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Associations between short-term exposure to ambient air
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BACKGROUND: Evidence of the acute effects of high-level air pollution on small airway function and systemic inflammation in
adults is scarce.
OBJECTIVE: To examined the associations of short-term (i.e., daily) exposure to multiple air pollutants with lung function and
inflammatory markers.
METHODS: We assessed short-term (daily) effects of air pollutants, including particulate matter with aerodynamic diameter less
than 2.5 μm (PM2.5) and 10 μm (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2) and carbon monoxide (CO), on lung function and
peripheral immune cell counts over various lag times using generalized linear regression models.
RESULTS: A total of 4764 adults were included from the general community-dwelling population in Shanghai, China. Exposure to
air pollutants and lung function were negatively correlated. Decline in FEF between 25% and 75% of vital capacity (FEF25–75%) were
found associated with PM2.5, SO2, and CO, and decline in forced expiratory volume in 3 s (FEV3) to forced vital capacity (FVC) ratio
were associated with all examined pollutants, indicating obstruction in small airways. Obstructed airflow in large and middle
airways as indicated by decline in FEV1/FVC were also associated with all pollutants. In subgroup analysis, significant negative
associations between the five pollutants and SAD parameters were found only in males but not in females. The difference in the
associations of SO2 with FEF75% between males and females achieved statistical significance. Additionally, all examined pollutants
were significantly associated with lower peripheral neutrophil count.

IMPACT STATEMENT:

● Acute exposure to air pollutants were associated with airflow-limitation.
● Both small airways and proximal airways were affected.
● Acute exposure to air pollutants were accompanied with a lower neutrophil count.
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INTRODUCTION
Small airways are generally defined as airways with an internal
diameter less than 2mm [1]. Small airway dysfunction (SAD) has been
shown as an important contributor to the occurrence and develop-
ment of asthma [2] and chronic obstructive pulmonary disease (COPD)
[3, 4], which are most common chronic airway diseases characterized
by obstructive ventilation dysfunction due to reversible or irreversible
airway narrowing. Notably, several prospective longitudinal studies
have suggested that the development of asthma and COPD might
begin with SAD without obvious symptoms in the early stage [5, 6]. A
recent study reported that the overall prevalence of spirometry-defined

SAD was 43.5% in China, accounting for more than 400million people
[7]. Thus, identifying modifiable risk factors and underlying mechan-
isms of SAD is critical to reduce the burden of disease and to prevent
early lung function impairment.
Epidemiological studies have linked long-term (e.g., annual) or short-

term (e.g., daily) exposure to air pollution to changes in spirometric
indicators of the large andmiddle airways among healthy subjects and
patients with asthma or COPD [8–11]. However, only a few studies have
examined the chronic or acute effects of air pollution on small airways.
A recent study has shown that long-term exposure to ambient fine
particulate matter (particles with a diameter less than 2.5μm, PM2.5)
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was a risk factor for spirometry-defined SAD in China [7]. Only one
large-scale cohort study has demonstrated that acute increases in
concentrations of nitrogen dioxide (NO2) and particles with a diameter
less than 10 μm (PM10) were associated with SAD [12]. However, this
study was conducted in a developed country with relatively low air
pollution exposure levels. More evidence from developing countries is
still needed to evaluate the impacts of high-levels exposure on SAD.
Additionally, air pollution is a complex mixture, and therefore a
comprehensive understanding of the effects of various air pollutants on
lung function is essential.
The respiratory tract connects the immune system to the

external atmospheric environment. Inhaled gaseous and particu-
late pollutants may stimulate airway epithelial cells and immune
cells residing in the airway and trigger systematic immune
responses involving different immune cell types, including
neutrophils and eosinophils, which may contribute to the
pathogenesis of air pollution-related pulmonary diseases
[13, 14]. Activation of these immune cells by ambient air pollutants
may be partially reflected in their peripheral blood cell counts. In
other words, peripheral blood cell counts might be used to
explore the associations between air pollutants and the airway
inflammatory response.
In this study, we examined the associations of short-term (i.e.,

daily) exposure to multiple air pollutants, including PM2.5, PM10,
sulfur dioxide (SO2), carbon monoxide (CO), and NO2, with lung
function and inflammatory markers (i.e., peripheral white blood
cell, neutrophil, and eosinophil counts). Further, we sought to
identify susceptible subgroups in the study population.

