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Abstract

Brain injury is one of the most consequential problems facing neonates, with many preterm and term infants at risk for
cerebral hypoxia and ischemia. To develop effective neuroprotective strategies, the mechanistic basis for brain injury must
be understood. The fragile state of neonates presents unique research challenges; invasive measures of cerebral blood flow
and oxygenation assessment exceed tolerable risk profiles. Near-infrared spectroscopy (NIRS) can safely and non-invasively
estimate cerebral oxygenation, a correlate of cerebral perfusion, offering insight into brain injury-related mechanisms.
Unfortunately, lack of standardization in device application, recording methods, and error/artifact correction have left the
field fractured. In this article, we provide a framework for neonatal NIRS research. Our goal is to provide a rational basis for
NIRS data capture and processing that may result in better comparability between studies. It is also intended to serve as a
primer for new NIRS researchers and assist with investigation initiation.

Introduction

Brain injury is an important and consequential problem
faced by many infants in the neonatal intensive care unit
(NICU). Understanding injury mechanisms and developing
tools for early intervention to enhance neuroprotection are
high priorities. Near-infrared spectroscopy (NIRS) is a pro-
mising technology that allows noninvasive assessment of
cerebral oxygenation on a bedside monitor [1, 2]. It has been
widely adopted over the past two decades for research and is
now increasingly being deployed for clinical use [3-5].
However, the use of NIRS to monitor regional tissue
oxygenation in neonates remains a widely fractured field.
This is likely a consequence of absent standards and coor-
dination of the various stages of NIRS monitoring,
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including data capture, processing, and methods for asses-
sing oxygenation, oxygen extraction, and autoregulation.
For autoregulation specifically, there have been numerous
studies with concordant findings, but significant differences
in approach make comparing trials a daunting task [6—10].

In this manuscript, we provide an overview of NIRS
monitoring in the neonate, approaches for capturing data
from commonly used devices, data handling methods, and
techniques to assess NIRS-based cerebral autoregulation.
These guidelines are intended for use in the neonatal
population and cover a broad range of equipment and
software. We conclude with a set of recommended prac-
tices, with the aim of providing a foundation for future
neonatal NIRS practices.

Equipment
NIRS fundamentals

NIRS is a non-invasive technique for measuring the per-
centage of saturated hemoglobin in a target tissue. It relies
on two physical principles: differential absorption of near-
infrared light and the modified Beer-Lambert law [11].
NIRS devices utilize light in the near-infrared band
(700-900 nm), to which skin, bone, and connective tissue
are mostly transparent [12, 13]. As NIR light diffuses into
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Fig. 1 Absorption coefficients of oxy- and deoxyhemoglobin in the
infrared and near-infrared spectrum. Note the marked difference at
~700 nm, a difference leveraged in NIRS monitoring.

the tissue, it interacts with hemoglobin in four different
ways: absorption, reflection, scattering, and transmission
[13]. Although transmitted and absorbed light are lost and
not returned to the sensor, a portion of the source light is
reflected back to the sensor, and a smaller portion is scat-
tered by motion, generally, blood flowing through arteries.
Over the time frame of a typical NIRS recording, the
underlying structure of the monitored tissue remains con-
stant, therefore reflection, transmission, and scattering are
assumed to be constant as well.

Thus, the only variable optical factor is absorption, which
changes based on the degree of oxygen saturation. The
absorption spectra of oxy- and deoxyhemoglobin in the near-
infrared band are different, with greater absorption by deox-
yhemoglobin (Fig. 1). Light of at least two different wave-
lengths (above and below 810nm) is applied to tissues of
interest, and the relative concentration of oxygenated and
deoxygenated hemoglobin is estimated using the modified
Beer—Lambert law, thus providing an index of tissue oxyge-
nation [14]. Experimental NIRS systems utilize other optical
properties and wavelengths of light as detailed below.

Unlike pulse oximetry, NIRS measurements are not pulse-
synchronized and thus not limited to arterial hemoglobin
sources. Instead, the light interrogates arterial, venous, and
capillary beds, providing a regionalized composite measure.
Given that only ~30% of blood is intraarterial at any given
time in most tissues, NIRS monitoring provides an approx-
imate 30/70 arterial/venous-weighted estimate of oxygen
saturation [15, 16] which closely parallels jugular venous
oxygen saturation [17].

