooled OR and its 95% CI for each outcome due to expected heterogeneity in the studies. The analysis for each predefined outcome was performed separately for adjusted and unadjusted comparisons. All included studies were assessed for methodological quality. The risk of bias was assessed using elements of the Cochrane Collaboration's tool 2.0 and the Newcastle–Ottawa Scale for randomized controlled trials (RCTs) and non-randomized studies (NRS), respectively. The study findings were reported as per PRISMA guidelines.

RESULTS: A total of thirty-eight NRS and six RCTs involving 51,466 preterm infants were included in the final analysis. There were no increased odds of stage ≥ 2 NEC, (NRS : n = 45,524, OR: 0.95; 95% CI: 0.84–1.08, I²– 5% & RCT's: n = 5205 OR: 1.00; 95% CI: 0.89–1.12, I²– 0%), SIP (n = 34,186, OR: 1.22, 95% CI: 0.94–1.58, I²–30%), feeding intolerance (n = 414, OR: 1.06, 95% CI: 0.64–1.76, I²–12%) in infants exposed to antenatal MgSO₄. On the contrary, the incidence of surgical NEC was significantly lower in MgSO₄ exposure infants (n = 29,506 OR:0.74; 95% CI: 0.62–0.90, ARR: 0.47%). Studies assessing the effect on GI-related mortality were limited to make any conceivable conclusion. The certainty of evidence (CoE) for all outcomes was adjudged as 'very low' as per GRADE.

CONCLUSION: Antenatal magnesium sulfate did not increase the incidence of gastrointestinal-related morbidities or mortality in preterm infants. With the current evidence concerns, regarding the adverse effects of MgSO₄ administration leading to NEC/SIP or Gl-related mortality in preterm infants should not be a hurdle in its routine use in antenatal mothers.

Journal of Perinatology (2023) 43:1087-1100; https://doi.org/10.1038/s41372-023-01710-8

INTRODUCTION

Magnesium sulfate (MgSO₄) is widely used in obstetric patients for indications such as treatment for preeclampsia, tocolysis, and neuroprotection when preterm delivery is imminent [1, 2]. Recent evidence suggests that antenatal magnesium sulfate is effective in the reduction of moderate to severe cerebral palsy by up to 40% [3, 4]. The American College of Obstetricians and Gynecologists (ACOG) in 2010 and the World Health Organization (WHO) in 2015 endorsed the use of MgSO₄ administration to antenatal women to reduce the risk of cerebral palsy (CP) when delivery is anticipated before 32 weeks [5, 6]. A recent meta-analysis found a number needed to treat of 42 to prevent CP [7]. When used as a tocolytic in preterm deliveries, MgSO4 was shown to prolong the delivery despite its safety concerns as compared to other tocolytic agents such as calcium channel blockers and betamimetics [8]. MgSO₄ in preeclampsia is known to reduce the risk of seizures by 50% which makes it an effective treatment in women to prevent eclampsia [9].

When administered to antenatal mothers, MgSO₄ can rapidly cross the placenta resulting in an increase in fetal and newborn magnesium levels in the serum [10]. Magnesium is known to produce fecal impaction and intestinal atony in infants by

¹Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA. ²University Libraries, University at Buffalo, Buffalo, NY, USA. ³Oyster Woman and Child Hospital, Banaswadi, Bengaluru 560043, India. ^{Semail:} shiv.diggikar@gmail.com

Received: 21 March 2023 Revised: 3 June 2023 Accepted: 20 June 2023 Published online: 30 June 2023

Table	1. Summary table.								
N	Study ID, Country	Study Type	Sample Size (Case vs Control)	Gestational Age (weeks)	Gastrointestinal outcomes (Primary vs Secondary)	Magnesium Sulfate Regimen	Indication for Magnesium Sulfate	Antenatal steroids (Case vs Control)	Confounding factors
	De Veciana 1995, USA	Retrospective	48 vs 32	<33	Secondary	4 to 6 g load followed by 2 to 4 g/h^a for at least 48 h and no longer than 7 days	Tocolysis	70% vs 0%	No steroids in the control group
5	Wiswell 1996, USA	Retrospective	61 vs 76	<33	Primary	Z	Tocolysis/ Preeclampsia	Z	Z
'n	Schanler 1997, USA	Prospective	22 vs 19	<34	Secondary	6 g ^b load followed by. 2 g/h infusion.	Tocolysis	Z	Z
4	Kimberlin 1998, USA	Retrospective	124 vs 184	>20	Secondary	Z	Tocolysis	48.3% vs 10.8%	Z
ъ.	Elimian 2002, USA	Retrospective	190 vs 211	23–34	Secondary	4.g load followed by 2–3.g/h	Tocolysis	95.8% vs 61.6% (<i>p</i> < 0.0001)	z
6.	Jazayeri 2003, USA	Retrospective	36 vs 36	<34	Secondary	Z	Tocolysis	100% vs 100%	Z
7.	Crowther 2003(ACTOMgSO4), Australia	RCT	535 vs 527	<30	Secondary	4 g load followed by maintenance for 24 h	Neuroprotection	z	z
ő	Marret 2006 (PREMAG), France	RCT	352 vs 336	<33	Secondary	4 g loading dose infused over 30 minutes	Neuroprotection	95.1% vs 94.6%	N
6	Rouse 2008 (BEAM), USA	RCT	1174 vs 1244	24–31	Secondary	6g load followed by 2g/h infusion	Neuroprotection	96.9 vs 97.5 (p - 0.49)	R
10.	Yokoyoma 2010, Japan	Retrospective	58 vs 59	<35	Secondary	4 g/h for load followed by 1–2 g/h for prevention of preterm labor	Tocolysis	z	Late preterm infants included in the study
11.	Paradisis 2011, Australia	RCT	48 vs 39	<30	Secondary	4g load followed by 1 g/h for 24 h	Neuroprotection	77% vs 79% (p-0.8)	N
12.	Havranek T 2011, USA	Prospective	27 vs 29	<37	Primary	4–6g load followed by 2–3 g/h	Tocolysis/ Preeclampsia	70% vs 52%	Late preterm infants included in the study
13.	Basu SK 2012, USA	Retrospective	289 vs 186	24–32	Secondary	6g load followed by 2g/h till delivery	Neuroprotection	Z	GA and prematurity
14.	Lee 2013, Korea	Retrospective	20 vs 61	<34	Secondary	Z	Preeclampsia	R	Z
15.	Weisz 2014, Canada	Retrospective	1387 vs 3868	<32	Secondary	4 g load followed by 1 g/h up to 24 h	Neuroprotection	97.1% vs 83.4%	N
16.	Rattray BN 2014, USA	Retrospective	132 vs 23	24-32	Primary	6g load followed by 2g/h	Neuroprotection	94.6% vs 100% (NI)	GA, prematurity, NSAIDS
18.	James 2015, Ireland	Prospective	19 vs 19	<29	Secondary	4 g load over 20 min	Neuroprotection	74% vs 37%	Z
19.	Suh 2015, Korea	Retrospective	110 vs 40	<37	Secondary	Z	Preeclampsia	70.5 % vs 42.1 %	Z

	ounding rs						ble doses JSO4 ^d						th cted ts	control				
	Confe facto	Z	Z	z	z	z	Varial in Mg	Z	z	z	z	z	Grow restric infant	Small size	z	z	z	z
	Antenatal steroids (Case vs Control)	77% vs 30% (<i>p</i> < 0.01)	z	96% vs 76%	92% vs 76%	92.4 % vs 72.7 % (p 0.00)	z	80.4 % vs 72.5 %	96.9 % vs 79.1%	55% vs 35%	79.7% vs 43.9 % (p < 0.0001)	76.8% vs 28.6% (<i>p</i> < 0.01)	95.7% vs 95.3% (p. 38, p. 63)	78% vs 50% (p 0.12)	95.2 % vs 64.1%	100% vs 100%	75% vs 53% (<i>p</i> < 0.002)	85.1 vs 86.8 (p-0.13)
	Indication for Magnesium Sulfate	Neuroprotection	Preeclampsia	IN	Tocolysis/ Preeclampsia/ Neuroprotection	Neuroprotection /Preeclampsia	Neuroprotection	Neuroprotection	tocolysis/ Preeclampsia/ Neuroprotection	Tocolysis/ Preeclampsia/ Neuroprotection	Tocolysis	Neuroprotection/ Preeclampsia	Neuroprotection	Neuroprotection	Neuroprotection	Neuroprotection	Neuroprotection	Neuroprotection
	Magnesium Sulfate Regimen	4 g load followed by 1 g/h up to 12 h or delivery.	6g load followed by 2g/h for 24 h	N	6 g load followed by 0.8 g/h till delivery	5g load followed by 2g/h	4 g load followed by 1 g/h up to 24 h or till delivery	IZ	Variable regimen	Variable regimen	6 g load followed by 1 g/h maintain serum Mg ^e of 6 mg/dl	4 g and 6 g load for preeclampsia and Neuroprotection respectively followed by 2 g/h	Ī	4 g load followed by 2 g/h up to 12 h	4 g load followed by. 2 g/h up to 12 h or till delivery	6g load followed by 2g/h	4 g load followed by 1–2 g/h	4 g loading dose
	Gastrointestinal outcomes (Primary vs Secondary)	Secondary	Secondary	Secondary	Secondary	Secondary	Secondary	Secondary	Primary	Primary	Secondary	Secondary	Secondary	Secondary	Primary	Secondary	Secondary	Secondary
	Gestational Age (weeks)	24–33	24–32	<29	26–34	<32	<32	<32	<27	>26	<32	24-34	<29	<32	<28	<32	<32	<32
	Sample Size (Case vs Control)	81 vs 38	59 vs 328	1091 vs 453	25 vs 25	145 vs 45	62 vs 56	56 vs 51	2055 vs 2300	11789 vs 16246	143 vs 41	237 vs 67	173 vs 340	95 vs 10	210 vs 92	108 vs 172	146 vs 55	343 vs 337
	Study Type	Retrospective	Retrospective	Retrospective	Prospective	Retrospective	Prospective	Prospective	Retrospective	Retrospective	Retrospective	Retrospective	Retrospective	Prospective	Retrospective	Retrospective	Retrospective	RCT
. continued	Study ID, Country	Bouet PE 2015, France	Bozkurt O 2015, Turkey	De Jesus 2015, USA	Gursoy 2015, Turkey	Morag 2015, Israel	Alonso 2016, Spain	Lloreda-Garcia 2016, Spain	Shalabi 2017, Canada	Downey 2017, USA	Jung 2017, South Korea	Narasimhulu 2017, USA	Stockley 2018, Canada	Qasim 2019, USA	MIkhael 2019, USA	Özlü 2019, Turkey	Valdovinos 2020, Spain	Wolf 2020, Denmark
Table 1.	Ñ	20.	21.	22.	23.	24.	25.	26.	27.	28.	29.	30.	31.	32.	33.	34.	35.	36.