MATERIALS AND METHODS
Study design and participants
Data for this study was collected from permanent residents aged 20 years
or older in Shanghai, China (defined as living in Shanghai for 1 year or
longer), as part of a previous national cross-sectional study (the China
Pulmonary Health study), details of which have been reported elsewhere
[15]. Participants were recruited from the general community-dwelling
population in four different communities between June 2012 and February
2014. Two of them were randomly selected from urban districts, and the
others were from rural townships. Information on demographic character-
istics, residential address, history of pulmonary and other chronic diseases,
cigarette smoke exposure, occupational exposure, and biofuel use was
recorded by a standardised questionnaire in this study.
Given that the data of PM2.5 concentrations were monitored since

January 1, 2013, 449 participants who had spirometry tests prior to this
date were excluded due to lack of exposure data. Another 68 subjects were
excluded for missing data on smoking history. Finally, there were
4764 subjects included in the final analysis (Fig. S1). The ethics review
committee of Beijing Capital Medical University approved the study (No.
11-ke-42), and all participants signed informed consent.

Spirometry test and blood cell counts
Spirometry tests were conducted as previously reported [10]. Quality-
control checks for all the results of spirometry tests were performed by an
experienced technician and a specialist physician. The National Lung
Health Education Program (NLHEP) was followed to assure the repeat-
ability of spirometry tests [16]. The greatest values of forced vital capacity
(FVC) and forced expiratory volume in 1 s (FEV1) were recorded. Other lung
function parameters (i.e., forced expiratory flow (FEF) at 75% of vital
capacity (FEF75%)) of the same procedure of FVC and FEV1 were recorded.
All participants underwent bronchial dilation test to assess reversibility.
The results of spirometry tests before bronchodilator inhalation were used
for modeling. Lung function outcomes including FEV1 and FEV1/FVC as
indicators for large airway obstruction, FEF75%, FEF between 25% and 75%
of vital capacity (FEF25–75%), and forced expiratory flow in 3 seconds (FEV3)/
FVC as indicators of small airway function [7, 17], and FVC as the indicator
for restrictive ventilation dysfunction. COPD was defined as the post-
bronchodilator FEV1/FVC < 70% [18]. We calculated the ratios of observed
to predicted FEV1 based on US general population references and used
them to stage the degree of obstruction (GOLD stage I, ≥ 80% predicted;
GOLD stage II, ≥ 50% to < 80% predicted; GOLD stage III, ≥ 30% to < 50%

Table 1. Characteristics of the participants (n= 4764).

Characteristics Mean (SD) or N (%)

Age (years) 54.4 (12.7)

Male 2003 (42.0)

Height (m) 1.61 (0.08)

Weight (kg) 63.1 (10.9)

BMI (kg/m2) 24.17 (3.36)

Education

Primary school or below 1743 (36.6)

Primary middle school 1879 (39.4)

High middle school 764 (16.0)

College or higher 378 (7.9)

Residents in urban area 790 (16.6)

Cigarette smoke exposure1

Never-smokers 3545 (74.4)

Ever-smokers 1219 (25.6)

Current -smokers 978 (20.5)

Former -smokers 241 (5.1)

Pack-years in ever-smokers 26.0 [15.0, 39.0]2

Use of biomass3 2047 (43.0)

Occupation exposure 663 (13.9)

Asthma 56 (1.2)

COPD 532 (11.2)

COPD grade4

I 320 (6.7)

II 170 (3.6)

III 36 (0.8)

IV 6 (1.1)6 (0.1)

Lung function

FEV1 (L) 2.54 (0.68)

FVC (L) 3.24 (0.82)

FEV1/FVC (%) 78.55 (9.42)

FEF25% (L/s) 5.37 (1.74)

FEF50% (L/s) 3.07 (1.27)

FEF75% (L/s) 0.98 (0.60)

FEF25–75% (L/s) 2.14 (1.05)

FEV3/FVC (%) 92.89 (6.24)