Commercial NIRS monitors

A range of commercially available NIRS monitors with
neonatal indications is listed in Table 1. Although all NIRS
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Table 1 Commercially available NIRS devices with neonatal
indications.

Device Name Manufacturer Regulatory approval®

BabyLux BabyLux Project Pre-market testing,
investigational use only
EGOS-600 Tsinghua China
University
FORE- Edwards USA, EU, Japan
SIGHT Elite
INVOS 5100c¢ Medtronic USA, EU, Japan
MetaOx ISS Pre-market testing,
investigational use only
NIRO 200NX Hamamatsu USA, EU, Japan
Photonics
03 Masimo USA
OxyPrem 1.4 OxyPrem EU
SenSmart X-100 Nonin USA, EU, Japan

2USA approval indicates 510(k) clearance by FDA, China approval
indicates CFDA clearance, EU approval indicates CE marking, Japan
approval indicates certification from PMDA.

monitors operate under the fundamentals described pre-
viously, each contains proprietary signal-processing algo-
rithms. While this systematic difference in measured
saturation precludes comparison of absolute measurements,
head-to-head comparison (NIRO vs. INVOS [18, 19],
Nonin vs. ForeSight [20], INVOS vs. ForeSight [21]) of
competing devices demonstrates the generally strong cor-
relation between devices, supporting the notion that, despite
proprietary differences, they are largely equivalent. Further,
recent publications by Kleiser using a blood-lipid phantom
have mathematically modeled the differences between
devices, allowing for precise correction of measurements
between devices [22-24].

Research monitors

Although there is some variation in emitter-detector dif-
ference and wavelength selection, all commercial NIRS
devices use a single probe to detect regional oxygenation.
Several different research optical devices are currently in
development which greatly extend this technology into new
avenues and may provide valuable additional information
beyond regional tissue oxygenation.

One such technique is diffuse correlation spectroscopy
(DCS). While currently available commercial NIRS devices
utilize only differences in light absorption between oxyhe-
moglobin and deoxyhemoglobin, DCS also detects the
scattering of light from moving red blood cells, enabling
measurement of cerebral blood flow in addition to saturation
[25]. DCS systems have been validated for neonates in a
number of studies [26, 27], including infants with
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congenital heart disease [28]. In a recent publication, the
prototype BabyLux commercial DCS system was detailed
[29].

Another technology, functional NIRS (fNIRS) or the
more advanced derivative diffuse optical tomography
(DOT), utilizes 10-20 or more individual optical channels
embedded in “caps” with fixed optode positions. By syn-
chronized capture of all channels, the system reconstructs
three-dimensional cerebral oxygenation patterns across
large regions of the cerebral cortex [30]. In this manner,
changes in regional oxygenation in the setting of injury or
response to stimuli can reveal metabolically connected
networks, similar to functional MRI [31, 32]. In neonates,
DOT has been used to classify the hemodynamic response
during seizures [33] and for the detection of intraventricular
hemorrhage [34].

Finally, broadband NIRS is a relatively new technique
that has recently been applied to neonates. Unlike conven-
tional NIRS which utilizes 3-5 fixed wavelengths of light,
broadband NIRS utilizes more than 100 frequencies of light
to characterize cytochrome-c-oxidase (CCO), the terminal
electron acceptor in the electron transport chain [35].
Changes in the oxidation state of CCO can be detected
using broadband NIRS and are thought to be more reflective
of brain metabolism than oxy-/deoxyhemoglobin con-
centration [36]. Given the small concentration of CCO in
the brain and confounding by competing for absorption by
hemoglobin, CCO measurement has only recently become
practical. Broadband NIRS has been demonstrated in piglet
models of HIE [37] as well as pilot studies of human neo-
nates with HIE [35, 38].

