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BACKGROUND: In modern societies, noise is ubiquitous. It is an annoyance and can have a negative impact on human health as
well as on the environment. Despite increasing evidence of its negative impacts, spatial knowledge about noise distribution
remains limited. Up to now, noise mapping is frequently inhibited by the necessary resources and therefore limited to
selected areas.
OBJECTIVE: Based on the assumption, that prevalent noise is determined by the arrangement of sources and the surrounding
environment in which the sound propagates, we build a geostatistical model representing these parameters. Aiming for a large-
scale noise mapping approach, we utilize publicly available data, context-aware feature engineering and a linear land-use
regression (LUR) model.
METHODS: Compliant to the European Noise Directive 2002/49/EG, we work at a high spatial granularity of 10 × 10-m resolution. As
reference, we use the day–evening–night noise level indicator Lden. Therewith, we carry out 2000 virtual field campaigns simulating
different sampling schemes and introduce spatial cross-validation concepts to test the transferability to new areas.
RESULTS: The experimental results suggest the necessity for more than 500 samples stratified over the different noise levels to
produce a representative model. Eventually, using 21 selected variables, our model was able to explain large proportions of the
yearly averaged road noise (Lden) variability (R2= 0.702) with a mean absolute error of 4.24 dB(A), 3.84 dB(A) for build-up areas,
respectively. In applying this best performing model for an area-wide prediction, we spatially close the blank spots in existing noise
maps with continuous noise levels for the entire range from 24 to 106 dB(A).
SIGNIFICANCE: This data is new, particular for small communities that have not been mapped sufficiently in Europe so far. In
conjunction, our findings also supplement conventionally sampled studies using physical microphones and spatially blocked cross-
validations.
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INTRODUCTION
Today, noise is ubiquitous—it is prevalent in and around urban
areas (see [1]) and even pervades remote protect areas [2].
Multiple studies have shown its influence on annoyance, stress
and subsequent cardiovascular diseases, sleep disturbance, and
further impairments [3–5], as well as impacts on animals [6] and
ecosystems in general [7]. Thereby, noise emitted from infra-
structures such as roads, airports or from industries is not spatially
distributed equally but confined to specific areas. Consequently,
noise affects the population to a varying degree depending on
their place of residence and spatial behavior. In fact, multiple
studies in the domain of environmental justice have found that
noise exposure is particularly affecting social groups of lower
socioeconomic position [8–11].
In Europe, noise pollution has received increasing societal and

political attention leading among others to the establishment of

the European Noise Directive (END) [12]. Noise, however, is highly
complex in its spatial and temporal variability so that quantifica-
tion and mapping is challenging. Actual field measurements need
to be comprehensive and therefore are expensive. However,
sophisticated engineering methods can be deployed to map
simulated noise [13, 14]. Provided with detailed traffic information
and subsequently with data describing the environment, these
source–path–receiver-based simulations are known to be very
accurate. In accordance with the END, this approach is deployed
to generate strategic noise maps every 5 years in Europe.
Amongst other parameters, these maps include Lden, the yearly
averaged noise estimate condensing weighted day, evening, and
night periods [15], specific to individual noise emitters (e.g., road
traffic) at 4 m above the ground. Notwithstanding its merits
though, the END has limitations as well—particular for consecu-
tive exposure studies on regional or even national scale. Road
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noise, for example, only needs to be mapped in urban
agglomerations with more than 100,000 inhabitants ([12]
art.3 sec. k) and for rural areas along major roads with more than
3,000,000 vehicles per year ([12] art.3 sec. n). Therefore,
predominantly no noise data are available for smaller urban areas
and other roads in peripheral areas. In regards to environmental
health equity though, the incomplete data bases of rural areas
distort direct comparisons of affected populations [16]. Also,
where a large city physically grew outside its administrative
boundaries [17], areas not mapped Lden > 55 dB(A) correspond to
the two separate END sections k) and n) of article 3 and thus have
different semantics as well: inside the boundaries, these areas
represent Lden < 55 dB(A), whereas in the suburbs, these areas
actually were not mapped at all. The epidemiological analysis of
exposure to noise therefore often remains spatially partial, or too
aggregated.
For such studies, we aim at leveling data inequities and search