Biomarkers5

WBC (/μL) 5.98 (1.61)

EOS (/μL) 0.13 (0.19)

NEU (/μL) 3.61 (1.28)
1Never-smokers were defined as participants smoking fewer than 100
cigarettes in their lifetime. Former smokers had quit smoking for more than
1 year.
2Data were presented as median [interquartile range].
3Use of biomass is defined as using biomass (i.e., charcoal, coal, or coke, or
burning of wood, dung, or crop residue) for more than 6 months for
cooking or heating. Participants who were exposed to dust, gas, vapor,
fumes and aerosols at workplace for more than 3 months in their life time
were defined as having occupation exposure.
4According to the Global Initiative for Chronic Obstructive Lung Disease
2021.
5Normal ranges of biomarkers were: WBC 3.5 ~ 9.5/μL), EOS 0.02 ~ 0.52/μL,
NEU 1.8 ~ 6.3/μL).
BMI Body mass index, COPD Chronic obstructive pulmonary diseases, CI
Confidence interval, EOS Eosinophil, FEF25% Forced expiratory flow at 25%
of vital capacity, FEF50% Forced expiratory flow at 50% of vital capacity,
FEF75% Forced expiratory flow at 75% of vital capacity, FEF25–75% Forced
expiratory flow at 25–75% of forced vital capacity, FEV1 Forced expiratory
volume in 1 s, FEV3 Forced expiratory volume in 3 s, FVC Forced vital
particulate matter, NEU Neutrophil, SD Standard deviation, WBC White
blood cell.
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predicted; and GOLD stage IV, < 30% predicted) [19]. On the day of the
spirometry test, 10 ml of peripheral venous blood was collected for blood
cell counting, including total white blood cells (WBC), neutrophils (NEU),
and eosinophils (EOS), using a hematology analyzer. Counts of WBC, NEU,
and EOS were used as outcomes indicating systemic inflammation.

Exposure assessment
Daily (24 h) mean air pollution concentration data, including PM2.5, PM10,
NO2, SO2, and CO, from January 1, 2013 to December 31, 2014 were
extracted from the Shanghai Environmental Monitoring Center (SEMC)
database [20]. The daily concentrations for each pollutant of the nearest
monitoring sites to the residential address were assigned to the
corresponding participant. The locations of six fixed-site monitoring sites
(Hongkou, Jing’an, Huangpu, Putuo, Xuhui, and Yangpu) were designed to
reflect the general level of the study area. The units of concentrations for
air pollutants were μg/m3 for PM2.5, PM10, NO2, and SO2 and mg/m3 for CO.
In order to adjust for the potential confounding effects of weather, we also
obtained daily meteorological data (i.e., ambient temperature and relative
humidity) from the Shanghai Meteorological Bureau. Weather data were
measured at a fixed-site meteorological station located at Hongqiao
Airport in Shanghai.

Statistical analysis
Multivariable linear regression models were utilized to explore the
associations of short-term exposure to air pollutants with lung function
measures and blood cell counts. We adjusted for potential confounding
covariates based on known associations with lung function or air pollution,
including age (years), sex, body mass index (BMI), smoking history (ever-
smoker or never-smoker), pack per year, marriage [12, 21](unmarried,
married, divorced, or widowed), biomass use (yes or no), occupational
exposure (yes or no), relative humidity, temperature, day of the week, season
(winter, spring, summer and autumn), and school vacation (yes or no). Use of
biomass is defined as using biomass (i.e. charcoal, coal, or coke, or burning of
wood, dung, or crop residue) for more than 6 months for cooking or heating.
Detailed definitions of smoking history, biomass use and occupational
exposure can be found in Supplementary materials - Methods. Average

exposure levels of each air pollutant were calculated at three time points: on
the day of (Lag0, 0–24 h), the day before (Lag1, 24–48 h), and two days
before (Lag2, 48–72 h) the spirometry test were estimated separately. A priori
hypothesis of this test was that acute exposure to each air pollutant on Lag0
would have the strongest associations with lung function and blood cell
counts. The results were presented as estimated changes and their 95%
confidence intervals (CIs) in each lung function parameter for per
interquartile range (IQR) increase in PM2.5, PM10, SO2, NO2, and CO. A
sensitivity analysis was conducted by excluding COPD patients to test the
results’ robustness in non-COPD population.
We also conducted stratified analyses to explore the potential effect

