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Associations of cadmium exposure with risk of metabolic
syndrome and its individual components: a meta-analysis
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Data directly associating cadmium (Cd) with metabolic syndrome (MetS) are sparse and inconsistent. We aimed to quantitatively
assess the association of Cd exposure with risk of MetS and its individual components. Literature searching was performed in
PubMed, EMBASE, and MEDLINE-OVID through September, 2021. Weighted odds ratios (ORs) for MetS and its components were
pooled by comparing the highest to the lowest category of Cd exposure using random-effects models. Eleven (10 from Asia and 1
from the US) cross-sectional studies (33,887 participants and 7176 cases) were identified. Overall, Cd exposure was not associated
with risk of MetS [OR: 1.08, 95% confidence interval (CI): 0.92, 1.28]. However, the association became significant when pooling
Asian studies (OR: 1.18, 95% CI: 1.02, 1.35), and it was more pronounced with Cd measured in blood (OR: 1.24, 95% CI: 1.05, 1.45).
Additionally, Cd exposure was significantly associated with reduced HDL-cholesterol (OR: 1.27, 95% CI: 1.05, 1.54) and elevated
triglyceride (OR: 1.17, 95% CI: 1.05, 1.30), but not other components. This meta-analysis indicates that Cd exposure is associated
with risk of MetS among Asian populations, which is mainly explained by Cd’s association with dyslipidemia. Further studies are
needed to better understand the mechanism of action.
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INTRODUCTION
Metabolic syndrome (MetS), defined by abdominal obesity,
elevated fasting glucose level, dyslipidemia, and increased blood
pressure, is a constellation of metabolic abnormalities that are
related to risk of cardiovascular disease and type 2 diabetes
mellitus [1–3]. MetS is one of the leading public health challenges
worldwide and its prevalence increased dramatically in the past
decades [4, 5]. More than one third of Americans are suffering
from MetS [6]. Although unhealthy diet and sedentary lifestyle
may play critical roles in the pathogenesis of MetS [7, 8],
increasing evidence suggests that environmental factors, e.g.,
some heavy metal exposure, may promote risk of MetS [9, 10].
Cadmium (Cd) is a toxic metal that distributes ubiquitously in

soil. It contaminates foods and drinking water, which are the
major sources of exposure in the general populations in addition
to smoking. Once absorbed, Cd accumulates in human body for
decades with only 0.01-0.02% excreted through urine and feces
each day [11, 12]. Cd tends to accumulate in liver and kidney [13],
causing chronic inflammation in liver by activating Kupffer cells
[14] and oxidative damage that leads to renal tubular dysfunction
[15]. Thus, Cd may have greater toxicity in metabolic system [16].
Studies directly relating Cd exposure to MetS are limited and the

findings are inconsistent [17, 18], although the associations of Cd

with some individual components of MetS have been observed
[19–21]. A recent meta-analysis synthesized data from 10 cross-
sectional studies and reported that Cd exposure was not associated
with MetS risk [22]. Of note, the associations of Cd exposure with
individual components were not investigated, and major errors
might occur in the previous meta-analysis due to the following
reasons: 1) included studies using data that are substantially
overlapped. In particular, two included studies (Noor et al. [18] and
Bulka et al. [23]) used data from the National Health and Nutrition
Examination Survey (NHANES) 2011–2014; 2) combined results with
Cd exposure measured in different biospecimens, e.g., blood and
urine; and 3) a couple of eligible studies were not included.
Therefore, we conducted this study for more comprehensive
analyses by including two more studies with consideration on the
types of biomarker for Cd exposure and possible ethnic disparities.
Also, we further examined the associations between Cd exposure
and individual components of MetS.

METHODS AND MATERIALS
Search strategy
This study was conducted in line with the guidelines of the
Preferred Reporting Items for Systematic Reviews and Meta-
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Analyses (PRISMA) checklist. Electronic databases (PubMed,
EMBASE, and MEDLINE-OVID) were searched comprehensively
through September, 2021 using the combination of the terms:
“Metabolic Syndrome X” or “metabolic syndrome” or “syndrome X”
or “insulin resistance syndrome”, and “cadmium” or “metal” or
“heavy metal”, with no language restriction. All identified records
were downloaded to a reference list in Endnote X9 and the
duplicate publications were excluded using the function “Find
Duplicates”. Google Scholar and the reference lists of published
articles were manually searched for additionally relevant publica-
tions. Literature screening was independently conducted by LL
and YL and checked by CC.