Table	1. continued								
R	Study ID, Country	Study Type	Sample Size (Case vs Control)	Gestational Age (weeks)	Gastrointestinal outcomes (Primary vs Secondary)	Magnesium Sulfate Regimen	Indication for Magnesium Sulfate	Antenatal steroids (Case vs Control)	Confounding factors
37.	Hong 2020, South Korea	Retrospective	247 vs 509	<32	Primary	Variable regimen	Tocolysis/ Preeclampsia/ Neuroprotection	92.1% vs 89% (<i>p</i> 0.048)	Z
38.	Kim 2020, Seoul	Retrospective	109 vs72	<28	Primary	4–6 g load followed by 2 g/h	Neuroprotection/ Tocolysis	84.4% vs 80.6% (p 0.548)	z
39.	Üstün 2021, Turkey	Retrospective	186 vs 154	<32	Secondary	4 g load followed by 2 g/h	Neuroprotection	84.4% v 68.2% (<i>p</i> < 0.001)	z
40.	Bansal V 2021, India	Prospective	50 vs 50	26–34	Secondary	4 g loading dose	Neuroprotection	ĪZ	N
41.	Chandran S 2021, India	Prospective	56 vs 28	<32	Primary	4 g load followed by 1 g/h up to 24 h or till delivery	Neuroprotection/ Preeclampsia	76.8% vs 28.6% (p < 0.01)	z
42.	Gupta 2021, India	RCT	50 vs 50	28–36 ^{6/7}	Secondary	4g load followed by 1g/h for 12h	Neuroprotection	Z	Z
43.	Sung 2022, South Korea	Retrospective	91 vs 135	<26	Secondary	4 g load followed by 1 g/h up to 24 h	Neuroprotection/ Preeclampsia	96.7% 92% (p 0.325)	Z
4.	Ayed 2022, Kuwait	Retrospective	47 vs 182	<32	Secondary	4 g loading dose	Neuroprotection	85.1 vs 86.8 (p-0.13)	Z
^a Gram ^b gram ^c Rand ^d Magr	is per hour. is omized Controlled Trial. nesium sulfate, NI- No infr nesium.	ormation.							

1090

depressing the cholinergic activity in mothers exposed to high levels of magnesium [11, 12]. Hypotonia, hypercalciuria, parathyroid gland suppression, abnormal bone mineralization, and neutrophil dysfunction are some of the side effects reported in infants when mothers are exposed to MgSO₄ [13–16]. Intestinal hypomotility with increased meconium overload can lead to increased intraluminal pressure and thinning of intestinal walls which could be exaggerated and increase the risk of NEC or SIP when concomitantly exposed to steroids [17, 18]. $MgSO_4$ acts as a competitive antagonist against calcium and decreases the intracellular calcium and impedes intestinal smooth muscle contractility by interfering with actin-myosin interaction [19]. Studies have shown maternal exposure to MaSO₄ resulted in a decrease in intestinal blood flow and an increase in feeding intolerance in infants [11, 20, 21]. The alterations in intestinal blood flow can affect feeding intolerance and subsequent development of necrotizing enterocolitis (NEC) or spontaneous intestinal perforation (SIP) [22-26]. MgSO₄ has been associated with increased incidence of NEC in smaller infants and higher doses in recent studies [27, 28]. A few studies also provided evidence to the contrary [29-31]. A recent meta-analysis by Sheperd et al. [32] did not show an association between antenatal MgSO₄ and neonatal adverse outcomes.

OBJECTIVE

We conducted a systematic review and meta-analysis to address three questions: Is there an association between antenatal MgSO₄ administration and adverse gastrointestinal outcomes (GI) like NEC, SIP, feeding intolerance, time to reach full feeds, and GI-related mortality in preterm infants? In extreme preterm (<28 weeks) and very preterm infants (<32 weeks) does the administration of antenatal MgSO₄ have any adverse gastrointestinal outcomes (GI)? And thirdly, is the association based on the different types of indications of MgSO₄ like for neuroprotection, preeclampsia, or tocolysis?

METHODS

The systematic review was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) reporting guidelines [33]. Our protocol was registered on the PROSPERO (CRD42022367246), the international prospective register for systematic reviews.

Eligibility criteria

Randomized or quasi-randomized clinical trials and nonrandomized studies that reported GI-related morbidities when mothers of preterm infants were given MgSO₄ for either neuroprotection, tocolysis, or preeclampsia were included. Studies that did not report prespecified neonatal outcomes were excluded. Preterm infants whose mothers did not receive antenatal magnesium sulfate were considered as comparators. The following outcomes were included in this meta-analysis:

- 1. Necrotizing enterocolitis (stage \geq 2 NEC) (defined as per modified Bell's staging) [34]
- 2. Surgical necrotizing enterocolitis (those needing surgical intervention)
- Spontaneous intestinal perforation (SIP) (defined as per international standards) [35]
- 4. Feeding intolerance—as defined by authors.
- 5. Time to reach full feeds—Minimum of 150 ml/kg/d
- 6. Gastrointestinal (GI) related mortality—mortality related to NEC/SIP as reported by authors.

Information sources and search strategy

A systematic literature search was conducted in November 2022 using the following databases: PubMed, CINAHL Plus with Full Text (EBSCOhost), Embase (Elsevier), and the Cochrane Central Register of Controlled Trials, or CENTRAL (Ovid). The references of the identified studies were also screened. No date or language restrictions or search filters were employed. Searches were run by a medical librarian (N.A.) in consultation with authors A.P. and S.D. Details of the search strategy are provided in the online Supplementary File. Results were deduplicated using the SR-Accelerator Deduplicator tool.

Study selection

The deduplicated results were transferred to Rayyan software (www.rayyan.ai) for screening. Title and abstract screening and full-text review of articles were done independently by A.P. and S.D. Any discrepancies were resolved by discussion and consensus (P.C). If necessary, trial authors were contacted by email correspondence to request missing data.

Assessment of risk of bias

All included studies were assessed for methodological quality. The risk of bias was assessed using elements of the Cochrane Collaboration tool 2.0 for randomized studies [36]. For non-randomized studies, the risk of bias for included studies was assessed using a modified Newcastle–Ottawa scale [37]. The following domains were evaluated: selection, comparability, and outcome. A priori, a score of >7/9 was deemed low risk, a score of 4–6/9 was deemed a moderate risk, and a score of $\leq 3/9$ was deemed a high risk of bias. Two authors (A.P. and S.D.) performed the risk of bias independently; conflicts were resolved after discussion and consensus. Similarly, A.P. and S.D. assessed the certainty of evidence (confidence in the estimate of effect) for each outcome based on the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) framework [38]. Any discrepancies were resolved by discussion and consensus.