modification by age (≥ 55 vs. < 55 years old), sex (male vs. female), and
smoking history (ever-smoker vs. never-smoker) on the associations of air
pollutants at Lag 0 with lung function. To test the statistical significance of
the differences between stratified outcomes, we calculated the 95% CIs

between subgroups as shown below: Q̂1 � Q̂2 ± 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SÊ21 � SÊ22

q

: Q̂1 and

Q̂2 are the estimates for the 2 categories, and SÊ1 and SÊ2 are their
respective standard errors [22].
R software (version 3.4.2, R Foundation for Statistical Computing, http://

cran.r-project.org/) was used in this analysis, and p < 0.05 (two-tailed) was
considered statistically significant.

RESULTS
Population and spirometry tests
The baseline characteristics of all participants are shown in Table 1.
The mean (± standard deviation, SD) age of analyzed participants
was 54.4 (± 12.7) years. Among them, 42.0% were male, 5.1% were
current smokers, and 20.5% were former smokers. 532 participants
were spirometry-defined COPD patients in this population, of
whom 60.2% were at GOLD stage Ι, 32.0% at GOLD stage II, and
7.9% at GOLD stage III or IV. Among spirometry-defined COPD
patients, 31 participants (5.8%) had a previous diagnosis of COPD
and 252 participants (47.4%) were defined as ever smokers.

Fig. 1 Estimated effects of acute exposure to air pollutants on lung function in adults. Data were presented as estimated values ± 95% CI.
The Y-axis indicate estimated changes in lung function parameters for an increase of per interquartile range (IQR) of the daily average PM2.5,
PM10, NO2, SO2, and CO measured on the day of (Lag0), the day before (Lag1) and two days before (Lag2) the spirometry test.
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Exposure to air pollutants
Daily average concentrations of air pollutants are summarized in
Table S1. The concentrations of PM2.5 at the six fixed-site
monitoring stations ranged from 10 μg/m3 to 244 μg/m3. The
mean (± SD) concentrations at Lag0 were 65.2 (± 47.2) μg/m3, 96.6
(± 73.2) μg/m3, 54.5 (± 26.6) μg/m3, 29.7 (± 21.6) μg/m3, and 0.90
(± 0.39) mg/m3 for PM2.5, PM10, NO2, SO2, and CO, respectively.
Strong correlations (Pearson rho > 0.75) were observed between
the concentrations of each pair of pollutants for Lag 0.

Associations between air pollutants and lung function
The associations between air pollutants exposure and parameters
of lung function are shown in Fig. 1. For FEV1/FVC, statistically
negative associations were observed with SO2 at Lag0, Lag1, and
Lag2, with both PM2.5 and NO2 at Lag0 and Lag 1, with PM10 at
Lag0, and with CO at Lag1. For per IQR increase in concentrations,
the largest reductions on FEV1/FVC (%) were 0.510 (95% CI: 0.052,
0.969) for PM2.5 at Lag1, 0.436 (95% CI: 0.045, 0.819) for PM10 at
Lag0, 0.812 (95% CI: 0.236, 1.392) for NO2 at Lag1, 1.046 (95% CI:
0.274, 1.818) for SO2 at Lag1, and 1.003 (95% CI: 0.371, 1.634) for
CO at Lag1. Our results suggested that the acute associations were
predominantly presented on the day of and the day before
spirometry test, and diminished after 2 days. However, no
associations were observed for exposure to air pollutants and
FEV1 and FVC in all lags we examined.
For SAD indicators, we found PM2.5 (−38.34 mL/s [95% CI:

−76.59, −0.09]), SO2 (−103.01 mL/s [95% CI: −171.74, −34.29]),
and CO (−56.98 mL/s [95% CI: −108.11, −5.85]) at Lag0 were
associated with reduced FEF25–75% (Fig. 1). In addition, increases in
all air pollutants except for CO were associated with decreased
FEV3/FVC (%) at Lag0 (−0.331 [95% CI: −0.603, −0.052] for PM2.5,
−0.365 [95% CI: −0.641, −0.089] for PM10, −0.443 [95% CI:
−0.784, −0.105] for NO2, and −0.564 [95% CI: −1.066, −0.066] for

