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Abstract
Metabolic syndrome is a cluster of conditions that increase the risk of cardiovascular diseases, and comprises obesity,
hypertension, impaired glucose metabolism and dyslipidaemia. It is well recognised that the mineralocorticoid receptor (MR)
plays an important role in blood pressure regulation via its effect on salt and water retention in renal tubules, with
hypertension being a key feature in primary aldosteronism patients with excess adrenal production of aldosterone, the
primary ligand for MRs in the epithelial tissues. MRs are also expressed in a number of non-epithelial tissues including
adipose tissue; in these tissues, glucocorticoids or cortisol can also activate MRs due to low levels of 11-beta-
hydroxysteroid-dehydrogenase type 2 (11-βHSD2), the enzyme which inactivates cortisol. There is increasing evidence
suggesting that over-activation of MRs plays a role in the pathophysiology of the other components of metabolic syndrome,
promoting adiposity, inflammation and glucose intolerance, and that MR antagonists may confer beneficial effects on energy
and substrate homeostasis and cardiometabolic diseases. This review discusses the advances in the literature shedding light
on the MR as an emerging player in metabolic syndrome.

Introduction

Metabolic syndrome (MetS) and cardiovascular diseases
(CVDs) represent major causes of morbidity and mortality
globally. MetS is defined by the constellation in a person of
three or more of the following risk factors for CVDs—
obesity, hypertension, impaired glucose metabolism (ele-
vated fasting glucose or insulin resistance or type 2 diabetes
mellitus) and dyslipidaemia (elevated triglycerides or low
high density lipoprotein, HDL) [1]. The burden of MetS is
escalating worldwide, concurrent with the progressive soar
in the prevalence of obesity; 25% of the world population,
i.e. over a billion people in the world, are estimated to have
MetS [2].

The pathophysiology of MetS and associated CVDs is
complex with various contributing factors. Hormones and
their receptors underpin the pathophysiological changes
surrounding energy and substrate metabolism and cardio-
vascular function and hence disease progression. It is well
recognised that individuals with excess glucocorticoids
(GCs), hypothyroid state or hypogonadism with low levels
of sex steroid hormones often suffer features of MetS and
an increased risk of CVDs.

Mineralocorticoids (MCs) such as aldosterone are adre-
nal hormones classically known for their effects on salt and
water retention and blood pressure, acting via the miner-
alocorticoid receptors (MRs) in renal tubules. MRs belong
to the steroid nuclear receptor superfamily of ligand-
dependent transcription factors, are widely expressed in
various tissues including heart, blood vessels, adipose tis-
sue, brain and immune cells, and non-classical effects of
MRs are emerging with implications for CVDs which are
independent of its effect on blood pressure [3, 4]. In these
non-epithelial tissues, MRs may also be activated by GCs
[5, 6]. There is accumulating evidence supporting the
pathophysiological role of MR activation in the other
components of MetS such as obesity and dysregulation in
glucose metabolism, and the potential benefits of MR
antagonists (MRAs) for management of cardiometabolic
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diseases. This review focuses on the recent literature
examining the role of MR in MetS.

We reviewed the relevant articles published in English
between January 2005 and November 2019, which were
retrieved from the PubMed using the search terms “miner-
alocorticoid”, “aldosterone”, “metabolism” and “MetS”.

Association between increased MR
activation and metabolic syndrome

Primary aldosteronism (PA) is a condition where there is
autonomous and excessive production of aldosterone by the
adrenal gland(s) [7], and represents a classic model illus-
trating the consequences of excess MR activation. MetS is
more frequent in patients with PA than those with essential
hypertension [8, 9] or than age, gender, BMI and BP-
matched control subjects [10]. A recent systematic review
and meta-analysis has reported that PA increases the risk of
MetS by 1.5 times and of diabetes by 1.3 times, compared
to those with essential hypertension [11]. MetS and dys-
glycaemia improved after treatment of PA with an MR
antagonist or removal of aldosterone-producing adenoma
by surgery [9, 10, 12–14], indicating that increased MR
activity in PA likely underlies the development of MetS.