Data synthesis

All the studies were combined and analyzed using Review Manager V.5.3 (Cochrane Collaboration, Nordic Cochrane Center,

Fig. 1 Flowchart of search results (adapted from PRISMA 2021) [33] Gl-gastrointestinal, NEC-Necrotizing enterocolitis, SIP-Spontaneous intestinal perforation; PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

A. Prasath et al.

а

b

	[MgSO4 e	vents	[No MgSO4	events		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% Cl
1.2.1 Observational Studies								
de Veciana 1995	0	48	1	32	0.1%	0.22 [0.01, 5.48]	1995	· · · · · ·
Wiswell 1996	1	61	10	76	0.3%	0.11 [0.01, 0.89]	1996	· · · ·
Schanler 1997	1	22	0	19	0.1%	2.72 [0.10, 70.79]	1997	
Elimian 2002	7	190	3	211	0.7%	2.65 [0.68, 10.41]	2002	
Jazayeri 2003	7	36	9	36	1.0%	0.72 [0.24, 2.22]	2003	
Yokoyoma 2010	0	58	0	59		Not estimable	2010	
Havranek T 2011	0	27	1	29	0.1%	0.35 [0.01, 8.85]	2011	
Lee 2013	1	20	8	61	0.3%	0.35 [0.04, 2.98]	2013	
Weisz 2014	83	1387	197	3868	13.5%	1.19 [0.91, 1.54]	2014	-
Bozkurt O 2015	4	59	12	328	0.9%	1.92 [0.60, 6.15]	2015	-
De Jesus 2015	9	1091	8	453	1.4%	0.46 [0.18, 1.21]	2015	
Gursoy 2015	0	25	0	25		Not estimable	2015	
Morag 2015	4	145	4	45	0.6%	0.29 [0.07, 1.21]	2015	
lames 2015	1	19	4	21	0.3%	0.24 [0.02, 2.33]	2015	
Suh 2015	2	110	10	436	0.6%	0.79 [0.17, 3.65]	2015	
Bouet PE 2015	4	94	1	44	0.3%	1.91 [0.21, 17.62]	2015	
Alonso 2016	7	62	6	56	1.0%	1.06 [0.33, 3.37]	2016	
Lloreda-Garcia 2016	4	56	2	51	0.4%	1.88 [0.33, 10.76]	2016	
Shalabi 2017	202	2045	220	2295	19.2%	1.03 [0.85, 1.26]	2017	+
Downey 2017	191	11789	270	16246	20.9%	0.97 [0.81, 1.17]	2017	+
Jung 2017	12	133	3	33	0.7%	0.99 [0.26, 3.74]	2017	
Narasimhulu 2017	5	237	1	67	0.3%	1.42 [0.16, 12.39]	2017	<u> </u>
Stockley 2018	12	173	43	340	2.8%	0.51 [0.26, 1.00]	2018	
Qasim 2019	9	95	1	10	0.3%	0.94 [0.11, 8.31]	2019	
Mikhael 2019	15	210	7	92	1.5%	0.93 [0.37, 2.37]	2019	
Özlü 2019	0	108	0	172		Not estimable	2019	
Valdovinos 2020	26	146	15	55	2.4%	0.58 [0.28, 1.20]	2020	
Hong 2020	9	247	26	509	2.1%	0.70 [0.32, 1.52]	2020	
Kim 2020	13	109	12	72	1.8%	0.68 [0.29, 1.58]	2020	
Üstün 2021	13	186	7	154	1.4%	1.58 [0.61, 4.06]	2021	
Bansal V 2021	7	50	7	50	1.0%	1.00 [0.32, 3.09]	2021	
Chandran S 2021	6	56	0	28	0.2%	7.34 [0.40, 135.06]	2021	
Sung 2022	21	91	36	135	3.2%	0.82 [0.44, 1.53]	2022	
Ayed 2022	0	47	9	182	0.2%	0.19 [0.01, 3.36]	2022	
Subtotal (95% CI)		19232		26290	79.4%	0.95 [0.84, 1.08]		•
Total events Heterogeneity: Tau ² = 0.01; Chi ² = Test for overall effect: Z = 0.77 (P	676 = 31.69, df = = 0.44)	30 (P =	933 0.38); I ² = 5%	6				
1.2.2 RCTs NEC stage >/=2								
Crowther CA 2003 (ACTOMgSO4)	30	620	31	615	4.5%	0.96 [0.57, 1.60]	2003	-+-
Marret 2006 (PREMAG)	9	352	6	336	1.2%	1.44 [0.51, 4.10]	2006	
Rouse DJ (BEAM) , 2008	116	1171	94	1244	12.1%	1.35 [1.01, 1.79]	2008	
Paradisis 2011	0	48	0	39		Not estimable	2011	
Wolf 2020	17	343	16	337	2.5%	1.05 [0.52, 2.11]	2020	_
Gupta 2021	3	50	1	50	0.2%	3.13 [0.31, 31.14]	2021	
Subtotal (95% CI)	5	2584	-	2621	20.6%	1.24 [0.99, 1.56]		•
Total events	175		148					-
Heterogeneity: Tau ² = 0.00: Chi ² =	= 2.21. df = 4	4 (P = 0.)	70); $I^2 = 0\%$					
Test for overall effect: $Z = 1.85$ (P	= 0.06)							
Total (95% CI)		21816		28011	100.0%	1 00 10 89 1 1 31		
	051	21010	1001	20911	100.0%	1.00 [0.09, 1.12]		Ţ
Total events	851	25 (0	1081	,				
Heterogeneity: Tau" = 0.01; Chi" =	= 57.56, df =	55 (P =	$(0.55); 1^{\circ} = 7\%$	b				0.01 0.1 1 10
est for overall effect: $Z = 0.01$ (P	= 0.99)							Favours MgSO4 Favours Control

Fig. 2 Forest plots for primary outcomes. **a** Necrotizing enterocolitis (Stage \geq 2) of observational studies. **b** Necrotizing enterocolitis (Stage \geq 2) of Randomized Controlled Trials. **c** Surgical Necrotizing enterocolitis. **d** Spontaneous Intestinal Perforation (SIP). **e** Time to reach full feeds (150 cc/kg/d). **f** Feeding intolerance.

Copenhagen, Denmark). The mean difference with 95% CI was calculated for continuous outcomes. For dichotomous outcomes, the OR with 95% CI was calculated from the data provided in the studies. Adjusted odds ratios for potential confounders were extracted from the studies reporting these data. Studies reporting continuous variables as median and range or interguartile range were converted to mean and SD using a published calculator [39]. The random effects model was used to calculate summary statistics owing to anticipated heterogeneity. For some variables like gestational age, a fixed outcome model was used. Statistical heterogeneity was assessed by use of the Cochran Q statistic and by use of the l^2 statistic, which is derived from the Q statistic and describes the proportion of total variation that is due to heterogeneity beyond chance. We used the Egger regression test and funnel plots to assess publication bias if more than 10 studies were available for that particular outcome.

Sensitivity analysis was performed for studies based on the different type of indications for MgSO₄ (neuroprotection, preeclampsia, tocolysis) and based on gestational age (<28 weeks, <32 weeks)

RESULTS

Study selection and Study characteristics

A total of 6695 articles were identified through database searching. After duplicates were removed, 4332 articles underwent title and abstract screening. Ninety-nine full-text articles were assessed. A final total of 44 articles including 6 RCTs [40–45] and 38 non-randomized studies [20, 21, 27, 29–31, 46–76] were deemed eligible to be included in the final meta-analysis (Summary Table 1). The PRISMA flow diagram [33] is shown in Fig. 1a. A list of excluded studies and search strategies are provided in the Online Supplementary File.

i. Medical necrotizing enterocolitis (Stage ≥ 2 NEC) was reported in 40 included studies [20, 21, 29–31, 40–44, 46–51, 53–64, 68, 72] involving 51,466 infants. The pooled effect estimate favored the MgSO₄ group but was not statistically significant between the two groups in nonrandomized studies (n = 45,524, OR: 0.95; 95% CI: 0.84–1.08, I^2 - 5%) and randomized controlled trials (n = 5205 OR:1.24; 95% CI: 0.99–1.56, I^2 - 0%) (shown in Fig. 2a, b). Sensitivity

		[MgSO4 e	vents]	[No MgSO4 e	events]		Odds Ratio		Odds Ratio
Ь	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
u	Rattray BN 2014	7	23	17	132	5.8%	2.96 [1.06, 8.24]	2014	
	Shalabi 2017	69	2031	77	2271	29.4%	1.00 [0.72, 1.39]	2017	+
	Downey 2017	340	11789	370	16246	47.5%	1.27 [1.10, 1.48]	2017	
	Mikhael 2019	20	210	8	92	7.8%	1.11 [0.47, 2.61]	2019	
	Hong 2020	7	247	9	509	6.0%	1.62 [0.60, 4.40]	2020	
	Kim 2020	0	109	4	72	0.8%	0.07 [0.00, 1.31]	2020	· · · · · · · · · · · · · · · · · · ·
	Sung 2022	3	91	4	135	2.8%	1.12 [0.24, 5.11]	2022	
	Ayed 2022	0	47	0	182		Not estimable	2022	
	Total (95% CI)		14547		19639	100.0%	1.22 [0.94, 1.58]		◆
	Total events	446		489					
	Heterogeneity: Tau ² =	0.03; Chi ²	= 8.58,	df = 6 (P = 0.2)	$(20); I^2 = 3$	0%			
	Test for overall effect:	Z = 1.49 (P = 0.14)						Favours MgSO4 Favours Control