SO2). The negative effects of air pollutants on FEV3/FVC were also
found for SO2 at Lag1 and Lag2, and for NO2 and CO at Lag1. For
FEF75%, statistically negative associations were observed with SO2

at Lag2. In the sensitivity analyses, we found similar associations of
air pollutants with lung function parameters among non-COPD
participants (Fig. S1). None of the air pollutants were associated
with lung function parameters in patient subgroups with COPD or
asthma, possibly due to the limited subgroup sizes (Data not
shown).
Figures 2–4 present the associations between each pollutant

and lung function parameters stratified by sex, smoking history,
and age. With regard to sex, negative effects were found for all
pollutants on FEF75%, and PM2.5, PM10, and CO on FEF25–75% and
FEV3/FVC only in males. The difference between males and
females were not significant, except for in the associations of SO2

on FEF75% between males and females (p= 0.013) (Fig. 2). PM2.5,
PM10, and SO2 were associated with lower FEV1/FVC in ever-
smokers (Fig. 3). In the age-specific analysis, the modifications of
age on associations between air pollutants and lung function were
inconsistent, but it is notable that FEF25–75% in the younger
patients (< 55 years old) was more susceptible to all pollutants
than in the older patients (≥ 55 years old) (p < 0.05) (Fig. 4).

Associations between air pollutants and inflammatory cell
counts
Figure 5 shows the associations of exposure to air pollutants with
blood cell counts. Increases in PM2.5, PM10, NO2, SO2, and CO at
Lag0 were significantly associated with lower neutrophil counts
(/µl) (−0.094 [95% CI: −0.161, −0.028] for PM2.5, −0.082 [95% CI:
−0.144, −0.021] for PM10, −0.085 [95% CI: −0.166, −0.004] for
NO2, −0.130 [95% CI: −0.243, −0.017] for SO2, and −0.124 [95%
CI: −0.215, −0.034] for CO, respectively). In addition, increases of
per IQR in PM2.5 and PM10 at Lag2 were associated with 0.136

Fig. 2 Associations of acute exposure to air pollution with lung function varied by sex. Data were presented as estimated values ± 95% CI.
The Y-axis indicate estimated changes in lung function parameters for an increase of per interquartile range (IQR) of the daily average PM2.5,
PM10, NO2, SO2, and CO measured on the day (Lag0) of the spirometry test.
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(95% CI: 0.029,0.242) and 0.233 (95% CI: 0.105, 0.363) higher WBC
counts (/µl), respectively. We did not observe any significant
associations with the eosinophil percentage.

DISCUSSION
In this study, we found that short-term exposure to PM2.5, PM10,
NO2, SO2, and CO were associated with decreased FEV1/FVC, FEF
25–75%, FEF75%, and FEV3/FVC, indicating air pollution-related
airflow limitation and small airway dysfunction. In subgroup
analysis, significant negative associations between the five
pollutants and SAD parameters were found only in males but
not in females. We also found that exposure to all analyzed air
pollutants on the day of the determination of lung function was
correlated to lower neutrophil counts, while PM2.5 and PM10 on
two days before the spirometry test were associated with higher
white blood cell counts. These results added to the evidence on
the adverse effects of acute exposure to multiple high-level air
pollutants on lung function, especially small airway dysfunction
and activation of systemic immune response.
Previous studies have aimed at the associations between air

pollutants and markers of large and middle airway impairment,
such as FEV1 and FVC. Previous studies demonstrated that an
increase in short-term PM2.5 and PM10 was correlated to decreases
in FEV1 and FVC [11]. An FEV1/FVC less than 0.7 is to evaluate
individuals at risk of COPD, predicting COPD-related hospitaliza-
tion and mortality. Acute exposure to NO2 but not PM10 was
correlated with a decrease of FEV1/FVC ratio among nonsmoking,
healthy adults [12]. In this study, we also found adverse
relationships between acute exposure to air contaminants,
including PM2.5, PM10, NO2, SO2, and CO, and FEV1/FVC, but not
FEV1 or FVC alone. FEV1 and FVC are insensitive parameter for