for a scalable noise mapping approach. In, but particularly outside
Europe, epidemiologists extrapolate microphone measurements
using kriging (e.g., [18]) and land-use regressions (LURs) [19–26].
Both approaches are relatively inexpensive but comparing them,
Xie et al. [19] have found LUR models produce better results.
Thereby LUR, initially developed to assess the exposure of air
pollution [27], integrate multiple spatial predictors into a statistical
model. After preprocessing (i.e., log-transformations, feature
selections, etc.), a statistical model is fitted, which conclusively
can be used to estimate noise exposure. Building on the fact that
Aguilera et al. [21] found high correlations between in situ noise
measurements and END compliant noise maps, we utilize the

latter Lden to learn a LUR model and transfer the encoded
information to surrounding areas. Thereby, likewise referring to
virtual microphones, we investigate the implications of different
sampling schemes, i.e., sizes and localizations, by repeating the
procedure 2000 times. With this, overall 185,000 samples were
drawn and tested for quantifying statistical uncertainties. In
particular, as spatial autocorrelation is a distinct matter for local
acoustical phenomena, we extend the investigations of Liu et al.
[26] by introducing two structured cross-validation approaches
[28] for LUR. Blocking samples by specific classes related to urban
morphology as well as by administrative districts respectively, a
comprehensive set of spatially independent cross-validations
allows for assessing the transferability of the model to new,
unseen areas. Discussing those last two parameters, sampling
scheme and cross-validation, contributes to the development of
LURs in general and outside Europe as well. For our study though,
the conjunction provides comprehensively benchmarked noise
predictions in particular. As a result, a detailed noise map presents
continuous exposure levels for peripheral areas not included in
the END obligation yet.

MATERIAL AND METHODS
After introducing the study area first, we start with compiling the model’s
independent predictor variables (highlighted blue in Fig. 1). In order to
represent road traffic noise emissions and respective soundwave interac-
tions with the environment, four different inputs are considered—road
infrastructures, built-up structures (LoD1), and the natural environment in
terms of land cover (LCC) and topology (DEM). In a preprocessing step,
these data are integrated matching the 10 × 10-m resolution commonly

Fig. 1 Flowchart grouping data (rectangles) and methods (rhombuses) into main methodical steps (colored backgrounds). Black lines
illustrate data flow in general, while gray lines denote auxiliary information needed within individual steps only. Dotted elements denote
selection processes.
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obliged in European noise studies. As noise may travel over large
distances, contextual effects are embraced at eight moving window radii
ranging from 12.5 to 1600m. After the most relevant radius per variable is
selected, the predictors are embedded into the modeling. Analogous,
simulated noise data are sampled (highlighted in green), later also referred
to as virtual microphones. Among four investigated sampling schemes,
two stratified approaches required urban land-use categories and noise
classes as stratum, respectively. The sampled data sets are described
statistically (t-test), before being related to the predictor variables
(highlighted orange). During various cross-validations, the parameters
are assessed. Last but not least, both the data are used for training a final
model, which eventually is applied to a larger area.

Area of interest
In this study, we exemplify the emission and propagation of traffic noise in
and around Koblenz, a German city with 113,844 inhabitants living on 105
km2 [29]. The city of Koblenz represents an excellent case for training the
model because of its different types of built structures, the heterogenous
natural environment and topography, a diverse road network, and spatially
nuanced noise patterns. Id est, its administrative boundaries embrace
different structural features from dense built-up morphologies to low-
density rural areas, and from flat areas to steep fluvial shaped flanks by the
meandering rivers Rhine and Mosel (see Fig. S1).
Further, Koblenz is surrounded by the travel region Rhine valley, defined

by the German statistical office (Destatis) and the Federal office for building
and regional planning (BBSR). This 924 km2 large geographic entity is
situated along the river Rhine, connecting four cities and 56 municipalities
with a total population of 773,071 [29]. We chose this area for deploying the
final LUR model, as it surrounds the city of Koblenz and shares
morphological features with it. That are the suburban structures along
the northern river loop (e.g., Vallendar, Bendorf, Neuwied, etc.) in particular,
as well as agrestic patterns opening out south. Further, it is interesting to
note, that due to major roads most often located parallel to the river and
thus outside this touristic appealing region, noise data are rarely available.