		[MgSC	04 eve	nts]	[No Mg	SO4 eve	nts]		Mean Difference		Mean Difference		
	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV, Random, 95% CI		
e	Basu SK 2012	36.3	30.7	289	29.9	29	186	8.7%	6.40 [0.93, 11.87]				
0	Chandran S 2021	10.5	3.9	56	10.5	5.8	28	15.0%	0.00 [-2.38, 2.38]		+		
	De Jesus 2015	20.3	10.4	1091	21.3	11.2	453	17.2%	-1.00 [-2.20, 0.20]				
	Gursoy 2015	7	3.9	25	6.5	2.7	25	16.1%	0.50 [-1.36, 2.36]		÷		
	Kim 2020	19.6	9.7	109	22.3	12.1	72	12.9%	-2.70 [-6.04, 0.64]				
	Narasimhulu 2017	17.8	13.1	237	11	8.3	67	14.6%	6.80 [4.21, 9.39]		-		
	Özlü 2019	43.6	81.5	108	42	77.7	172	1.3%	1.60 [-17.66, 20.86]		<u> </u>		
	Üstün 2021	25.3	13.4	186	22.8	12.7	154	14.2%	2.50 [-0.28, 5.28]		-		
	Total (95% CI)			2101			1157	100.0%	1.48 [-0.76, 3.72]		•		
	Heterogeneity: Tau ² =	= 7.19; C	$hi^2 = 3$	38.81, d	f = 7 (P <	< 0.0000	()1); $I^2 =$	82%		-100	-50 0 5	÷0	100
	Test for overall effect:	Z = 1.3	0 (P =	0.19)						100	Favours MgSO4 Favours Co	ontrol	100

		[MgSO4 ev	ents]	[No MgSO4 ev	ents]		Odds Ratio		Odds	Ratio	
f.	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Rando	om, 95% Cl	
	Chandran S 2021	16	56	9	28	23.6%	0.84 [0.32, 2.26]				
	Gursoy 2015	6	25	2	25	8.4%	3.63 [0.66, 20.11]		_		
	Özlü 2019	70	108	112	172	68.0%	0.99 [0.60, 1.63]		-	-	
	Total (95% CI)		189		225	100.0%	1.06 [0.64, 1.76]		•		
	Total events 92			123							
	Heterogeneity: Tau ² =	0.03; Chi ²	= 2.27,	df = 2 (P = 0.32)	$(1); ^2 = 1$	2%			01	10	100
	Test for overall effect:	Z = 0.23 (P	= 0.82)					0.01	Favours MgSO4	Favours Control	100

Fig. 2 Continued

analysis of infants <28 weeks reported in 5 studies (n = 5133, OR: 1.0; 95% CI: 0.83 to 1.20, I^2 – 0%) reported no difference between the two groups (shown in Fig. 3a)

ii. Surgical NEC was reported in 5 studies [48, 63, 70, 71, 75] of the 44 studies involving 29,506 infants. The incidence of surgical NEC was significantly lower in the MgSO₄ group compared with controls (n = 29,506 OR:0.74; 95% CI: 0.62–0.90, ARR: 0.47%) (shown in Fig. 2c). There was no heterogeneity noted between the studies. Sensitivity analysis revealed no significance for infants <32 weeks including 3 studies [70, 71, 75] (n-1163, OR: 0.60; 95% CI: 0.36 to 1.01, 1^2 - 0%) (shown in Fig. 3c).

iii. Spontaneous intestinal perforation was reported in 8 out of the 44 studies [27, 29, 31, 48, 63, 70, 71, 75] including 34,186 infants. Antenatal exposure of MgSO₄ did not increase the incidence of SIP in preterm infants (n = 34,186, OR: 1.22, 95% Cl: 0.94–1.58, 1²–30%) (shown in Fig. 2d). Subgroup analysis of the incidence of SIP in infants <32 weeks was analyzed in 5 studies [27, 70, 71, 74, 75] and there was no difference between groups (n-1, 610 OR: 1.54, 95% Cl: 0.67 to 3.55, $l^2 - 34\%$) (shown in Fig. 3d).

1094

		(MgSO4 et	vents]	[No MgSO4 e	vents]		Odds Ratio		Odds	Ratio	
	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Rande	om, 95% CI	
2	Chandran S 2021	6	56	0	28	0.4%	7.34 [0.40, 135.06]				
a	Kim 2020	13	109	12	72	4.6%	0.68 [0.29, 1.58]			-	
	Mikhael 2019	15	210	7	92	3.8%	0.93 [0.37, 2.37]		_		
	Shalabi 2017	202	2045	220	2295	82.5%	1.03 [0.85, 1.26]				
	Sung 2022	21	91	36	135	8.7%	0.82 [0.44, 1.53]			_	
	Total (95% CI)		2511		2622	100.0%	1.00 [0.83, 1.20]				
	Total events	257		275							
	Heterogeneity: Tau ² =	0.00; Chi2	= 3.11,	df = 4 (P = 0.5)	4); 12 = 0	1%		0.01			100
	Test for overall effect.	Z = 0.02 (P	= 0.98)				0.01	Favours MgSO4	Favours Control	100

		(MgSD4 e	vents] [No	MgSO4 even	its]	Odds Ratio	Odds Ratio
h	Alonco 2016	Events	101AI E	events i	se a	ght M-H, Random, 95	% CI M-H, Kandom, 95% CI
D	Ayed 2022	0	47	9	182 0	0.19 [0.01,	3.36]
	Bozkurt O 2015	4	59	12	328 3	1.92 [0.60,	5.15]
	Chandran \$ 2021	6	56	0	28 0	7.34 [0.40, 13]	5.06]
	Crowther CA 2003 (ACTOMg	(04) 30	620	31	615 10	0.96 [0.57,	1.60
	Hong 2020	9	247	26	509 6	.0% 0.46 [0.18, 5.7% 0.70 [0.32]	1521
	James 2015	i	19	4	21 1	.1% 0.24 [0.02, 1	2.33]
	Jung 2017	12	133	3	33 3	0.99 (0.26,	3.74]
	Kim 2020	13	109	12	72 6	0.68 [0.29,	1.58]
	Lloreda-Garcia 2016	4	56	2	51 1	1.88 (0.33, 1)	0.76
	Ozla 2019	0	108	0	172	Not estin	able
	Paradisis 2011	0	48	o	39	Not estin	able
	Qasim 2019	9	95	1	10 1	0.94 [0.11,	8.31]
	Rouse DJ (BEAM) , 2008	116	1171	94	1244 14	1.35 [1.01,	1.79]
	Stockley 2018	12	173	43	340 8	0.51 [0.26,	1.00]
	Üstün 2021	13	186	7	154 5	1.58 (0.61.	4.06]
	Valdovinos 2020	26	146	15	55 7	.2% 0.58 [0.28,	1.20]
	Weisz 2014	1	61	10	76 1	0.11 [0.01,	0.89]
	Wolf 2020	17	343	16	337 7	1.05 [0.52, 1	2.11]
	Total (95% CI)		5066	4	955 100	0.84 [0.66.]	.091
	Total events	314		339			
	Heterogeneity: Tau ² = 0.09; 0	hi ² = 28.80, df =	19 (P = 0.07	'); l ² = 34%			0.01 0.1 10 100
	Test for overall effect: Z = 1.2	B1 (P = 0.19)					Favours MgSO4 Favours Control
							-
	,		IN- N-FO	4		Odda Davia	Odda Basila
	Etudu er Eubereur	MgSO4 events	INO MgSU	4 events	Welcht	Udds katio	Udds katio
С	Hone 2020	c 24	7 19	500	26.9%	0 56 (0 31 1 5/	M-H, Kandom, 95% CI
•	Kim 2020	6 10	a 10	72	20.8%	0.50 [0.21, 1.54	
	Sung 2022	13 9	1 26	135	51.1%	0.70 (0.34, 1.44	
							. –
	Total (95% CI)	44	7	716	100.0%	0.60 [0.36, 1.01	1 🔶
	Total events	24	52				
	Heterogeneity: Tau ² = 0	.00; Chi ² = 0.38	, df = 2 (P =	0.82 ; $I^2 = 0$	%		0.01 0.1 1 10 100
	Test for overall effect: Z	= 1.91 (P = 0.00	6)				Favours MgSO4 Favours Control
				1.1	-		
	[M	SO4 events]	No MgSO4 e	events]		Odds Ratio	Odds Ratio
Ь	Study or Subgroup E	ents Total	Events	Total We	eight M-I	H, Random, 95% CI	M-H, Random, 95% CI
u	Ayed 2022	0 47	0	182		Not estimable	
	Hong 2020	7 247	9	509 3	6.0%	1.62 [0.60, 4.40]	
	Rattray RN 2014	7 23	17	135	7.3%	2 96 [1 06 8 24]	
	Sung 2022	3 91	4	135 2	1.5%	1.12 [0.24, 5.11]	
	Total (95% CI)	517		1093 10	0.0%	1.54 [0.67, 3.55]	
	Total events	17 5 Chi ² - 4 57 d	34	11.12 - 24%			
	Test for overall effect: Z =	1.01 (P = 0.31)				o	01 0.1 1 10 100
	Test for orelan energy =	1.01 (/ - 0.51)					Favours MgSO4 Favours Control
		(MgSO4 events)	(No MgSO4	events]		Odds Ratio	Odds Ratio
	Study or Subgroup	Events Tota	d Events	Total 1	Weight M	-H, Random, 95% CI	M-H, Random, 95% CI
е	Alonso 2016	7 63	2 6	\$6	3.1%	1.06 [0.33, 3.37]	
	Ayed 2022	0 4	7 9	182	0.5%	0.19 [0.01, 3.36]	
	James 2015	1 1	y 4	21	1.4%	1 88 (0 33 10 76)	
	Mikhael 2019	15 210	0 7	92	4.6%	0.93 [0.37, 2.37]	
	Özlü 2019	0 10	8 0	172	1999 (1997) 1997 - 1997 (1997)	Not estimable	
	Paradisis 2011	0 41	8 0	39		Not estimable	
	Qasim 2019	9 9	1 1	10	0.9%	0.94 [0.11, 8.31]	
	Stockley 2018	12 17	3 43	340	8.5%	0.51 [0.26 1.00]	
	Ústún 2021	13 18	6 7	154	4.5%	1.58 [0.61, 4.06]	
	Weisz 2014	83 138	7 197	3868	35.4%	1.19 [0.91, 1.54]	+
	Wolf 2020	17 34	3 16	337	7.9%	1.05 [0.52, 2.11]	
	Total (95% CI)	390	5	6566 1	00.0%	1.12 (0.91, 1.37)	L .
	Total events	277	385	0300	001070	THE LOUPE, LINE	ľ
	Heterogeneity: Tau ² = 0.01	; Chi ² = 11.21, d	f = 10 (P = 0.	34); 12 = 11%			
	Test for overall effect: Z =	1.05 (P = 0.29)					Favours MoSO4 Favours Control
							· · · · · · · · · · · · · · · · · · ·
	[4gSO4 events]	[No MgSC	4 events]		Odds Ratio	Odds Ratio
f	Study or Subgroup	events Tota	u Évents	Total	Weight	M-H, Random, 95%	G M-H, Random, 95% Cl
1	Chandran S 2021	6 50		28	0.9%	7.34 (0.40, 135.0	
	Moran 2015	0 14	5 0	25		Not estimat	de la
	Shalabi 2017	202 203	5 220	2205	81.5%	1.05 (0.85 1 3	
	Sung 2022	21 9	1 36	135	17.6%	0.82 10.44. 1	31
	Total (95% CI)	2342	2	2528	100.0%	1.02 (0.77, 1.3	s) 🔶
	Total events	229	256				
	Heterogeneity: Tau ² = 0.	01; Chi ² = 2.27	, df = 2 (P =	0.32); 12 = 1	12%		0.01 0.1 10 100
	Test for overall effect: Z	= 0.14 (P = 0.85	9)				Eavours MaSOA Eavours Control