The association between the activity of the miner-
alocorticoid (MC) system and MetS has also been observed
among the general population. In a prospective longitudinal
study involving >1000 people, baseline plasma aldosterone
concentration predicted new onset obesity, hypertension and
type 2 diabetes over a 4-year follow-up period [15]. In another
large multiethnic longitudinal study, a 1-SD increase in log-
aldosterone was associated with a 44% higher risk of incident
diabetes over 10.5 years [16]. In cross-sectional analyses,
plasma aldosterone concentration and adipose tissue MR
expression are increased in obese individuals [17–20], and
plasma/urinary aldosterone correlates with MetS, visceral
adiposity, BMI and insulin resistance [16, 21–24].

Human adipocytes can indeed secrete MC releasing
factors [25] and various adipokines such as leptin, which
can stimulate the adrenal production of aldosterone [26–28].

In addition, adipose tissue can produce angiotensinogen and
possesses a local renin-angiotensin-system (RAS) [29].
Plasma and adipose tissue MC activity have been reported
to be reduced significantly after successful weight loss by
calorie restriction [20, 30].

These findings together support the concept of increased
MC activity as a mediator of MetS and obesity, which in
turn contribute to the maintenance of high MC activity with
resultant progression of these conditions (Fig. 1).

Role of MR in adipose tissue metabolism and
inflammation

Adipose tissue plays a vital role in energy and substrate
homeostasis. Adipose tissue can be differentiated into two
forms: brown adipose tissue (BAT) and white adipose tissue
(WAT). BAT is a thermogenic tissue with a unique protein
called uncoupling protein-1 (UCP1), which dissipates
nutrient energy as heat, and protects against obesity and
improves insulin sensitivity, unlike WAT which stores
energy as lipid, the accumulation of which over time leads
to obesity, insulin resistance and metabolic diseases [31]. A
number of studies suggest that the MR plays a role in the
biology of both BAT and WAT.

BAT

MR is expressed in BAT [32]. In rodents, MCs inhibit the
function of brown adipocytes [33, 34]. The inhibitory effect
of aldosterone on the expression of thermogenic protein
UCP1 and glucose uptake in brown adipocytes was dose-
dependent and mediated via MR as well as the glucocorti-
coid receptor (GR) [33, 34]. On the other hand, Armani
et al. studied the effects of MRAs (spironolactone and
drosperinone) on BAT in mice fed high-fat diet over
3 months, and found that MRAs upregulated glucose uptake
and UCP1 expression of interscapular BAT, and abated
diet-induced weight gain and glucose intolerance [35].
MRAs also induced similar changes in the inguinal fat
depots, indicative of “browning of WAT”, that is, formation
of brown-like adipocytes within WAT [35].

In humans, it was previously thought that brown fat
becomes obsolete after infancy. It has been realised only over
the past decade that active brown fat persists into adult life
[31]. We discovered for the first time in humans that the
MRA, spironolactone (100mg/day for 2 weeks), significantly
enhances the function of BAT while suppressing postprandial
lipid synthesis [36]. Spironolactone increased BAT metabolic
activity by 50% and volume by more than twofold within
2 weeks. These findings are in agreement with the observa-
tions from rodent studies, suggesting that MR antagonism
may indeed impart similar benefits in humans as in rodents,

Fig. 1 Relationship between the mineralocorticoid (MC) system
activity and metabolic syndrome (MetS). Increased MC activity can
lead to MetS and adiposity which can in turn contribute to the main-
tenance of MC activity with resultant further progression of adiposity
and MetS.
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diverting nutrient energy from storage towards wastage as
heat. The degree of enhancement in BAT activity by spir-
onolactone may translate into a 5% decrease in body fat mass
and 50% improvement in insulin sensitivity over time [31].
The study was however of short duration and not powered to
define the long term metabolic effects.