Probes

The majority of commercial NIRS monitors have specific
pediatric or neonatal-sized sensors available. Beyond phy-
sical size differences from the adult probes, pediatric and
neonatal probes also have shorter distances between the
emitting light source and the detectors, altering the depth of
penetration to provide greater sensitivity to signals trans-
mitted through the thinner skull of an infant [39]. Differ-
ences in tissue saturation values between adult, pediatric,
and neonatal sensors may range between 10% and 14%
[20]. In addition, reference values for cerebral oxygenation
measures in preterm infants have been based on studies
using small adult sensors [40, 41], with the limited inves-
tigation into the optimal adjustment required for neonatal
sensors [20].

The selection of a NIRS device is an institutional deci-
sion beyond the scope of this report. Key factors to consider
include: device and sensor costs, availability of adhesive
and non-adhesive probes (particularly important for preterm
infants), availability of single-use or reusable probes, ease

of cleaning for infection control, regional regulatory
approval (allowing research and clinical use on the same
devices), and compatibility with existing monitoring hard-
ware. A non-exhaustive search of prospective cerebral
oxygenation studies reveals that the bulk of neonatal NIRS
research has been conducted with the INVOS (Medtronic,
Minneapolis, MN, USA), NIRO (Hamamatsu Photonics,
Hamamatsu City, Shizuoka, Japan), and ForeSight
(Edwards Lifesciences, Irvine, CA, USA) devices.

Data capture options

Commercially available NIRS devices are primarily inten-
ded for clinical use with a focus on trend monitoring and not
long-term analysis. As such, recording data is a secondary
consideration that requires additional planning, infra-
structure, and costs. Key fundamentals of data capture
platforms include (a) synchronized capture of comprehen-
sive vital signs, (b) accurate time/date information, and (c)
protection against data loss. Potential data capture approa-
ches, including advantages and disadvantages, are presented
as follows. Regardless of the method used, data should be
captured at the highest possible sampling rate [42].

Local device

The simplest approach to capturing NIRS data is a direct
download from NIRS devices. Several manufacturers pro-
vide a USB interface for this purpose, including the
Hamamatsu, INVOS, and ForeSight devices. While this
approach is the most straightforward, it has several draw-
backs. First, data can only be downloaded after a monitor-
ing session is complete. Power interruption or accidental
deletion from the device can result in data loss, and the
limited memory capacity on each device may result in data
files being overwritten if not routinely downloaded. Second,
this approach only permits the capture of NIRS data; other
vital signs are not included in the file. Thus, data captured in
this manner needs to be externally harmonized with other
vital sign information. Finally, the time stamp for this NIRS
data originates from the NIRS device clock, which is fre-
quently not adjusted for daylight savings time or maybe
reset in the case of power loss.

Central-hub and central-server data capture

To coordinate the synchronized capture of physiologic
signals from multiple sources, a central computer is needed
to receive the data and store it in a single, aggregated file.
The typical “central-hub” strategy utilizes a laptop compu-
ter at the patient’s bedside which is physically connected to
the NIRS monitor, the patient monitor, the ventilator, or a

SPRINGER NATURE



678

Z. A. Vesoulis et al.

host of other devices. This approach is advantageous in that
the computer provides the timing data, so only one clock
must be checked before starting the recording and the
software writes the data directly to disk so that if there is a
power interruption, previously recorded data is not lost.
Some software packages also include integrated analytic
tools, providing a low-resistance path for new investigators.
The most significant disadvantage to the “central-hub”
model is that generally requires the additional purchase of
hardware (laptops, computer cabling) or software and may
impose restrictions with limited device compatibility.

A variation on this method for data capture is the “cen-
tral-server” model, where individual monitoring devices
connect over a network to a centrally located server. The
approach shares the same advantage of synchronized timing
and adds the advantage of mostly automated capture,
requiring minimal input from users to start and stop the
recording and no need for a laptop at each patient’s bedside.
The significant disadvantage is that it is the most complex
solution, from an infrastructure standpoint, often requiring
significant capital expense.

Software packages from NIRS manufacturers, as well as
third-party software and hardware vendors, are listed in
Table 2. Examples of INVOS and ForeSight capture con-
figurations are shown in Fig. 2.

Recommendations for data capture

To analyze cerebrovascular hemodynamic data, important
steps must be taken in the organization and format of cap-
tured data. Standardized data formatting will allow for easy
exchange in multi-center collaborative efforts, the devel-
opment of improved analytic tools, and the elimination of
unnecessary conversion work. Three data storage principles
are important to consider—open data format, consistent
time stamping, and synchronization.