Sampling noise simulation data
Due to the expensive nature of noise measurement sampling, the
sampling schemes applied in other studies are more often stratified
[19–22, 25, 26, see also Table S1] than random [24]. This is not surprising, as
stratified sampling is known to be more cost-effective [30]. According to
our knowledge, a systematic sampling approach has not been deployed
yet. In both, systematic and random sampling, the sample units are drawn
independently from each other with an equal probability such as they can
represent the complete data set best (see first two columns of Fig. 2).
Particular at smaller sample sizes though, both approaches can lead to

relatively large gaps in the sampled area as well. In related literature,
sample sizes range from 40 (Girona in [21]), up to 729 (across five cities in
[26]). As the importance of locating the samples was stressed from the very
beginning of noise-related LURs [15], we simulate its effects in this study
with 2000 virtual field campaigns. Thereby, our sampling experiments
systematically vary sampling scheme, sample size, and random influences.
We considered random, systematic, and two variants of stratified sampling
schemes aiming for a comprehensive representation of noise levels. The
latter, stratified sampling, is to ensure that the whole population is
represented well at reduced collection costs [30]. We reproduce the
approach of Chang et al. [25], stratifying based on land-use categories,
using the 22 different LU/LC classes defined by the European Urban Atlas
[31] as strata. Analogous, as the actual noise data are already prevalent, we
also stratified samples based on 5-dB(A) increments (illustrated in column
three of Fig. 2). Further, investigating uncertainties due to the sample size,
N was increased from 50, 100, 200, 500 to 1000 for each sampling scheme.
These Ns are akin to previous studies (see Table S1) and beyond. Regarding
stratified sampling though, the scarce outer classes may lead to an actual
smaller N eventually sampled (hereafter referred to as Nsampled). To account
for bias of random sample generation, we iterate each experiment with
100 different random number seeds. In case of regular sampling, this seed
refers to an offset in the sampling grid.
As reference, we considered EU compliant noise simulations for our

virtual campaigns. The local authorities of Koblenz provided us with the
simulation results of 2017 (see center Fig. S2). Such maps, fulfilling the
END, are produced combining high resolution input data such as traffic
information and built-up inventory with ray-tracing propagation models
[13, 14]. The engineering’s software output has a spatial resolution of 10 ×
10m, the continuous pixel values depict the simulated road traffic noise
Lden. Thereby, the Lden ranges from 12.8 to 88.3 dB(A), with a mean of 51.0
dB(A) and a standard deviation of sd= 11.1. The advantage of using END
conform noise maps instead of actual in situ measurements is, that they
are source-specific (i.e. road traffic noise) and they provide annually
averaged sound pressure levels, which both are the basis for political
decision making. Also, the 1.05 million pixels of our study area allow for
investigating sampling effects comprehensively, which is important in
order to assess the transferability of the model. Due to a heterogeneous
infrastructure network as well as different topographic, built-up and
natural morphologies, the sound pressure levels, however, are not uniform
(see map Fig. S2 or Table S2 for descriptive statistics along all 30 districts,
respectively. Table S3 for descriptive statistics with respect to the Urban
Atlas), but structured spatially. Two very loud and long-range hearable
motorways are allocated in the north-east, affecting large proportions of
the adjacent districts. From there, a trunk road runs through the city center
in a southerly direction, before finally connecting the eastern parts of the
city over the Rhine river. Primary roads are located along the river banks
and one (B327) meandering uphill South-southwest. Here it is well
depicted, that the scope of noise propagation depends on the surrounding
natural environment as well. Zooms b&c in Fig. S2 highlight local effects by
highly built-up urban morphology and the topography.
The sampled Lden sound pressure levels are considered virtual

microphone measurements. In order to assess the sampling impacts
statistically, the representativity of each of the 2000 virtual field campaigns
is assess by aggregating their mean and standard deviation first. Then,
they were related to the total population using a two-sided t-test assuming
the variances to be equal.