WAT

In white adipocytes, aldosterone promotes intracellular lipid
accumulation and adipogenesis in a dose-dependent manner
in vitro [37]. The upregulation of MR produces a similar
effect increasing lipid storage in white adipocytes and
adiposity [17]. On the other hand, deletion [38] or down-
regulation of MR [39] or treatment with MRAs [17, 40]
counteracts this.

In addition to the effects on adipose tissue metabolism,
the MR is also implicated in adipose tissue inflammation.
Obesity leads to chronic inflammation of adipose tissue
with local infiltration of macrophages and secretion of pro-
inflammatory cytokines such as tumour necrotic factor-α
(TNF-α), interleukins and monocyte chemoattractant
protein-1 [41]. This obesity-associated adipocyte dysfunc-
tion is believed to play a crucial role in the development of
insulin resistance [41]. Aldosterone stimulates pro-
inflammatory adipokines [33, 38], and the beneficial meta-
bolic effects of MR antagonism has been shown to be
mediated via amelioration of these inflammatory changes in
adipose tissue [42, 43].

Taken together, there is convincing evidence demon-
strating the role of MR in adipose tissue metabolism and
inflammation, favouring storage of nutrient energy as WAT
and promoting inflammation while suppressing the function
of energy-burning BAT.

Do MRs mediate the adverse metabolic
effects of glucocorticoids?

MRs have a similar affinity for GCs as they do for MCs
(aldosterone) [44]. The MR is protected from binding to GCs
only in tissues possessing 11β-hydroxysteroid-dehydrogenase
type 2 (11β-HSD2) enzyme, which inactivates GCs [5, 6].
Adipose tissues do not display significant levels of 11βHSD2
while expressing high levels of 11β-HSD1 which converts
inactive GCs to their active form [39, 45], raising the possi-
bility that GCs can act on MRs in adipose tissue.

Obesity and MetS are common complications of expo-
sure to excess GCs as seen in individuals with Cushing’s
syndrome and those taking exogenous GCs such as pre-
dnisolone. It has been demonstrated that the MR mediates
detrimental metabolic effects of GCs [18, 38, 39]. GC-
induced adipocyte dysfunction can be reversed by MRA

(eplerenone), but not by the GR antagonist (GRA) RU486,
in vitro [18]. MR, but not GR, knockdown inhibits GC-
induced adipogenesis and expression of pro-inflammatory
adipokines [38, 39]. A combined MRA/GRA provides
improvements (predominantly in body fat) in diet-induced
metabolic dysregulation compared to GRA alone in rodents
[46]. In humans, we have found that MRA (spironolactone)
exerts opposing effects to those of GC (prednisolone) on
adipose tissue metabolism in vivo; prednisolone suppressed
the function of BAT and promoted postprandial lipid synth-
esis [47] while spironolactone enhanced BAT function and
suppressed lipid synthesis [36]. These observations suggest
that the MR likely plays a significant role in GC-induced
adverse metabolic effects and that MRAs may have protective
cardiometabolic effects in patients exposed to excess GCs
although clinical evidence for this is yet to be established.

Role of MR in pancreatic β-cell function

Failure of pancreatic islet β-cell function and insulin
secretion is recognised as an important element in the
progression of type 2 diabetes in individuals with obesity
and insulin resistance [48]. Increased prevalence of diabetes
or dysglycaemia in PA has been observed by several
investigators [8–11, 49]. Plasma aldosterone predicts
development of diabetes in the general community [15, 16].
Insulin resistance or reduced insulin sensitivity has been a
widely reported feature in PA [12, 13, 50, 51], and patients
with PA have also been shown to exhibit impaired insulin
secretory response [52, 53]. The observations have been
reported even in the absence of hypokalaemia [12].

There is evidence that aldosterone can directly suppress
pancreatic islet cell function [54–56], but the effect seems to
be non-MR-mediated. Luther et al. reported that excess
aldosterone induces dysfunction and apoptosis of pancreatic
β-cells of murine islets and decreases glucose-stimulated
insulin secretion, but the effects were not blocked by MRAs
[55]. Chen et al. reported that the effect of aldosterone on
islet cell was mediated via the GR based on their observa-
tions that in clonal β-cells, the expression level of MR was
low compared to that of GR, and that a GRA prevented the
impairment of β-cells by aldosterone [56]. The above
findings indicate that MR regulation of glucose metabolism
occurs predominantly via alterations in insulin sensitivity/
resistance, rather than pancreatic islet cell function.