Open format

As previously noted, some software/hardware combinations
result in files in a proprietary format. This is dis-
advantageous for several reasons. First, technological
advances will eventually render most formats obsolete,
requiring maintaining legacy systems and/or conversion
tools to allow continued use of files originating in these
systems. Second, proprietary formats may prevent sharing
with other investigators lacking the same platform. Third,
corruption of data files may result in data lossless man-
ageable than using nonproprietary systems.

In contrast, open file formats, notably comma-separated
value (CSV), are not proprietary or platform-specific and
can be accessed using a wide range of tools. Processing
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tools to summarize data and validate data integrity can be
more widely applied with open formats. In addition, CSV
files are also tolerant of corruption; although there will be
data loss in the corrupted region of the file, the remainder
of the file is usually accessible. However, CSV is not a
particularly efficient format, resulting in significantly lar-
ger files than other formats. However, given the low
relative costs of file storage, this has become less of a
concern.

Timestamping

Accurate time stamping is essential for quantitative analysis
of NIRS signals. There are several approaches to recording
time data that may apply in different scenarios. The most
ideal approach records to date and time information in an
unambiguous fashion. One approach is to utilize the format
published by the International Organization for Standards
like ISO 8601 [43] which represents dates as YYYY-MM-
DD where yyyy is a four-digit year, mm is the two-digit
month, and dd is the two-digit date. ISO 8601 also includes
a standard format for time representation, hh:mm:ss, where
hh represents hours on a 24-h clock, mm is minutes, and ss
is seconds.

An alternative approach is to use Unix timestamps,
which is a system for describing time as the number of
seconds which have elapsed since the “Unix epoch,”
00:00:00 Jan 1, 1970, UTC, accounting for leap seconds
[44]. As a decimal value, Unix time-stamp data is easy to
utilize for date/time manipulations as it is an integer value
such as 1584316920. A distinct disadvantage of Unix time
is the loss of daylight saving or time zone information, as all
time is referenced to UTC, the successor to Greenwich
Mean Time, and is not adjusted for daylight saving. Careful
attention must be paid when comparing local time events
(such as time of birth, medication administration, etc.) to
data recorded in Unix time to ensure the correct offset is
applied for locale and DST.

A consistent approach to time stamps should be an
achievable priority for the NIRS research community.

Safety and privacy

Digital recordings offer significant convenience and are
easily transferred between investigators facilitating colla-
borative research. This ease of use is also the source of
potential safety and privacy concerns. Physiologic record-
ings are patient medical records and are subject to privacy
laws such as HIPAA, PIPEDA, and GDPR. To maintain
compliance with these regulations, all recordings should be
de-identified, encrypted, and stored in locations with access
controls (requiring a login that can be audited) and not on
USB flash drives or external hard drives [45].
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Fig. 2 Examples of two
different device
configurations. On the left, an
INVOS 5100c is integrated with
a Moberg CNS monitor. On the
right, a ForeSight Elite is
integrated with a laptop
computer. Both setups utilize
portable rolling stands, allowing
easy movement between
patients.

For files that are shared with other investigators,
researchers may wish to remove identifiable dates and
times. One approach is to shift the date or time by a fixed
amount of time. Alternatively, the time column could be
recalculated, for example as the number of seconds since
the start of the recording or the number of seconds since
birth [46]. However, once recalculated, it is no longer
possible to cross-reference time information with external
events (such as the initiation of a medication or a known
clinical event). In addition, serial time numbers should be
recorded in actual units of time (i.e., seconds) so that the
sampling rate can be ascertained by others.

Synchronization

Cerebral oximetry measures alone are not sufficient to cal-
culate cerebrovascular autoregulatory function. At least one
other source of information (e.g., arterial blood pressure,
heart rate, or pulse oximetry) must be used. These other data
streams can be used for autoregulatory assessment in
addition to error detection and/or correction. However,
synchronized recording of these multiple signals is essential
for this process to work correctly.