Inclusion criteria
Studies were included in this study if they met the following
criteria: (a) investigating the association between Cd exposure and
MetS risk; (b) the associations of interest were reported as hazard
ratio, relative risk or odds ratio (OR) with corresponding 95%
confidence interval (CI), or these risk estimates could be calculated
using the information in the articles; and (c) Cd exposure was
measured in biomarkers, rather than estimated from the environ-
ment. Studies were excluded if they: (a) were reviews, abstracts,
letter-to-editors, posters, or case-reports; (b) were laboratory
studies; or (c) reported risk estimates were not able to be
combined with that from other primary studies. If study
populations were substantially overlapped, we included the study
with large sample size and more comprehensive information.
Finally, 11 cross-sectional studies were identified in this meta-
analysis.

Quality assessment
Three authors (LL, YL, and CC) independently evaluated the
identified studies by using the modified Newcastle–Ottawa
Quality Assessment Scale (NOS) for cross-sectional studies [24].
Each study was scored based on 7 questions from the following
items: sample representativeness, sample size, non-respondents,
exposure ascertainment, adjusted covariates, outcome assess-
ment, and statistical methods. The maximum score was 10 points.

Data extraction
Two authors (LL and YL) independently extracted the following
information using a pre-determined data collection form: the first
author, publication year, region, sex, age, number of all
participants and MetS cases, diagnosis criteria of MetS, measure-
ment of Cd, risk estimates of MetS and its components in the
highest Cd exposure group as compared to those in the lowest
exposure group, and the adjusted covariates. According to the
modified National Cholesterol Education Program Adult Treat-
ment Panel III (NCEP ATP III) definition (2005 revision) [25], the
individual MetS components included abdominal obesity defined
as waist circumference (WC) ≥102 centimeter (cm) for men and
≥88 cm for women, reduced high-density lipoprotein cholesterol
(HDL-c) defined as HDL-c < 40 milligram/deciliter (mg/dl) for men
and <50mg/dl for women, elevated triglyceride (TG) defined as
TG ≥ 150mg/dl, elevated blood pressure (BP) defined as systolic
BP ≥ 130 millimeters of mercury (mmHg) or diastolic BP ≥ 85
mmHg, and elevated glucose levels defined as fasting blood
glucose ≥ 100 mg/dl.

Statistical analysis
All analyses were performed using STATA software version 16.0
(STATA Corporation LP, College Station, TX, USA). A two-sided P
value ≤ 0.05 was considered to be statistically significant. We
pooled ORs of MetS comparing the highest to the lowest category
of Cd exposure using DerSimonian and Laird random-effects
models [26, 27]. Similarly, in 7 studies with available data
[10, 17, 18, 28–31], we pooled ORs for each MetS component
using DerSimonian and Laird random-effects models. The

weighted ORs were presented for the overall associations of Cd
exposure with MetS risk and its individual components. In
addition, the analyses were stratified by the types of Cd biomarker
(i.e., blood or urine) and study populations. Heterogeneities
among studies were evaluated by calculating the I2 statistic along
with Cochran’s Q test [32]. I2 values <50%, 50–75%, and >75%
were considered to represent low, moderate, and high hetero-
geneity, respectively. Publication bias were assessed by using
Egger’s regression asymmetry test [33].

RESULTS
Literature searching
A total of 132 potentially relevant articles were identified from the
aforementioned databases after removing 148 duplicated records
in Endnote X9. Among these studies, 92 irrelevant studies were
further excluded by reviewing the titles and abstracts. Of the
remaining 40 studies, 32 studies were removed after full-text
screening for the following reasons: (a) it did not report risk
estimates of MetS (n= 10); (b) it was a review or an abstract (n=
10); (c) Cd was not an exposure of interest (n= 6); (d) it was not
conducted in human (n= 1); (e) its reported results could not be
combined with that from other primary studies (n= 3); or (f) its
study population substantially overlapped with other primary
studies (n= 2). Three additional studies were identified
from Google scholar or the reference lists of previous publications.
Finally, 11 studies [10, 17, 18, 28–31, 34–37] were included
in this meta-analysis. The flow of literature searching was shown in
Fig. 1.