Predictor variables
In general, LUR predictors in noise-related studies vary from physical road
infrastructures [19–26], traffic information [21, 22, 24–26], surrounding
buildings [20–24], land-use/-cover patches [19–26], vegetative indices
[20, 22, 23, 26], and amongst weather data [25] and topography [26] to any
other auxiliary information hypothesized to affect the response variable.
Based on this literature and data review (see also Table S1), we inherit the
most common features and, aiming for large-scale reproducibility,
prioritize publicly-accessible data sources throughout the study. To
incorporate contextual effects like the arrangement of streets, built-up
density, and fraction of green spaces, moving windows were utilized. The
respective aggregation functions (sum, mean, etc.) depend on the variable
and their respective geographic rational, which is laid out below.
Regarding the radii, preceding studies did not agree on a standardized
and commonly accepted rule for defining them. Nevertheless, the applied
radii generally range between 50 and 1000m and also some particular
scales were already used more often (highlighted bold in following

Fig. 2 Illustration of sampling schemes and different cross-
validations concepts. Highlighted dots (purple) represent samples
being left out for an individual cross-validation iteration. Colored
background illustrates noise levelsused as strata. Dashed red lines
depict administrative borders used for blocking the cross-validation.
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enumeration). In relation to the logarithmic behavior of noise attenuation,
we thus used systematically scaled radii of 12.5, 25, 50, 100, 200, 400, 800,
and 1600m. Then, following the descriptions of Ragettli et al. [22] and Liu
et al. [26] the most relevant radius per feature was selected a priori. To do
so, a bivariate linear model was fitted for each available variable. The most
relevant radius per variable was chosen based on the smallest root mean
square error (RMSE). Thus, together with six road proximity features,
eventually 21 features were considered.

Road infrastructure. In this study, we focus on traffic noise emitted along
roads. In consequence, the road network and the proximity hereto are
essential. We take the spatial layout of the streets from OpenStreetMap
(OSM) data. Since data on traffic counts were not available, we considered
the assorted functional road types Motorway, Trunk, Primary, Secondary,
Tertiary and Residential as proxies for traffic volume capacities and speed
limits. We tested the suitability of this metadata by investigating the Lden
values at the road center. A subsequent ANOVA tests for significantly
different noise levels between the six road types. Then, being coded as
dummy variables [32], their effects were added to the model for each road
type separately. Hereby we distinguish two effect types—proximity and
cumulated road length. In both cases, tunnels were excluded throughout
the study [21].
At a scale of 10 × 10-m resolution, the proximities to roads were derived,

such as the digital numbers of the grid depict to distance to the nearest
road in meters. We consider this raster-based approach, as conducted by
Harouvi et al. [24], more sensitive than vectored buffer rings [19–23, 25]
and therewith justify the additional computational resources needed.
Along these gradients, with increasing distance to the source, sound levels
are known to decline on a logarithmic basis [33]. Consequently, the feature
space was log-transformed.
In addition, for each location, all neighboring roads were considered.

This allows cumulating multiple road exposures such as at intersections
and multilane roads. To do so, we first rasterize the input features, where
the value of each cell represents the subjacent length of a road multiplied
by its number of lanes, as it is recommended in the European Good
Practice Guide [34]. Where the latter attribute was not available, it defaults
to one. Then, the cumulated road length was summarized [19–23, 25, 26]
using the systematically scaled moving windows defined above.

Urban morphology. Buildings and their corresponding volume are also
essential for sound propagation [35–37]. On the one side, their emission
facing façade reflects the sound. This is very well exemplified by dense
street canyons, which are known to increase noise levels [38]. Vice versa,
on the side of the buildings facing away from the road, sound levels are
significantly lower. To include urban morphologies, building footprint and
height data are added to the model from the nationwide Level-Of-Detail-1
data set by the Federal Agency for Cartography and Geodesy [39].
Then, using the moving windows defined above, the neighborhood was

integrated to the list of predictors by averaging the mean built-up height.
Similar to the topographic position index (TPI) introduced by Weiss [40],
the values were normalized by subtracting the built-up height of the
central pixel. Positive values depict superior locations, while negative
values represent locations that are lower than their surroundings (valleys).
Therefore, these values correspond to the volume available for sound
propagation.