As noted earlier, there are two ways to address this
challenge. One approach is to synchronize all monitoring
signals into a central monitoring device and sample data
directly from the central device. The use of IntelliBridge
modules to connect peripheral monitors to a Philips patient
monitor is an example of this approach. Alternatively, a
bedside computer (or networked server) could serve as the
hub for multiple devices. Each device will need to have a
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physical connection (via serial or network cable) to the hub
computer. The Medtronic VitalSync and CAS/Edwards FS
DAQ software packages are examples of this approach. A
third, significantly less ideal option can be used when
separate recording systems are used for each device. In this
scenario, a “time mark” can be entered as an annotation in
the recording stream. After the recording is complete, each
individual file can be combined into a composite file,
aligned by the “time mark” point. For this approach to
work, it requires the user to press a button on two or more
devices at exactly the same time and also requires each
device clock to be precisely synchronized.

Approaches to error correction

Physiologic data collected in the NICU is contaminated
with signal noise and artifacts. The challenge for researchers
is to deploy artifact or error correction tools that reduce the
impact of these outliers without accidentally removing valid
data or creating significant gaps. Although some methods
for cerebrovascular modeling tolerate some degree of
missing data, large gaps remain problematic. Artifacts can
be divided into three distinct categories: missing values, out
of range values, and motion artifact.

Missing values
Missing data is most often caused when a sensor has been

disconnected from a patient or the device has been placed in
standby mode. For analytic purposes, missing values should
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Table 3 Common approaches to

. . Name
data interpolation.

Summary of approach

Nearest neighbor
Mean analysis

Linear interpolation

Cubic interpolation

Spline interpolation

Assuming the value of the next-nearest sample

Taking the mean value of the sample before and after the missing data point
Using the slope of a best-fit line to predict missing values, assuming a linear
relationship

Fitting short length “splines” over regions shaped using third-degree polynomials

Similar to cubic interpolation though uses short-length splines, as opposed to

polynomial functions, to model missing data in a piece-wise fashion

not be replaced with zeros, as this numerical value will alter
statistical calculations (such as mean or standard deviation)
or frequency-domain analysis. Missing values should
instead be replaced with a “not a number” (NaN) repre-
sentation. This approach prevents inadvertent mathematic
skewing of results.

Out of range values

Although most values captured during recording will fall
within expected normal ranges, some measurements will be
outliers. Outlier values can be defined as point outliers,
values that are so far outside the normal range that it is clear
they are erroneous (e.g., heart rate of 475 bpm), and con-
textual outliers, which may be of nominally acceptable
value but out of place when considering measurements
obtained before and after that point [47]. The first type of
outlier is considered an “out of range” value which should
be removed from the recording. The second type of outlier
is the result of motion artifact and will be discussed
separately.

When removing out of range values, determination of
upper and lower limits should be made a priori utilizing
gestational age-appropriate values. While truly normative
values are not well established in preterm neonates, existing
retrospective data should be sufficient for blood pressure
[48-50] and heart rate [51]. Point outliers represent error
conditions and depart significantly from normal values and
a simple screening for values two or three standard devia-
tions from the mean is likely sufficient to exclude them
without removing true patient data.

One commonly encountered scenario is exceedingly high
or low values for arterial blood pressure, which occur when
the line is being accessed for sampling or during infusions.
Another common scenario is the generation of error codes,
typically significantly out of range values reported by a
monitor when a sensor has encountered an error (usually
when the sensor is off the patient). Finally, some NIRS
monitors have fixed ranges. For example, the INVOS 5100c
does not report oxygen saturations below 15%. It is
important that clinicians and researchers be aware of spe-
cific patient- and monitor-specific circumstances to deter-
mine whether out of range data represent a physiologic

disturbance vs. a monitoring error. In the latter case, these
values can be readily identified as outliers in the recording
and can be programmatically removed by replacement of all
non-physiologic values with NaN.

Motion artifact

NIRS signals are prone to changes from baseline when
patients move, an unavoidable reality in the neonatal
population. Sudden signal changes can be recognized as
contextual outliers but are more difficult to remove pro-
grammatically as the values may still remain within nor-
mative ranges. Analysis, therefore, must include methods
for detecting and removing motion artifacts. NIRS probes
with accelerometer-based movement detection sensors have
been described in previous publications [52, 53], but this
technology is not yet commercially available.