Do the metabolic effects of MR at tissue level
translate into the whole-body level?

There is an array of in vivo evidence in rodents demon-
strating that MR exerts metabolic effects at the whole-body
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level, influencing, for example, body fat mass, liver fat and
glucose metabolism. Mice with upregulated MR expression
in adipocytes develop obesity, insulin resistance and MetS
[17, 57]. On the other hand, MRAs attenuate adiposity,
hepatic steatosis and inflammation in high fat diet-fed mice
[35, 58, 59]. MRAs also reverse insulin resistance and
glucose intolerance in obese mice [35, 42, 43, 58, 59].
These beneficial effects were observed with various MRAs
including spironolactone, eplerenone and drosperinone.

It is worth noting that the dosages employed in the
preclinical studies have been relatively high; for instance,
spironolactone was used at 16–20 mg/kg per day in rodents
[35, 58], equating to a human equivalent daily dose of
~1.2–1.5 mg/kg (i.e. 84–105 mg/day of spironolactone for a
70 kg person) and eplerenone at a daily dosage of 100 mg/
kg in rodents, equating to 7.5 mg/kg in humans [43]. In the
case of spironolactone and drospirenone, which can have
progestogenic and anti-androgenic effects at high dosages
[60], this raises the question as to whether the beneficial
effects were actually via progesterone (PR) and/or androgen
receptors (AR), rather than the MR. This was demonstrated
to be unlikely by Caprio et al. in vitro by showing the anti-
adipogenic effect of droperinone on 3T3-L1 pre-adipocytes
and adipocytes which virtually lack PR, and by demon-
strating that testosterone, i.e. AR agonist, not AR antag-
onism, actually inhibits adipogenesis [40].

In humans, the evidence of a regulatory role of MR on
whole-body energy and substrate metabolism is relatively
primordial and long-term studies have been mainly obser-
vational. Cross-sectional observational studies have reported
that plasma aldosterone level correlates with visceral fat mass
and BMI in patients with PA [61] and in obese women
[22, 62]. In an open labelled uncontrolled study, MRAs
(eplerenone 25–100 mg daily or spironolactone 12.5–100mg
daily) reduces visceral fat mass, but not insulin resistance or
serum lipids, over 12 months of treatment vs baseline in
patients with PA [63]. In other cohort studies, treatment of
PA with MRAs or surgery improved insulin sensitivity [12]
and glucose tolerance [10] at 6–12 months. On the other
hand, short term clinical trials assessing the effects of spir-
onolactone (50 mg daily for 6 weeks) [64] or eplerenone (50
mg daily for 2 weeks) [65] on insulin sensitivity and fasting/
postprandial glucose levels respectively in non-hypertensive
non-PA subjects did not find any changes, albeit this was
rather unsurprising given the short duration of intervention.

With regards to hepatic steatosis, a significant correlation
between plasma aldosterone and liver fat has been reported
in individuals with PA [66] and those with HIV [67].
Interventional studies investigating the effect of MRAs on
liver fat have yielded inconsistent findings. Polyzos et al.
reported a significant improvement in liver fat score over 1
year in 31 subjects with biopsy-proven non-alcoholic fatty
liver disease randomised to spironolactone (25 mg daily)

plus vitamin E compared to vit E alone [68], while in a
recent randomised controlled trial by Johansen et al.
involving 140 patients with longstanding type 2 DM (80%
of whom were already on angiotensin receptor blocker or
angiotensin converting enzyme inhibitor treatment), there
was no change in liver fat after 26 weeks of treatment with
eplerenone (50–200 mg daily) [69].

Overall, the question as to whether the metabolic effects
of MR at tissue levels translate into changes at the whole-
body level remains to be resolved in humans.