Fig. 3 Forest plots for various sub-group analysis. a Necrotizing enterocolitis (Stage ≥ 2) (≤28 weeks). b Necrotizing enterocolitis (Stage ≥ 2) (\leq 32 weeks). **c** Surgical Necrotizing enterocolitis (\leq 32 weeks). **d** Spontaneous intestinal perforation (SIP) (\leq 32 weeks). **e** Necrotizing enterocolitis (Stage \geq 2) (Neuroprotection & \leq 32 weeks). **f** Necrotizing enterocolitis (Stage \geq 2) (Neuroprotection & \leq 32 weeks). g Spontaneous intestinal perforation (Neuroprotection). h Spontaneous intestinal perforation (<32 weeks). i Time to reach full feeds (150 cc/ kg/d) (\leq 32 weeks). **j** Time to reach full feeds (150 cc/kg/d) (Neuroprotection).

0.1 1 10 Favours MgSO4 Favours Control

Fig. 3 Continued

- iv. Time to reach full feeds was also analyzed and was reported in 8 [21, 52, 59, 65, 68, 71–73] of the 44 included studies involving 3,258 infants. Full enteral feeds were defined as a minimum of 150 cc/kg/day for analysis. There was no difference in time taken to achieve full feeds (20.3 d vs 20.7 d in the MgSO₄ group vs the control group (MD:1.48: (95% Cl: -0.76 to 3.72) (shown in Fig. 2e).
- v. Feeding intolerance was reported in 3 studies [21, 29, 73] out of the 44 involving 414 infants (n = 414, OR: 1.06 (95% Cl: 0.64–1.76, l²- 12%) (shown in Fig. 2f).
- vi. GI-related mortality (NEC/SIP related) was reported in only one study (n = 4355) [29]. There was no statistically significant difference between the two groups (4.6% vs 3.8%, p 0.18) in mortality. Stratified analysis based on gestational age (22–25 weeks & 26–27 weeks) did not show any significance either between the two groups.

Sensitivity and adjusted analysis

Sensitivity analysis was performed separately for all studies including infants less than 32 weeks of gestation. Seventeen studies involving 10,021 infants were analyzed [40, 43–45, 54, 55, 58–62, 64, 66–75]. The incidence of medical NEC was similar among the MgSO₄ group as compared to controls (OR: 0.84; 95% Cl: 0.66 to 1.09) (shown in Fig. 3b). Studies that used MgSO₄ for neuroprotection alone (13 studies, n = 10,471) were analyzed, and neuroprotection or preeclampsia (5 studies, n = 4870) were analyzed separately. Both analyses did not show any statistical difference between the two groups (shown in Fig. 3e, f). For the outcome of SIP, sensitivity analysis was performed for very preterm infants and studies that used MgSO₄ for

neuroprotection. A total of 3 studies for neuroprotection [27, 31, 74] (shown in Fig. 3g) and seven studies [27, 29, 31, 70, 71, 74, 75] for <32 weeks were included (shown in Fig. 3h) and there was no difference between the two groups. For other indications like tocolysis and preeclampsia, not enough studies were available for metanalysis. For the outcome of time to reach full feeds subgroup analysis on preterm infants <32 weeks [52, 59, 71–73, 77] (shown in Fig. 3i) and studies that used MgSO₄ for neuroprotection [52, 59, 77] (shown in Fig. 3j) showed no difference between two groups.

We performed an adjusted odds ratio analysis for medical NEC (5 studies) and surgical NEC (3 studies) and SIP (4 studies) (shown in Fig. 4a–c). None of the analysis showed any statistical significance between the two groups. Analysis for superior mesenteric artery (SMV) blood flow velocity (cm/s) indices like mean velocity (MV), peak systolic velocity (PSV), and end-diastolic velocity (EDV) was reported in only 2 studies [21, 73]. There was no difference between the two groups for all the indices (online supplementary file).

Risk of bias (RoB) and Certainty of Evidence (CoE)

All the non-randomized studies were assessed for quality of evidence using the Newcastle-Ottawa scale [37]. All 38 studies were scored as good (>6) (Online supplementary file). The risk of bias assessment for RCTs was performed as per the Cochrane Risk of Bias 2.0 tool [78] in five domains (shown in Fig. 5). Of the six RCTs included, two studies were adjudged as high risk of bias [41, 42], one with some concerns [43], and two studies with low risk of bias (shown Fig. 5) [40, 45].

The certainty of evidence (CoE) as per GRADE [38] for all outcomes is provided in Table 2. For outcomes of medical and

Study name	Sta	atistics fo	or each s	study	Odds ratio and 95% CI
	Odds ratio	Lower limit	Upper limit	p-Value	
Stockley 2018	0.570	0.161	2.015	0.383	
Downey 2017	1.110	0.895	1.377	0.343	
Shalabi 2017	0.920	0.746	1.134	0.435	
Weisz 2014	0.990	0.731	1.341	0.948	
Hong 2020	0.700	0.313	1.565	0.385	
	0.988	0.866	1.128	0.862	

Favours MgSO4 Favours controls

Study name		Statist	ics for ea	ach study	
	Odds ratio	Lower limit	Upper limit	Z-Value	p-Value
Hong 2020	0.580	0.208	1.621	-1.039	0.299
Downey 2017	0.840	0.666	1.060	-1.472	0.141
Sung 2020	0.900	0.413	1.962	-0.265	0.791
	0.831	0.668	1.032	-1.673	0.094

Favours MgSO4 Favours controls

С

b

Study name Statistics for each study Odds Lower Upper ratio limit limit Z-Value p-Value

					p 10.00
Hong 2020	1.820	0.650	5.098	1.139	0.254
Downey 2017	1.080	0.907	1.286	0.865	0.387
Shalabi 2017	1.050	0.747	1.475	0.281	0.778
Sung 2020	1.100	0.212	5.716	0.113	0.910
	1.086	0.932	1.266	1.063	0.288

Favours MgS04 Favours Control

Fig. 4 Adjusted Odds Ratio (aOR) analysis. a Necrotizing enterocolitis (Stage ≥ 2). b Surgical Necrotizing enterocolitis. c Spontaneous intestinal perforation (SIP).

surgical NEC, SIP, and GI-related mortality, the CoE was determined to be "very low".