small airway changes and more related with restricted ventilation.
In contrast, FEV1/FVC is an indicator of airflow obstruction. An
FEV1/FVC less than 0.7 is to evaluate individuals at risk of COPD,
predicting COPD-related hospitalization and mortality. Thus, our
results suggests that the acute detrimental effects of air pollutants
are related to airflow obstruction in proximal and distal airways
without distinct restriction.
Evidence for the effects of acute exposure to air pollution on

peripheral airways is still scarce. FEF25–75%, FEF75% and FEV3/FVC
have been the most commonly cited spirometric variables as
indicators of small airway obstruction [17, 23, 24]. Dauchet et al.
reported that acute exposure to NO2 was correlated with a lower
FEF25–75% and FEF25% and that PM10 was correlated to decrease of
FEF75% in nonsmoking, healthy adults [12]. Consistently, NO2 and
PM10 showed a similar albeit insignificant association with
FEF25–75% and FEF75% in our study. In addition, we assessed the
acute exposure to PM2.5, SO2 and CO and found that they were
negatively associated with FEF25–75% and FEV3/FVC. First, for per
IQR increase in concentrations of the five pollutants, the largest
reductions on FEF25–75% and FEF75% were −171 ml/s and 79ml/s,
respectively, which were 6% and 8% for the mean FEF25–75% and
FEF75% of 3.07 L/s and 0.98 L/s in this population. Thus, the acute
exposure causes significant changes in small airways. For patients
with COPD or asthma, in whom the obstruction has already exist,
such acute reductions may result in exacerbation of respiratory
symptoms. Second, as reported in previous longitudinal studies,
development of asthma and COPD might begin with SAD without
obvious symptoms in the early stage. Thus, our findings alert
protecting vulnerable population from short-term extensive
exposure to air pollutants to avoid related SAD.
Although the co-linearity among pollutants cannot be ruled out,

most associations were found between gaseous pollutants (i.e.,

Fig. 3 Associations of acute exposure to air pollution with lung function in ever-smokers and never-smokers. Data were presented as
estimated values ± 95% CI. The Y-axis indicate estimated changes in lung function parameters for an increase of per interquartile range (IQR)
of the daily average PM2.5, PM10, NO2, SO2, and CO measured on the day (Lag0) of the spirometry test.
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SO2, NO2, and CO) and lung function parameters. Substantial
evidence has shown that acute exposure to these gaseous
pollutants was closely associated with airway inflammation
[25, 26], airway hyperresponsiveness, and bronchoconstriction in
both larger and smaller airways [27], and the development and
adverse outcomes of COPD [28, 29] and asthma [30–32]. Gaseous
pollutants are smaller than particulate pollutants and therefore
easily diffuse into the peripheral airways and might alter the pH of
the airway mucosa, which may lead to an immediate immune
inflammatory response [33, 34]. Our results highlight the need for
closely monitoring and rigorously controlling of the concentra-
tions of gaseous air pollutants to prevent chronic airway
inflammatory diseases, such as COPD and asthma.
The pro-inflammatory role of air contaminants might be one

of the mechanisms underlying its effects [35, 36]. A meta-
analysis found that acute exposure to multiple air pollutants
(PM10, PM2.5, NO2, and SO2) at high concentrations was
correlated with increased fractional exhaled nitric oxide (FeNO),
suggesting that the exposure of air contaminants may induce
respiratory diseases via airway inflammation [37]. A recent study
also reported decreased neutrophil counts after 24-hour diesel
exhaust exposure, accompanied by higher levels of an activated
peripheral neutrophil phenotype and increased neutrophil
extracellular trap formation in the lung [38]. Blomberg et al.
found increased neutrophil counts and levels of myeloperox-
idase (MPO) in bronchial wash samples of healthy individuals
after NO2 exposure [39]. In our analysis, we found associations
between acute exposure to air contaminants and decreased
peripheral neutrophils at Lag0. This may be due to recruitment
of activated neutrophils to the respiratory tract upon acute
exposure, leading to a decrease in neutrophil counts in