Fortunately, movement artifacts can also be determined
using characteristic changes in the signal. A number of
different approaches have been used in prior research
including principal component analysis [54, 55], wavelet
analysis [56], Kalman filtering [57], sliding window aver-
aging [58], statistical inference [59], non-parametric
threshold detection [60], or a combination of multiple
approaches [61]. The systematic comparison of the different
techniques suggests that the wavelet approach results in the
greatest reduction in error, although these comparisons
did not include all techniques nor are they neonate-specific
[62—-64]. Regardless of the method, all reports indicate that
motion artifact correction is an essential component of data
processing.

Interpolation

Interpolation methods refer to “best guesses” about missing
values using nearby valid data. Common approaches to vital
sign interpolation include nearest-neighbor [65], linear
interpolation [66], and spline interpolation [67] (Table 3).
The accuracy of these methods to estimate missing data is
directly related to the length of missing data and the com-
plexity of the approach used. The systematic comparison of
interpolation methods suggests that spline interpolation
provides the largest reduction in mean-square error [63, 68].

SPRINGER NATURE
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Fig. 3 The result of two different interpolation methods. First, 80%
of the original signal is randomly removed. Moving mean and spline
interpolation approaches are applied; note the significantly more
continuous results of spline interpolation.

An example of the output of several approaches to inter-
polation is shown in Fig. 3.

There is considerable debate about the validity of using
interpolation or imputation to fill in gaps caused by missing
data [69, 70]. Although these techniques may permit the
analysis of otherwise unusable data, this approach results in
the mixing of synthetically generated data with real mea-
surements and care must be taken to avoid the introduction
of error. Missing data are common in longitudinal analysis
and interpolation or imputation is an accepted approach
[71]. The success of interpolation techniques is dependent
on many factors including the predictability of the signal,
the sampling rate, and the length of the missing segment
[72]. Large segments of missing data present a difficult
challenge that, even with sophisticated techniques, affects
many domains of quantitative analysis [73]. Importantly, an
empiric study of tolerance to missingness has not been
conducted and remains an important unanswered question.

Some researchers have chosen to take a strict approach to
missing data, excluding all segments with missing values.
This approach does avoid the need for interpolation, but
significant exclusion of underlying data may also introduce
bias. The percent of missing data during the monitoring
period should be reported in these cases. When interpolation
is used, it is prudent to additionally report on the same data set
without interpolative methods as a form of quality assurance.

Approaches to cerebral autoregulation
Cerebral autoregulation is the mechanism that modulates
blood flow to the brain. This complex mechanism is

responsible for fine adjustment of blood flow to match
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delivered oxygen to metabolic demand in the setting of
fluctuations induced by changes in cardiac output, carbon
dioxide, and physical positioning (e.g., supine vs. upright).
Significant evidence exists that autoregulatory function is
altered by the degree of prematurity [7] and severity of
illness for preterm infants [9] and the degree of brain injury
for term infants with HIE [74, 75]. The primary challenge of
autoregulation research is the difficulty in direct measure-
ment. Though methods do exist to assess autoregulatory
capacity, they are either impractical or unsafe for use in
neonates owing to the need for intracranial pressure mon-
itoring, ionizing radiation, and/or radioisotopes.

Far more feasible is the mathematical modeling of the
autoregulatory function using known inputs (heart rate,
arterial blood pressure) and known outputs (cerebral blood
flow—either directly using DCS or indirectly by conven-
tional NIRS oximetry, previously validated as a reliable
proxy measurement) [2, 76]. Success in this line of investi-
gation arises from careful planning; the analytic approach
informs the data capture strategy as much as the capture
approach drives analytics. There is no standard methodology
for the characterization of cerebral autoregulation in neonates
and several different approaches have been developed.

Time correlation

The simplest and most straightforward approach is to cor-
relate mean arterial blood pressure (MABP) and NIRS
measurements. When cerebral autoregulation is intact, there
should be a minimal or negative correlation, indicating
active autoregulation. To reduce the impact of the non-
linear relationship between cerebral blood flow and auto-
regulation [77], correlations should be calculated over short
time windows, most commonly in 20-min segments.
Inherent in this approach is the need for a pre-defined
threshold beyond which autoregulation is considered
impaired. The number of segments with a correlation
greater than 0.5 can be summed, and the cumulative number
of these “pressure passive” time periods has been linked
with adverse outcomes [6].