Characteristics of published studies
The 11 included studies were all cross-sectional studies published
from 2013 to 2020. The detailed characteristics of the studies were
displayed in Table 1. These studies consisted of 33,887 participants
and 7,176 cases of MetS from USA (n= 1) [18], Korea (n= 6)
[10, 17, 28, 30, 34, 35], China (n= 3) [31, 36, 37], and Thailand (n= 1)
[29]. All the included studies were published in English, except for
one in Korean [30] and one in Chinese [36]. Four studies recruited
only male [10, 17, 31] or female [29] participants, and the rest
recruited both sexes. Cd was measured in urine in two studies
[35, 37], in blood in eight studies [10, 17, 28–31, 34, 36], and in both
biomarkers in one study [18]. The reported ORs of MetS were based
on quantiles of Cd exposure, including quintiles [18], quartiles
[28, 31, 34–36], tertiles [10, 17, 29, 37] and dichotomous levels [30].
MetS was ascertained according to Chinese Diabetes Society (CDS)
criteria in two Chinese studies [31, 36], and according to NCEP ATP III
criteria [35] and its modified version [10, 17, 18, 28–30, 34, 37] in the
rest. One study reported crude ORs [36] and the rest reported
adjusted ORs [10, 17, 18, 28–31, 34, 35, 37].

Quality assessment
The quality of each included study was evaluated by using NOS
tool (Supplemental Table 1). All studies achieved high quality with
scores ranging from 7 to 9 points. They all reported sufficient
information on sample size, exposure ascertainment, outcome
assessment, and statistical methods. However, not all studies
provided data on sample representativeness, non-respondent
rate, or adjusted covariates.

Results of meta-analysis
Overall, Cd exposure was not associated with MetS risk (weighted
OR: 1.08, 95% CI: 0.92, 1.28; Fig. 2) when pooling data from all 11
primary studies. Moderate heterogeneity (I2= 63.5%, p= 0.002)
was observed. However, Cd exposure was significantly associated
with risk of MetS when pooling data from the 10 studies
conducted in Asian populations (weighted OR: 1.18, 95% CI:
1.02, 1.35; Fig. 3a), and the association was more pronounced with
Cd exposure measured in blood (weighted OR: 1.24, 95% CI: 1.05,
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1.45; Fig. 3b). Low heterogeneity was observed in the 10 Asian
studies (I2= 43.4%, p= 0.069).
In the analyses with MetS components (Fig. 4), Cd exposure

was associated with risk of reduced HDL-c levels (weighted OR:
1.27, 95% CI: 1.05, 1.54) and elevated TG levels (weighted OR:
1.17, 95% CI: 1.05, 1.30), and the association was borderline
significant with elevated BP (weighted OR: 1.22, 95% CI: 0.99,
1.52). Cd exposure was not associated with the other two
individual components (WC and glucose levels). Heterogeneity
was considered to be high for WC (I2= 80.1%, p < 0.001),
moderate for HDL-c (I2= 69.7%, p= 0.003), BP (I2= 69.8%,
p= 0.001), and glucose levels (I2= 74.6%, p < 0.001), and low
for TG levels (I2= 0%, p= 0.489). When we pooled studies with
Cd exposure measured in blood, the associations with WC and
BP were strengthened and became either borderline significant
or significant (data now shown).
Egger’s regression asymmetry test suggested that publication

bias was unlikely in our analyses (in all 11 primary studies:
p= 0.41; in 9 studies with Cd measured in blood: p= 0.42; in 10
Asian studies: p= 0.14; in 8 Asian studies with Cd measured in
blood: p= 0.12; Supplemental Figs. 1–4).