Natural environment. Analogous to the built environment, the surround-
ing topography has an important influence on sound propagation [41].
Therefore, the EU-DEM [42] was rescaled to the 10 × 10-m resolution using
bilinear interpolation. The respective TPI was derived at the above-defined
moving window radii as well.
In addition, propagating sound waves interact with the ground surface

[43]. While plain and solid surfaces such as water bodies and some artificial
material have reflecting acoustical properties, other, soft, or porous
material have absorbing effects [41, 44]. In the case of vegetative cover,
experiments comparing noise propagation in areas covered with trees
against such covered with grass have shown that this effect is proportional
to biomass [45, 46]. In our study, we represent the earth’s surface by a
remote-sensing-derived land-cover classification [47]. Computed from a
multi-temporal Sentinel-2 data set using Land-Use/-Cover Area frame
Survey reference samples, this publicly available product with an overall
accuracy of 93.1% has the same spatial properties as the reference units
defined above. It includes seven land-cover classes expected to be
important for noise mapping: artificial land, open soil, water areas, and
detailed information about vegetative biomass and its seasonality (low

perennial, high perennial, low seasonal, and high seasonal vegetation). As
a part of the data harmonization process, each land-cover class is treated
separately [32]. The moving windows computed the respective land-cover
fraction for each given neighborhood radius in percent.

Modeling
To test the potentials and limitations of our various sampling experiments
systematically, we have chosen linear least squares regressions. These are
most commonly used in this thematic context [19, 21, 23–25]. In addition,
their computational complexity is manageable. This is relevant for both,
repetitive training of our 2000 virtual field campaigns, and prediction. With
respect to the 10 × 10-m resolution, it is crucial that the model can be
deployed to larger areas of interest. Keeping the focus on sampling
artefacts, we selected a simple and consistent model implementation and
ruled out variability between the experiments by not considering forwards-
(as in [21–23, 25]) or backwards-selecting approaches [19, 20, 24, 26].
The model performances are assessed using five complementing

variations of cross-validations and three accuracy measures. Cross-
validation is a common approach aiming for a statistically independent
evaluation, particularly interesting at small sample sizes. Leaving n random
samples out, the model is fitted excluding these n samples, and evaluated
against them in a subsequent step (c.f. rows in Fig. 2). Herewith an
independent measure is available in order to quantify the transferability of
the model. Typically (as in [20–22, 25, 26] n is one (hereafter revered to as
LOOCV) or (as in [19, 24, 26]) a fraction, e.g., 10% random samples
(hereafter referred to as leave-group-out LGOCV10%). Similar to Liu et al.
[26], in this study, we implemented LOOCV, LGOCV10%, LGOCV25%, and
LGOCV50%. However, especially when the data are structured, e.g., by
landscape, spatial autocorrelation can jeopardize the central assumption
that training and evaluation data are independent, such as no conclusions
regarding overfitting can be drawn [28]. For such applications,
Roberts et al. [28] recommended blocking (although the division do not
need to be rectangular) the cross-validation samples accordingly. That is, a
model is trained on one proportion of the city and then tested in a new,
unseen area. As the spatial transferability is of particular interest in our
study, we consider two approaches: LSOCVAdmin leaves out one of
the 30 spatial districts of Koblenz at a time and second, LSOCVUrb.Atl.
validates the transferability by blocking samples based on the urban
settlement structures. This is achieved by utilizing polygon geometries of
22 different LU/LC classes from the European Urban Atlas data set [31] as
blocks.
We evaluate the models’ accuracies by calculating the coefficient of

determination (R2), root mean squared error (RMSE) and mean absolute
error (MAE). During the cross-validations, the accuracy metrics were
summarized into mean and standard deviation. Further, for each sampling
experiment we fit an overall model including all samples. Although the
accuracy metrics for this model do not indicate its transferability, it is
presumed to be the best trained one and should be deployed on new data
[28]. The discrepancy between the cross-validated and overall accuracy
metrics indicate the internal validity of a model [25]. According to Eeftens
et al. [48], a R2 difference of <0.15 resembles a robust model. Eventually,
after selecting a final model based on these evaluations, it was deployed to
the neighboring communities in the Rhine valley.