Neither visual inspection of funnel plots nor the Egger test suggested publication or selection bias for the outcome of medical NEC [20, 21, 30, 31, 40-51, 53-72, 74-76] (41 studies) (shown in Fig. 6). The number of studies was insufficient to evaluate publication bias for the other outcomes.

DISCUSSION

Our review demonstrates that there is no difference in the incidence of medical necrotizing enterocolitis SIP, feeding intolerance, or time to reach full feeds in infants exposed to antenatal magnesium sulfate as compared to no exposure. We did not find any adverse association between the use of antenatal MgSO₄ and GI morbidities in extreme preterm or very preterm infants. On the contrary, infants

1096

а

		Risk of bias domains						
		D1	D2	D3	D4	D5	Overall	
Study	Crowther CA 2003 (ACTOMgSO4)	+	+	+	+	+	+	
	Marret 2006 (PREMAG)	+	+	X	+	+	X	
	Rouse DJ, 2008 (BEAM)	+	+	+	+	+	+	
	Paradisis 2011	+	-	+	+	+	-	
	Wolf 2020	+	+	+	+	+	+	
	Gupta 2021	X	-	+	X	-	X	
		Domains: D1: Bias arising from the randomization process. D2: Bias due to deviations from intended intervention D3: Bias due to missing outcome data. D4: Bias in measurement of the outcome. D5: Bias in selection of the reported result. D5: Bias in selection of the reported result.						

Fig. 5 Risk of Bias 2.0 for randomized controlled trials.

Table 2.	GRADE:	Summarv	of	findinas	(SoF) for main outcomes.
		Juining	- 01	mangs	1001	

Outcomes	Anticipated absolute effects (95% CI)		Relative effect (95% Cl)	No of participants (studies)	Certainty of the evidence (GRADE)	
	Risk with placebo	Risk with MgSO₄ group				
NEC - Stage ≥2	35 per 1000	34 per 1000 (30 to 38)	OR 0.95 (0.84 to 1.08)	45522 (34 studies)	⊕⊖⊖⊖ Very low ^a	
NEC - Stage \geq 2 (RCTs)	56 per 1000	69 per 1000 (56 to 85)	OR 1.24 (0.99 to 1.56)	5205 (6 studies)	⊕⊕⊖⊖ Low ^b	
Surgical NEC	19 per 1000	14 per 1000 (12 to 17)	OR 0.74 (0.62 to 0.90)	29506 (5 studies)	$\bigcirc \bigcirc \bigcirc$ Very low ^c	
Spontaneous Intestinal Perforation (SIP)	25 per 1000	30 per 1000 (23 to 39)	OR 1.22 (0.94 to 1.58)	34186 (8 studies)	$\bigoplus \bigcirc \bigcirc \bigcirc$ Very low ^d	

^aWe downgraded evidence by three levels due to the serious risk of bias, heterogeneity, and indirectness.

^bWe downgraded the evidence by two levels due to indirectness, and imprecision.

^cWe downgraded evidence by three levels due to serious risk of bias, heterogeneity and indirectness and inconsistency.

^dWe downgraded evidence by three levels due to heterogeneity, indirectness, and inconsistency.

Fig. 6 Funnel plot assessing publication bias for Necrotizing enterocolitis (Stage \geq 2).

born to mothers who received antenatal MgSO₄ had a lower incidence of surgical NEC by 26%. There was no difference in outcomes of NEC based on the type of indication like neuroprotection, preeclampsia, or tocolysis. Antenatal MgSO₄ exposure did not increase gastrointestinal-related mortality in preterm infants.

Magnesium Sulfate has been used in imminent preterm deliveries less than 32 weeks for neuroprotection as a routine practice for the past decade after the large clinical trials [42, 44] and endorsement by ACOG and WHO [5, 6]. Its role in preeclampsia and as a tocolytic had been established long before [8, 9]. Concerns about maternal adverse effects were highlighted for the last 50 years but red flags were raised for its association with NEC and SIP in preterm infants since 2014 [27]. MgSO₄ at higher cumulative doses and smaller infants (<25 weeks) increased the odds of NEC and SIP by 2-9 times [27, 28]. Contrasting evidence with absolutely no association was found in large observational studies [29, 63]. This difference could be explained by the adjustment of confounding factors for SIP/NEC in the later studies, for example, the use of steroids, indomethacin, small for gestational, and use of mechanical ventilation. We found no association between MgSO₄ and NEC when adjusted odds ratio (aOR) was analysed, with a caveat that the adjusted confounding factors were not uniform across all studies and only 7 studies [29, 53, 54, 63, 66, 70, 75] reported the adjusted data (Shown in Fig. 4).

Various hypotheses were proposed for the association between antenatal MgSO₄ and adverse GI-outcomes. These include calcium antagonism and decreasing actin-myosin interaction, intestinal hypomotility, increased resistance, and reduction of blood flow in the mesenteric artery. Our results are consistent with the results of the previous meta-analysis [4, 32]. Zeng et al reported on cerebral palsy and overall mortality with ten studies included and Shepherd et al reported-on NEC, SIP and NEC/SIP-related death as a part of an overall review of neonatal outcomes of antenatal MgSO₄. However the previous reviews [4, 32] were not specific to the GI-outcomes, the number of included studies were significantly less compared to the current review which justifies the need for extensive and updated review.

We found that the antenatal MgSO₄ group had decreased the incidence of surgical NEC by 26%. This finding is contrary to the conventional reports from previous studies [27, 28]. The reduced incidence of surgical NEC in preterm infants exposed to antenatal MgSO₄ had been reported in previous observational studies [31, 63]. This positive effect could be due to the attenuation of peroxide-induced vasoconstriction by inhibiting thromboxane synthesis [79]. Thromboxane is an inciting agent for NEC [34]. MgSO₄ also increases the blood flow by vasodilatation [79]. We also attribute the beneficial effects due to the overall benefit of MgSO₄ in preterm infants and the fact that infants in the MgSO₄ group could be less sick and more hemodynamically stable. This observation needs further exploration by larger studies.

The effect of MgSO4 on intestinal blood flow indices is inconclusive. Theoretically, $MgSO_4$ will induce vasodilatation by calcium antagonism, attenuation of peroxide-induced vasoconstriction, inhibition of platelet activation induced by adenosine diphosphate, and release of vasoactive substances [79, 80]. Studies reporting on blood flow velocities in mesenteric arteries were limited [20, 21, 73] and none reported any significant change in mean velocity, end-diastolic velocity, peak systolic velocity, or the resistivity index between the two groups (online supplementary file).

CONCLUSIONS AND IMPLICATIONS

Our study findings do not support any clear association between antenatal magnesium sulfate administration and adverse gastrointestinal morbidities or gastrointestinal-related mortality in preterm infants. Concerns regarding the adverse effects of antenatal MgSO₄ administration on GI morbidity or mortality should not be a hurdle in its routine use when indicated. This review should encourage clinicians to not deviate from feeding practices in the neonatal units when premature infants are exposed to antenatal MgSO₄. The biological plausibility of MgSO₄ causing NEC or SIP by decreased blood flow in mesenteric arteries needs further studies.

Strengths and limitations

The strength of this meta-analysis was that we used a comprehensive search strategy for our literature search, published our protocol a priori, and assessed the certainty of evidence using GRADE. To our knowledge, this is the largest meta-analysis on adverse neonatal GI outcomes and antenatal MgSO₄. Nonetheless, there were several limitations. The majority of the studies were non-randomized, studies were heterogeneous, variable doses of MgSO₄ were used in different studies and dose-related associations were not evaluated.

DATA AVAILABILITY

All data included in the analysis are available in public domain. The details including search strategy, list of excluded studies with reason for exclusion, risk of bias assessment and quality assessment of included studies are all available in the online supplementary file.