Future directions

There is a need for further long term interventional clinical
studies specifically aimed at defining the effects of MRAs
on whole-body metabolism. To date, the efficacy of MRAs
in the management of MetS has been demonstrated mainly
in animal models as discussed. In order to replicate the
preclinical findings, future clinical studies will need to
carefully take into account the dose-dependency of effects
of MRAs on metabolism [40] and the selection of repre-
sentative target groups (obese, MetS model) and to be of
longer duration. There is evidence from a recent study in
patients with PA to suggest that higher dosages of MRAs
(sufficient to unsuppress plasma renin levels) are also likely
necessary to abrogate the excess cardiometabolic risk
associated with that condition [49].

The demonstrated metabolic benefits of MR antagonism,
both in vitro and in vivo, have been limited to steroidal
MRAs. Steroidal MRAs are generally safe for use by the
general population, proven by the safety record of the long
term usage in high dosages in women with hirsutism [70].
However, cross reactivity of older MRAs such as spir-
onolactone with sex steroid receptors can lead to side effects
such as gynaecomastia in men, menstrual irregularities in
women and reduced libido. While this issue has been at
least partly addressed by the introduction of more specific
MRAs such as eplerenone, use of that agent is not yet
subsidised in many countries, making treatment expensive.
Furthermore, administration of steroidal MRAs can result in
hyperkalaemia in some vulnerable groups such as those
with renal impairment, and given the availability of new,
non-steroidal MRAs with lower side effect profiles [71], it
would be of interest to examine whether non-steroidal
MRAs can confer the beneficial effects on adipose tissue
function and metabolism demonstrated with steroidal
MRAs. Uncovering the key signalling pathways, which
mediate the metabolic effects of MR activation and which
positively respond to MRAs also may allow identification
of downstream targets for future research and development.

Another area of great interest is the clarification of the
role of MR in mediating the adverse metabolic effects of
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GCs. Available evidence suggests a potential interaction
between MRs and GCs in the regulation of adipose tissue
function and lipid storage as discussed. However, firm
evidence of clinical significance of the contribution by MR
to GC-induced metabolic dysfunction in vivo and whole-
body metabolism is yet to be established. The potential for
MRAs to confer protective cardiometabolic effects in peo-
ple exposed to excess GCs by preventing the occupation of
MRs by GCs remains to be explored.

A transpiring topic is the gender differences in MR
activity and organ damage in the setting of obesity. There is
evidence showing that obese females are more susceptible
than male counterparts to aldosterone-induced hypertension
and cardiovascular damage, and various mechanisms have
been proposed including higher adipose tissue-derived
leptin resulting in increased RAS activity and MR activa-
tion [72]. MRAs are also reportedly more efficacious in
females compared to males for cardiac protection [73]. The
question as to whether these phenomena also apply to other
components of MetS remains open.

Finally, there seems to be a bidirectional interplay
between the MC system activity and adiposity as discussed
earlier and as illustrated in Fig. 1. The finding from a recent
retrospective cross-sectional study of PA from Japan of a
higher prevalence of obesity in idiopathic/bilateral hyper-
aldosteronism (despite lower plasma aldosterone con-
centrations) vs aldosterone-producing adenoma raises an
intriguing question concerning the potential role of adip-
osity in the pathogenesis of bilateral forms of PA [74].
Additional studies are warranted to further explore this
relationship.

Conclusions

An array of preclinical evidence supports a regulatory role
of MR in metabolism (illustrated in Fig. 2) and the

beneficial effects of MRAs. A central contributory role of
MR in the pathophysiology of hypertension, adiposity and
glucose dysregulation likely underpins the close connec-
tions observed between the various components of MetS
and cardiovascular health. In humans, MR activation is
associated with metabolic disturbances. The metabolic
benefits of MRAs are yet to be clearly defined in humans,
particularly for long term treatment. The clinical relevance
of MR in metabolic pathophysiology and therapeutic
potential of MRAs in the management of adiposity and
MetS deserve further investigation.
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