Time correlation is relatively robust to small segments of
missing data. As the typical 20-min window contains
300-600 measurements (depending on sampling rate), the
degree of correlation can still be ascertained if some data are
missing. However, as the number of missing data increases,
per-window estimates become less accurate. An example of
this approach is shown in Fig. 4A.

Cerebrovascular reactivity
A variation of the standard time-correlation approach, a

method measuring cerebrovascular reactivity can be used to
identify the “optimal blood pressure.” This approach was
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Fig. 4 Autoregulation methods. Example plots of four different methods for quantifying autoregulatory function including time correlation (A),
cerebrovascular reactivity (B), coherence (C), and transfer function analysis (D).

initially developed using transcranial Doppler ultrasound
[78, 79] but has been more recently adapted to the neonatal
population using NIRS [8, 80-85]. In this approach, cere-
bral NIRS and MABP values are captured simultaneously
and the correlation between the two is calculated over 5-min
overlapping windows. The value of the correlation (termed
COx) and the average MABP during the 5-min window are
recorded and organized into “bins” of 1-2 mmHg. In this
way, the average COx or correlation at each blood pressure
can be assessed. Using this approach, one would expect a
plot of mean COx by MABP to resemble a parabola, with
increasingly positive values at the two ends representing
failing autoregulation at BP extremes. In this approach, the
“optimal” MABP is defined as the MABP with the lowest
mean COx [84].

Cerebrovascular reactivity is quite robust in the presence
of missing data owing to shorter time windows (5 min)
which can accommodate gaps in the data. Furthermore, in
the final stage of calculations, the correlation values in each

blood pressure “bin” are averaged across the entire
recording. Sufficiently long recordings will have adequate
data for a representative sample. An example of this
approach is shown in Fig. 4B.

Frequency correlation

A related technique examines the correlation between
oscillations of different frequencies in MABP and NIRS.
Complex physiologic signals can be thought of as numerous
interposed sine waves. The power spectrum, or the strength
of oscillations in discrete frequency bands, can be mathe-
matically determined using a technique called the Fourier
transform and is performed rapidly using modern computers
[86]. As in the time-domain analysis, these oscillations
should be dampened by cerebrovascular autoregulation.
Strong oscillations in cerebral blood flow (using NIRS as a
proxy estimate), at the same frequencies as systemic blood
flow, indicate failed autoregulation.
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As with the time-domain approach, the recording can be
partitioned into blocks of 20 min in which the coherence
can be measured. Coherence is a measure of correlation but
at a specific frequency or band of frequencies. Unlike a
correlation coefficient, values range between 0 and 1, with 1
representing perfect coherence. As with the time-domain
technique, coherence requires an agreed-upon threshold,
beyond which autoregulation is judged to be impaired.
Thresholds for significance have ranged from 0.384 [75] to
0.77 [9] in studies of preterm infants [9, 10, 87, 88] and
term infants with hypoxic-ischemic encephalopathy
[74, 75].

Calculation of the power spectrum is conventionally
performed with Welch’s method and requires continuous,
uninterrupted data. Even a single missing point results in an
error. The use of data windows allows for the calculation of
coherence around missing time points by dropping those
windows with missing data. Alternative methods have been
developed to determine the power spectrum in the setting of
missing data, but require special implementation [89, 90].
An example of coherence calculated over the length of a
recording is shown in Fig. 4C.

Transfer function

An alternative frequency-domain approach models auto-
regulation as a “black box” that filters out blood pressure
oscillations at specific frequencies. Autoregulation should
serve as a high-pass filter [91] which filters out low-
frequency (<0.20 Hz) oscillations in blood pressure, but not
fast (high-frequency) changes which are likely needed to
respond to rapid changes in cerebral metabolism.

In this method, the simultaneously collected MABP and
NIRS values are partitioned into 20-min windows. A well-
functioning autoregulatory system, operating as a high-pass
filter, should provide significantly stronger dampening at
lower frequencies (Fig. 4D). As with cerebrovascular
reactivity, this approach was initially developed [92] using
Doppler ultrasound measurement of cerebral blood flow
before the later transition to NIRS technology [7, 93]. As
transfer function analysis operates in the frequency domain,
it shares the same vulnerability to missing data as frequency
correlation. The use of interpolation and data windows are
effective compensatory mechanisms.