REFERENCES

1. Mittendorf R. Magnesium sulfate tocolysis: time to quit. Obstet Gynecol. 2007;109:1204–5.

- Nelson KB, Grether JK. Can magnesium sulfate reduce the risk of cerebral palsy in very low birthweight infants? Pediatrics. 1995;95:263–9.
- Costantine MM, Weiner SJ, Eunice Kennedy Shriver National Institute of Child H, Human Development Maternal-Fetal Medicine Units N. Effects of antenatal exposure to magnesium sulfate on neuroprotection and mortality in preterm infants: a meta-analysis. Obstet Gynecol. 2009;114:354–64.
- Zeng X, Xue Y, Tian Q, Sun R, An R. Effects and safety of magnesium sulfate on neuroprotection: a meta-analysis based on PRISMA guidelines. Medicine (Baltimore). 2016;95:e2451.
- 5. Committee Opinion No. 455. Magnesium sulfate before anticipated preterm birth for neuroprotection. Obstet Gynecol. 2010;115:669–71.
- WHO recommendations on interventions to improve preterm birth outcomes. Geneva, Switzerland: World Health Organization; 2015.
- Crowther CA, Middleton PF, Voysey M, Askie L, Duley L, Pryde PG, et al. Assessing the neuroprotective benefits for babies of antenatal magnesium sulphate: an individual participant data meta-analysis. PLoS Med. 2017;14:e1002398.
- Wilson A, Hodgetts-Morton VA, Marson EJ, Markland AD, Larkai E, Papadopoulou A, et al. Tocolytics for delaying preterm birth: a network meta-analysis (0924). Cochrane Database Syst Rev. 2022;8:CD014978.
- 9. Duley L, Gulmezoglu AM, Henderson-Smart DJ, Chou D. Magnesium sulphate and other anticonvulsants for women with pre-eclampsia. Cochrane Database Syst Rev. 2010;2010:CD000025.
- Cruikshank DP, Pitkin RM, Reynolds WA, Williams GA, Hargis GK. Effects of magnesium sulfate treatment on perinatal calcium metabolism. I. Maternal and fetal responses. Am J Obstet Gynecol. 1979;134:243–9.
- 11. Lu JF, Nightingale CH. Magnesium sulfate in eclampsia and pre-eclampsia: pharmacokinetic principles. Clin Pharmacokinet. 2000;38:305–14.
- Santafe MM, Garcia N, Lanuza MA, Tomas M, Besalduch N, Tomas J. Presynaptic muscarinic receptors, calcium channels, and protein kinase C modulate the functional disconnection of weak inputs at polyinnervated neonatal neuromuscular synapses. J Neurosci Res. 2009;87:1195–206.
- Riaz M, Porat R, Brodsky NL, Hurt H. The effects of maternal magnesium sulfate treatment on newborns: a prospective controlled study. J Perinatol. 1998;18:449–54.
- Rantonen T, Kaapa P, Jalonen J, Ekblad U, Peltola O, Valimaki I, et al. Antenatal magnesium sulphate exposure is associated with prolonged parathyroid hormone suppression in preterm neonates. Acta Paediatr. 2001;90:278–81.
- Malaeb SN, Rassi Al, Haddad MC, Seoud MA, Yunis KA. Bone mineralization in newborns whose mothers received magnesium sulphate for tocolysis of premature labour. Pediatr Radio. 2004;34:384–6.
- Mehta R, Petrova A. Intrapartum magnesium sulfate exposure attenuates neutrophil function in preterm neonates. Biol Neonate. 2006;89:99–103.
- Gordon PV, Price WA, Stiles AD, Rutledge JC. Early postnatal dexamethasone diminishes transforming growth factor alpha localization within the ileal muscularis propria of newborn mice and extremely low-birth-weight infants. Pediatr Dev Pathol. 2001;4:532–7.
- Gordon PV, Paxton JB, Herman AC, Carlisle EM, Fox NS. Igf-I accelerates ileal epithelial cell migration in culture and newborn mice and may be a mediator of steroid-induced maturation. Pediatr Res. 2004;55:34–41.
- Iams J. CR, In: Creasy RK RR, Iams J, Lockwood, C MTe. Preterm labor and delivery. Maternal-Fetal Medicine: Principles and Practice. 2004. pp 623–61.
- Havranek T, Ashmeade TL, Afanador M, Carver JD. Effects of maternal magnesium sulfate administration on intestinal blood flow velocity in preterm neonates. Neonatology. 2011;100:44–9.
- Gursoy T, Imamoglu EY, Ovali F, Karatekin G. Effects of antenatal magnesium exposure on intestinal blood flow and outcome in preterm neonates. Am J Perinatol. 2015;32:1064–9.
- 22. Fang S, Kempley ST, Gamsu HR. Prediction of early tolerance to enteral feeding in preterm infants by measurement of superior mesenteric artery blood flow velocity. Arch Dis Child Fetal Neonatal Ed. 2001;85:F42–5.
- Robel-Tillig E, Knupfer M, Pulzer F, Vogtmann C. Blood flow parameters of the superior mesenteric artery as an early predictor of intestinal dysmotility in preterm infants. Pediatr Radio. 2004;34:958–62.
- Maruyama K, Koizumi T, Tomomasa T, Morikawa A. Intestinal blood-flow velocity in uncomplicated preterm infants during the early neonatal period. Pediatr Radio. 1999;29:472–7.
- Coombs RC, Morgan ME, Durbin GM, Booth IW, McNeish AS. Abnormal gut blood flow velocities in neonates at risk of necrotising enterocolitis. J Pediatr Gastroenterol Nutr. 1992;15:13–9.
- Kempley ST, Gamsu HR. Superior mesenteric artery blood flow velocity in necrotising enterocolitis. Arch Dis Child. 1992;67:793–6.
- Rattray BN, Kraus DM, Drinker LR, Goldberg RN, Tanaka DT, Cotten CM. Antenatal magnesium sulfate and spontaneous intestinal perforation in infants less than 25 weeks gestation. J Perinatol. 2014;34:819–22.

- Kamyar M, Clark EA, Yoder BA, Varner MW, Manuck TA. Antenatal magnesium sulfate, necrotizing enterocolitis, and death among neonates <28 weeks gestation. AJP Rep. 2016;6:e148–54.
- Shalabi M, Mohamed A, Lemyre B, Aziz K, Faucher D, Shah PS, et al. Antenatal exposure to magnesium sulfate and spontaneous intestinal perforation and necrotizing enterocolitis in extremely preterm neonates. Am J Perinatol. 2017;34:1227–33.
- Wiswell TE, Caddell JL, Graziani LJ, Kornhauser MS, Spitzer AR. Maternallyadministered magne- sium sulfate (MgSO4) decreases the incidence of severe necrotizing enterocolitis (NEC) in preterm infants: a prospective study. Pediatr Res. 1996;39:1501.
- Mikhael M, Bronson C, Zhang L, Curran M, Rodriguez H, Bhakta KY. Lack of evidence for time or dose relationship between antenatal magnesium sulfate and intestinal injury in extremely preterm neonates. Neonatology. 2019;115:371–8.
- Shepherd E, Salam RA, Manhas D, Synnes A, Middleton P, Makrides M, et al. Antenatal magnesium sulphate and adverse neonatal outcomes: a systematic review and meta-analysis. PLoS Med. 2019;16:e1002988.
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.
- Walsh MC, Kliegman RM. Necrotizing enterocolitis: treatment based on staging criteria. Pediatr Clin North Am. 1986;33:179–201.
- Meyer CL, Payne NR, Roback SA. Spontaneous, isolated intestinal perforations in neonates with birth weight less than 1000 g not associated with necrotizing enterocolitis. J Pediatr Surg. 1991;26:714–7.
- Cumpston M, Li T, Page MJ, Chandler J, Welch VA, Higgins J, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. 2019;10:ED000142.
- Wells G, Shea B, O'Connell D, Peterson J, Welch v, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in metaanalyses. 2012.
- Schunemann HJ. GRADE: from grading the evidence to developing recommendations. A description of the system and a proposal regarding the transferability of the results of clinical research to clinical practice. Z Evid Fortbild Qual Gesundh. 2009;103:391–400.
- Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135.
- Crowther CA, Hiller JE, Doyle LW, Haslam RR. Effect of magnesium sulfate given for neuroprotection before preterm birth: a randomized controlled trial. Jama. 2003;290:2669–76.
- Gupta NGR, Gupta A, Garg R, Mishra S. Magnesium sulfate for fetal neuroprotection in women at risk of preterm birth: analysis of its effect on cerebral palsy. J South Asian Feder Obst Gynae. 2021;13:90–3.
- Marret S, Marpeau L, Zupan-Simunek V, Eurin D, Leveque C, Hellot M-F, et al. Magnesium sulphate given before very-preterm birth to protect infant brain: the randomised controlled PREMAG trial*. Bjog. 2007;114:310–8.
- Paradisis M, Osborn DA, Evans N, Kluckow M. Randomized controlled trial of magnesium sulfate in women at risk of preterm delivery-neonatal cardiovascular effects. J Perinatol. 2012;32:665–70.
- Rouse DJ, Hirtz DG, Thom E, Varner MW, Spong CY, Mercer BM, et al. A randomized, controlled trial of magnesium sulfate for the prevention of cerebral palsy. N Engl J Med. 2008;359:895–905.
- Wolf HT, Brok J, Henriksen TB, Greisen G, Salvig JD, Pryds O, et al. Antenatal magnesium sulphate for the prevention of cerebral palsy in infants born preterm: a doubleblind, randomised, placebo-controlled, multi-centre trial. BJOG. 2020;127:1217–25.
- de Veciana M, Porto M, Major CA, Barke JI. Tocolysis in advanced preterm labor: impact on neonatal outcome. Am J Perinatol. 1995;12:294–8.
- Schanler RJ, Smith LG Jr, Burns PA. Effects of long-term maternal intravenous magnesium sulfate therapy on neonatal calcium metabolism and bone mineral content. Gynecol Obstet Invest. 1997;43:236–41.
- 48. Kimberlin DF, Hauth JC, Goldenberg RL, Bottoms SF, Iams JD, Mercer B, et al. The effect of maternal magnesium sulfate treatment on neonatal morbidity in < or = 1000-gram infants. Am J Perinatol. 1998;15:635–41.
- Elimian A, Verma R, Ogburn P, Wiencek V, Spitzer A, Quirk JG. Magnesium sulfate and neonatal outcomes of preterm neonates. J Matern Fetal Neonatal Med. 2002;12:118–22.
- Jazayeri A, Jazayeri MK, Sutkin G. Tocolysis does not improve neonatal outcome in patients with preterm rupture of membranes. Am J Perinatol. 2003;20:189–93.
- Yokoyama K, Takahashi N, Yada Y, Koike Y, Kawamata R, Uehara R, et al. Prolonged maternal magnesium administration and bone metabolism in neonates. Early Hum Dev. 2010;86:187–91.