DISCUSSION
In this meta-analysis with updated literature, we found that Cd
exposure was significantly associated with risk of MetS among
Asian populations and the association was more pronounced in
studies with Cd exposure measured in blood. Also, the observed
association might be mainly explained by Cd’s association with
dyslipidemia measured by elevated TG and reduced HDL-c levels.
A recent published meta-analysis [38] reported that Cd exposure
was not associated with risk of MetS. However, that study did not
consider ethnic disparities and types of Cd biomarker in the

analyses. Also, it did not examine Cd exposure in relation to
individual component of MetS. In addition, a couple of eligible
studies were not included. With extensive literature review and
comprehensive analyses, our study provides important additional
information to the literature.
The potential toxicity of Cd exposure on MetS and its

components is also supported by some other cross-sectional
studies that do not meet the inclusion criteria of the present meta-
analysis. For example, in a study of Korea National Health and
Nutrition Examination Survey (KNHANES) 2010 [39], blood Cd
concentration was associated with increased fasting glucose
levels. In an updated analysis using KNHANES 2016 data, blood
Cd concentration was significant higher in participants with MetS
compared to other participants [38]. In a Lebanese cross-sectional
study [40], serum Cd level was significantly associated with a
higher risk of dyslipidemia, but not with diabetes or obesity. In a
case-control study from the Iran Hoveyzeh cohort, participants
with higher urinary Cd concentrations had higher odds of MetS
and low HDL-c levels. However, two other cross-sectional studies
reported no association of hair or urinary Cd levels with MetS and
its components [23, 41].
Laboratory studies have provided some evidence that may

explain the potential toxicity of Cd on dyslipidemia [42], although
the underlying mechanisms have not been fully elucidated.
Studies suggest that Cd exposure inhibits or disturbs numerous
enzymes involved in the lipid metabolism [43, 44]. In a rat model
[43], Cd administration increased hepatic TG synthesis by inducing
the overexpression of glycerol-3-phosphate acyltransferase mito-
chondrial isoform, an enzyme participating in TG synthesis. Cd
administration also facilitated the synthesis of liver fatty acids by
increasing the activities of related enzymes, e.g., fatty acid
synthase and isocitrate dehydrogenase. In addition, Cd exposure
damaged the cellular antioxidant defense systems by depleting

Potentially relevant studies identified in the 

database (n=280) 

• PubMed (n=86) 

• EMBASE (n=117) 

• MEDLINE-OVID (n=77)  

Duplicate studies (n=148) 

Irrelevant studies (n=92)

Excluded for the following reasons (n=32) 

• Did not report risk estimates for MetS 

(n=10) 

• Review or abstract (n=10) 

• Cd was not an exposure of interest (n=6) 

• Laboratory study (n=1) 

• Reported results could not be combined 

(n=3) 

• Study population overlapped with other 

studies (n=2) 

Non-duplicate studies for reviewing of titles and 

abstract (n=132)  

Studies for reviewing of full-texts (n=40)                

Additional studies were identified from Google 

scholar and reference lists (n=3) 

Studies included in the meta-analysis (n=11)           

Fig. 1 Flow chart of study selection.
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Fig. 2 Weighted ORs (95% CIs) of MetS comparing the highest to the lowest Cd exposure category in 12 independent cohorts from 11
cross-sectional studies. OR for individual study are shown as solid diamond (♦), and the weighted ORs are shown as the open diamond (♢).
Horizontal lines represent 95% CIs for the study-specific ORs.

Fig. 3 Weighted ORs (95% CIs) of MetS comparing the highest to the lowest Cd exposure category in Asian studies. aWeighted ORs (95%
CIs) of MetS comparing the highest to the lowest Cd exposure category in the 10 studies conducted in Asian populations. OR for individual
study are shown as solid diamond (♦), and the weighted ORs are shown as the open diamond (♢). Horizontal lines represent 95% CIs for the
study-specific ORs. b Weighted ORs (95% CIs) of MetS comparing the highest to the lowest blood Cd exposure category in the 8 studies
conducted in Asian populations with blood Cd measurements. OR for individual study are shown as solid diamond (♦), and the weighted ORs
are shown as the open diamond (♢). Horizontal lines represent 95% CIs for the study-specific ORs.
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glutathione and reducing antioxidant enzyme activities [45, 46].
Thus, Cd may indirectly generate reactive oxygen species and
induce oxidative stress [47], which may contribute to defects in
the synthesis and secretion of lipoprotein in liver, leading to
decreased HDL-c and increased TG [48]. Moreover, Cd exposure
may induce inflammatory responses in many organs (e.g., liver,
kidney, and cardiac tissue) by activating multiple intracellular
signaling pathways in immune cells and up-regulating inflamma-
tion markers and mediators (e.g., NF-κB, IL-6, TNF-ɑ, and C-reactive
protein) [49]. Inflammation induces dyslipidemia [50] probably
through regulating the levels of apolipoproteins and the activities
of relevant enzymes [51]. Since elevated TG/HDL-c ratio and
inflammation predicts the development of hypertension [52] and
diabetes [53, 54], the toxicity of Cd exposure on other individual
components of MetS such as BP and glucose levels is possible, but