peripheral blood. Consistent with previous studies, we also
found that PM2.5 and PM10 were correlated with elevated
leukocytes at Lag 2 [12, 40]. A lagged increase in the total white
blood cell count at Lag 2 might indicate subsequent systemic
inflammation and the release of white blood cells into the
peripheral blood from the bone marrow [41, 42]. Acute airway
inflammation and peripheral neutropenia caused by air pollu-
tants may be an underlying mechanism of airflow limitation [43].
In our study, the blood cell counts suggested a disturbance of
immune system associated with acute exposure, but were not
directly related with decreased lung function parameters.
Additional insights into the direct and indirect mechanistic
effects of different air pollutants, especially gaseous pollutants,
on neutrophil activation may be useful.
It is crucial for public health intervention to identify participants

who are vulnerable to air pollution. In the Framingham study,
previous-day air pollution exposure and FEV1 did not vary by
smoking status [11]. In our study, we found that ever-smokers
seem to be more susceptible to air contaminants with regard to
FEV1/FVC, FEF25–75%, FEF75%, and FEV3/FVC than never-smokers.
Our result was in line with a previous study, which found that the
negative correlations between PM10, NO2, and SO2 and lung
function were generally weaker among never-smokers than
among smokers [44]. It is mechanically plausible given that both
air pollutants and cigarette smoke could induce acute epithelial
injury and neutrophilic inflammation, which further results in
chronic airway inflammation [26, 45]. The susceptibility of ever-
smokers may result from overlapping pro-inflammatory effects of
the two detrimental factors. Males were more vulnerable to
detrimental effects of acute exposure of air contaminants than
females. These findings should be paid attention and the

Fig. 4 Associations of acute exposure to air pollution with lung function varied by age. Fifty-five years old was the median age among the
whole population. Data were presented as estimated values ± 95% CI. The Y-axis indicate estimated changes in lung function parameters for
an increase of per interquartile range (IQR) of the daily average PM2.5, PM10, NO2, SO2, and CO measured on the day (Lag0) of the spirometry
test.
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differential susceptibility to air contaminants-related SAD needs
further study.
Our study has many strengths. First, this study adds to the

limited evidence that multiple pollutants may reduce lung
function at high exposure levels. Second, most previous studies
have focused on spirometric indicators of large and middle
airway dysfunction. Our results provide a more comprehensive
view of the possible acute effects of air pollutants on lung
function by exploring the associations between acute exposure
to various air pollutants and peripheral small airways. Third, we
also found an immediate decrease in peripheral neutrophils and
a lagged increase in white blood cells after acute exposure to air
pollutants, suggesting that acute inflammatory response may
play a role in air pollutant-related airway obstruction. Finally,
using the multistage randomized sampling strategy, we included
participants from urban and rural areas, males and females, and
adults of all ages, which may contribute to minimizing
investigator bias.
This study also has several limitations. First, daily concentrations

of each pollutant were measured at the nearest monitoring site to
the residential address for each subject. Therefore, exposure
misclassification is possible. Second, information on micro-
environmental air pollution exposure and activity patterns was
not collected in our study, which may have contributed to
exposure measurement error. Third, air pollutants were highly
correlated in this study, so it was difficult to evaluate the
contribution of a single pollutant separately. In addition, the
potential confounders that were not collected initially could not
be adjusted for in the statistical models, such as diets and exercise.
Forth, airway resistance was not measured in this study. Finally,

whether the inflammatory response relates temporally to specific
alterations in lung function would been elucidated in the
following study.

CONCLUSIONS
In conclusion, our findings suggested that acute exposure to high-
level air pollution was correlated with impaired lung function,
including dysfunction in small airways. The peripheral neutrophil
count was also negatively associated with air pollutants, indicating
inflammation caused by air pollution exposure. Our results
underline the acute effects of air pollutants on small airways.
Further investigation is needed to understand the role of air
pollution-induced SAD in chronic lung diseases, including COPD
and asthma.

DATA AVAILABILITY
The datasets used and analyzed during the current study are available from the
corresponding author on reasonable request.
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