- Basu SK, Chickajajur V, Lopez V, Bhutada A, Pagala M, Rastogi S. Immediate clinical outcomes in preterm neonates receiving antenatal magnesium for neuroprotection. J Perinat Med. 2011;40:185–9.
- Lee NY, Cho SJ, Park EA. Influence of antenatal magnesium sulfate exposure on perinatal outcomes in VLBW infants with maternal preeclampsia. Neonatal Med. 2013;20:28–34.
- Weisz DE, Shivananda S, Asztalos E, Yee W, Synnes A, Lee SK, et al. Intrapartum magnesium sulfate and need for intensive delivery room resuscitation. Arch Dis Child Fetal Neonatal Ed. 2015;100:F59–65.
- James AT, Corcoran JD, Hayes B, Franklin O, El-Khuffash A. The effect of antenatal magnesium sulfate on left ventricular afterload and myocardial function measured using deformation and rotational mechanics imaging. J Perinatol. 2015;35:913–8.
- Suh BS, Ko KH, Bang JS, Joung Y, Lee YJ, Lee JW, et al. Neonatal outcomes of premature infants who were delivered from mother with hypertensive disorders of pregnancy and effects of antihypertensive drugs and MgSO4. kjp. 2015;26:190–9.
- Bouet PE, Brun S, Madar H, Baisson AL, Courtay V, Gascoin-Lachambre G, et al. Implementation of an antenatal magnesium sulfate protocol for fetal neuroprotection in preterm infants. Sci Rep. 2015;5:14732.
- Bozkurt O, Eras Z, Canpolat FE, Oguz SS, Uras N, Dilmen U. Antenatal magnesium sulfate and neurodevelopmental outcome of preterm infants born to preeclamptic mothers. J Matern Fetal Neonatal Med. 2016;29:1101–4.
- De Jesus LC, Sood BG, Shankaran S, Kendrick D, Das A, Bell EF, et al. Antenatal magnesium sulfate exposure and acute cardiorespiratory events in preterm infants. Am J Obstet Gynecol. 2015;212:94.e91–7.
- Morag I, Okrent AL, Strauss T, Staretz-Chacham O, Kuint J, Simchen MJ, et al. Early neonatal morbidities and associated modifiable and non-modifiable risk factors in a cohort of infants born at 34-35 weeks of gestation. J Matern Fetal Neonatal Med. 2015;28:876–82.
- Garcia Alonso L, Pumarada Prieto M, Gonzalez Colmenero E, Concheiro Guisan A, Suarez Albo A, Duran Fernandez-Feijoo C, et al. Prenatal therapy with magnesium sulfate and its correlation with neonatal serum magnesium concentration. Am J Perinatol. 2018;35:170–6.
- 62. Lloreda-Garcia JM, Lorente-Nicolás A, Bermejo-Costa F, Martínez-Uriarte J, López-Pérez R. Necesidad de reanimación en prematuros menores de 32 semanas expuestos a sulfato de magnesio para neuroprotección fetal. Rev Chil de Pediatría. 2016;87:261–7.
- Downey LC, Cotten CM, Hornik CP, Laughon MM, Toila VN, Clark RH, et al. Association of in utero magnesium exposure and spontaneous intestinal perforations in extremely low birth weight infants. J Perinatol. 2017;37:641–4.
- Jung EJ, Byun JM, Kim YN, Lee KB, Sung MS, Kim KT, et al. Antenatal magnesium sulfate for both tocolysis and fetal neuroprotection in premature rupture of the membranes before 32 weeks' gestation. J Matern Fetal Neonatal Med. 2018;31:1431–41.
- Narasimhulu D, Brown A, Egbert NM, Rojas M, Haberman S, Bhutada A, et al. Maternal magnesium therapy, neonatal serum magnesium concentration and immediate neonatal outcomes. J Perinatol. 2017;37:1297–303.
- Stockley EL, Ting JY, Kingdom JC, McDonald SD, Barrett JF, Synnes AR, et al. Intrapartum magnesium sulfate is associated with neuroprotection in growthrestricted fetuses. Am J Obstet Gynecol. 2018;219:606.e601–606.e608.
- Qasim A, Jain SK, Aly AM. Antenatal magnesium sulfate exposure and hemodynamically significant patent ductus arteriosus in premature infants. AJP Rep. 2019;9:e353–6.
- Özlü F, Hacıoğlu C, Büyükkurt S, Yapıcıoğlu H, Satar M. Changes on preterm morbidities with antenatal magnesium. Cukurova Med J. 2019;44:502–8.
- 69. Gochi Valdovinos A, Arriaga-Redondo M, Dejuan Bitriá E, Pérez Rodríguez I, Márquez Isidro E, Blanco Bravo D. Terapia prenatal con sulfato de magnesio y obstrucción intestinal por meconio en recién nacidos pretérmino. An de Pediatría. 2022;96:138–44.
- Hong JY, Hong JY, Choi YS, Kim YM, Sung JH, Choi SJ, et al. Antenatal magnesium sulfate treatment and risk of necrotizing enterocolitis in preterm infants born at less than 32 weeks of gestation. Sci Rep. 2020;10:12826.
- Kim SH, Kim YJ, Shin SH, Cho H, Shin SH, Kim EK, et al. Antenatal magnesium sulfate and intestinal morbidities in preterm infants with extremely low gestational age. Pediatr Neonatol. 2021;62:202–7.
- Üstün N, Hocaoğlu M, Turgut A, Ovalı F. Effects of antenatal magnesium sulfate use for neuroprotection on cardiorespiratory complications during the early neonatal period in preterm infants. J Surg Med [Internet]. 2021;5:843–7.
- 73. Chandran S, Tergestina M, Ross B, Joshi A, Rebekah G, Kumar M. Effects of antenatal magnesium sulfate on the gut function of preterm (<32 weeks) very low birth weight neonates: experience from a Tertiary Institute in South India. J Trop Pediatr. 2021;67:1–9.

- 1100
- Ayed M, Ahmed J, More K, Ayed A, Husain H, AlQurashi A, et al. Antenatal magnesium sulfate for preterm neuroprotection: a single-center experience from Kuwait Tertiary NICU. Biomed Hub. 2022;7:80–7.
- Sung SI, Ahn SY, Choi SJ, Oh SY, Roh CR, Yang M, et al. Increased risk of meconium-related ileus in extremely premature infants exposed to antenatal magnesium sulfate. Neonatology. 2022;119:68–76.
- Bansal V, Desai A. Efficacy of antenatal magnesium sulfate for neuroprotection in extreme prematurity: a comparative observational study. J Obstet Gynaecol India. 2022;72:36–47.
- 77. Özlü F, Hacıoğlu C, Büyükkurt S, Yapıcıoğlu H, Satar M. Changes on preterm morbidities with antenatal magnesium. Cukurova Med J. 2019;44:502–8.
- Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.
- 79. Krinsky DL. Natural products: show me the data. Am J Health Syst Pharm. 1998;55:125.
- Ghidini A, Espada RA, Spong CY. Does exposure to magnesium sulfate in utero decrease the risk of necrotizing enterocolitis in premature infants? Acta Obstet Gynecol Scand. 2001;80:126–9.

AUTHOR CONTRIBUTIONS

AP: conceptualized, formulated the research methodology, performed formal analysis, curated data, and wrote the original draft, reviewed and edited the manuscript. Nell Aronoff participated in formulating the research methodology and provided resources for the literature search. She also contributed to writing, reviewing, and editing the manuscript. PC: administered the project and also contributed to manuscript writing, reviewing and editing. SD: conceptualized, formulated the research methodology, performed formal analysis, curated data, wrote the original draft, reviewed, edited the manuscript, supervised/administered

the whole project and guarantor for the project. All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

COMPETING INTERESTS

AP, NA, and SD: have no relevant conflicts to disclose. PC: was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD; grant number: R01HD104909 and the National Institutes of Health (NIH)/ National Heart Lung and Blood Institute (NHLBI; grant no.: K12 HL138052). The results of this manuscript are not supported or endorsed by any of the funding institutions.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41372-023-01710-8.

Correspondence and requests for materials should be addressed to Shivashankar Diggikar.

Reprints and permission information is available at http://www.nature.com/ reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.