may require a higher exposure level and prolonged exposure
duration.
Notably, Cd exposure may induce metabolic disorders via

damaging endothelium and affecting energy balance. Cd may
infiltrate into the endothelial cells of vessel walls, leading to the
endothelial injury through the proinflammatory intracellular
signaling pathway [55, 56]. Endothelial dysfunction contributes
to the development of metabolic disorders, including obesity,
insulin resistance, dyslipidemia, hypertension, atherosclerosis, and
diabetes mellitus [57, 58]. Additionally, Cd is able to interfere with
metabolic and energy balance, probably through affecting the
metabolism of carbohydrates and lipids [59, 60]. It has been
demonstrated that Cd may affect glucose homeostasis by
mediating some corresponding gene expression in islet both
in vivo and in vitro [61]. In rat model, Cd exposure induced

Fig. 4 Weighted ORs (95% CIs) of individual MetS components comparing the highest to the lowest Cd exposure category in 7 cross-
sectional studies. ORs for individual study are shown as solid diamond (♦), and the weighted ORs are shown as the open diamond (♢).
Horizontal lines represent 95% CIs for the study-specific ORs. Abbreviations: Cd cadmium, CI confidence interval, HDL high-density
lipoprotein, MetS metabolic syndrome, OR odds ratio.
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decreased glycogen synthesis and increased de novo lipogenesis
in liver, which was associated with low expression of GSK 3β-pS9
and strong expression of SREBP-1c [62].
Some inherent limitations in the primary studies and the existing

dataset need to be highlighted. First, most of the primary studies
measured Cd in blood, which may not reflect the long-term Cd
exposure [63]. Our analysis suggests that the associations of interest
may vary depending on the type of Cd biomarkers. More studies with
biomarkers reflecting long-term exposure, e.g., nail Cd concentrations,
are needed [64]. Second, the heterogeneity among studies should be
considered. The definition of MetS is not consistent across all primary
studies, which may partially explain the observed high heterogeneity
among these studies. Also, a study used self-reported data on
individual components of MetS [35]. Notably, all included studies
except one were conducted in Asia. The definitions of MetS in Asian
studies were modified from the NCEP ATP III definition and slightly
different across countries. For example, the cutoff points for WC in
most of the included Asian studies were tighter than that in the
American study (e.g. WC≥ 90 cm for men and ≥85 cm for women in
Korean studies vs WC≥ 102 cm for men and ≥ 88 cm for women in the
American study). The heterogeneity may also be explained by the
geographical variation of Cd exposure. For example, in the American
study [18], the highest quintile of urinary Cd concentration was greater
than 0.60 μg/L, similar to the median level (0.65 μg/L) of urinary Cd in a
Chinese study [37]. Notably, although no significant association
between cd exposure and MetS was observed in the American study,
a significant positive association between urinary Cd and MetS odds
was found in the current smokers, who had a relatively higher urinary
Cd concentration than the general population. Third, all primary studies
are cross-sectional design, thus causal inference cannot be established
based on the existing literature. In addition, since the analysis is based
on observational studies, the potential inherent bias or residual
confounding (e.g. measurements error) from the primary studies
cannot be ruled out. Fourth, the possibility of publication bias, e.g.,
publications in other languages, cannot be completely ignored, though
there is insufficient evidence of publication bias involved in our
analyses. Finally, the limited eligible studies may not provide sufficient
statistical power to our analyses. Clearly, more studies especially well-
designed prospective cohort studies are warranted.

CONCLUSIONS
In summary, our meta-analysis indicated that Cd exposure,
especially measured in blood, was associated with risk of MetS
among Asian populations. This associationmay be largely explained
by Cd’s association with dyslipidemia measured by elevated TG and
reduced HDL-c. Further studies are needed to confirm our findings
and better understand how Cd being involved in fat metabolism.
Particular attention should be paid to the potential ethnic
disparities, geographic variations, and biomarker difference.
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