Wavelet coherence

The wavelet coherence approach to autoregulation can be
conceptualized as an alternative to frequency correlation
while also incorporating the element of time, ultimately
providing a hybrid of time and frequency correlation.
Rather than decomposing a complex waveform into a series
of sine waves of varying frequency and amplitude, wavelet
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transformation breaks this signal into small “wavelets” or
brief bursts limited in time and frequency. Hundreds of
possible wavelet shapes can be scaled to match the under-
lying signal. By taking the wavelet transformation of a
signal’s autocorrelation function, the wavelet power spec-
trum can be obtained and is analogous to the power spec-
trum obtained through Fourier analysis. Coherence and
transfer function analysis can be performed using the
wavelet transformation of the NIRS and blood pressure
signals. The strength of coherence or transfer function gain
can then be visualized across frequencies and time and has
been implemented using conventional and broadband NIRS
in several studies of infants with HIE [94-96]. As with other
approaches utilizing the frequency domain, wavelet analysis
is not robust to missing data. The same set of tools used in
other approaches (windowed data, interpolation) are equally
useful in this approach.

Challenges to autoregulation methods

All the described methods quantify cerebral autoregulatory
function. A significant challenge in the literature is the lack
of simultaneous comparison of different methodologies to
the same patient population to compare performance char-
acteristics. What limited data exist in adult and animal
populations suggest a general equivalence between com-
pared approaches [97-99]. There are a number of known
challenges with the described approaches [100]. Time cor-
relation, frequency correlation, and cerebrovascular reac-
tivity use thresholds to calculate autoregulatory function
and a correlation greater than 0.5 is most used to identify
periods of impaired autoregulation. Although recent efforts
have been made to derive the ideal threshold based on
statistical calculations [9, 75] the optimal value, if it exists
remains elusive [101]. Regardless of the numeric value of
the threshold, the mere existence of a threshold implies
modeling of autoregulation as a binary function—either on
or off. While this is mathematically simpler, it is likely an
incomplete picture of the underlying biology.

Transfer function and wavelet coherence approach
overcome this problem by less reliance on thresholds,
instead of providing a continuous scale output. While this is
advantageous, implementation of these approaches requires
significantly greater technical expertise and the resulting
measurement is conceptually more complex, providing a
barrier to future clinical adoption.

Conclusion

NIRS is a valuable tool for estimating cerebral oxygenation
and for modeling cerebral autoregulation. The availability
of specific neonatal probes and the non-invasive nature of
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Table 4 Neonatal NIRS data capture recommendations.

Category Recommendation

Capture technique Synchronized external capture
(e.g., VitalSync)
Sampling rate Highest possible

Data format Comma-separated values (CSV)
dd-mmm-yyyy HH:MM:ss

Replacement of missing or non-
physiologic values with blank or NaN

Timestamp

Error correction

Interpolation of
missing data

No interpolation or spline interpolation

commercial NIRS devices make them particularly well
suited for use in both term and preterm neonates. When
properly implemented, it offers the potential to assess
mechanisms underlying brain injury in this population and
allows the informed design of novel neuroprotective
strategies.

In Table 4, we have listed our recommendations.
Although there is no governing organization to issue stan-
dards in this field, it is our hope that these recommendations
provide a starting point for future neonatal NIRS research.
Using a common framework to record, process, and analyze
data will allow published results to be readily compared and
facilitate future collaborations.

In addition to the harmonization of data capture, addi-
tional questions remain. In the data processing context,
more research is needed to truly define the best method for
handling missing or erroneous data. An active investigation
is also needed to identify the best method for quantifying
autoregulation in neonates at risk for brain injury. Choice of
analytic methods should be driven by the objectives of the
study and the nature of the captured data. A large, com-
parative study of the different approaches is required to
fully evaluate the superiority (or equivalence) of any given
method. Finally, there is a significant promise on the hor-
izon for emerging NIRS technologies that will offer the
ability to examine cerebral oxygenation and blood flow
using novel approaches.
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