RESULTS
Predictor variables
Road infrastructure. In particular, the OSM roads have to be
examined in detail for their suitability as eminent proxies. Along
their spatial representation, the six individual road types
differentiated in OSM indicate different traffic intensities, speed
limits, and road surface properties. To ensure that this classifica-
tion was an appropriate representation of the resulting noise
emissions, Lden at a distance of 0 m, id est on the road itself was
investigated. Despite some larger standard deviations for tertiary
and residential roads, Table 1 reports that all road types have
individual noise levels in terms of mean and median. This
observation is empirically backed by a corresponding, highly
significant (p < 0.001) ANOVA analyses. Although visually some
overlaps exist, the subsequent Tuckey test finds significant (p <
0.001) difference between all road types.
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Starting with a distance of 0 m, the proximity with respect to
residential roads ranged up to 2 km, respectively, 12 km as to
motorways (see log10-transformed values in Table 2). As the
proximity to roads showed an exponential relationship toward
Lden, a log transformation was required [21, 24, 25]. After the
preprocessing, the Shapiro–Wilk test certifies a normal distribution
for all individual road types (p < 0.001).

Selected variable radii. Further, Table 2 presents the other
selected variables, as well. We obtain multiple neighboring
contexts for each predictor. Following the procedure of Ragettli
et al. [22] and Liu et al. [26], we identified the most appropriate
radii by the lowest RMSE in bivariate models. The subscripts depict
the selected moving window size for each variable. It turned out
that the influence range on the resulting sound field lies between
100 and 1600m, respectively.

Sample localization
By permuting the four individual sampling schemes at five sample
sizes and reproducing with 100 different random number seeds, a
total of 2000 independently sampled data sets were produced. As
stated before, the utilized noise input values had a mean of 51.0
dB(A) and a standard deviation of 11.1. In comparison thereto, not

all sample sets comply. Figure 3a depicts that in general the
magnitude of deviations highly depends on random effects, i.e.,
the seed. Naturally, at larger sample sizes, this effect alleviates.
Despite that, the sample schemes show two distinct character-
istics: in general, random and systematic sampling both represent
the total population well in terms of comparable means and
standard deviations. This is empirically backed by high p values
(Fig. 3b). Using a systematically gridded sampling scheme, all but
two sets (N= 200, seed= 83 and 84) exemplify the mapped noise
representatively (p > 0.05). Stratified sampling though, particularly
stratifiedLden, returns higher Lden values. The balanced sampling
based on urban morphology, stratifiedUrb.Atl., though tends to just
slightly overestimate Lden. The two-sided t test attests significant
differences (p < 0.05) at larger sample sizes only, replicating a well-
known issue of p values [49].
The integration of these 2000 sample experiments with the

aforementioned predictors results in one corresponding LUR
model each. To compare them, the three accuracy measures are
summarized into mean, standard deviation, as well as the 5% and
95% percentile as a dependency of sample size and sampling
scheme in Table S4. Thereby, unaffected by the sampling scheme,
two trends were related to the extent: first and congruent to
the aforementioned observations, the standard deviation was

Table 1. Summary of road Lden for six OSM road types on roads at 0-m distance.

Min. 1st quartile Median Mean (Sd.) 3rd quartile Max.

Motorway 66.90 82.90 85.90 83.90 (4.93) 86.90 89.10

Trunk 55.40 73.50 77.40 76.37 (5.16) 79.40 86.30

Primary 57.30 70.20 73.10 73.14 (3.68) 75.70 83.50

Secondary 10.50 66.50 70.00 68.00 (7.92) 72.20 88.90

Tertiary 18.60 48.60 67.20 60.13 (14.10) 70.80 84.20

Residential 22.60 46.20 50.40 51.44 (8.39) 55.30 84.20

Table 2. List of selected predictors, their metadata, their range, and their RMSE in bivariate linear models explaining LDen used for selecting the
appropriate scale.

Source Feature Attribute Units Min. Max. R2 RMSE

OSM Motorway Proximity log(M) 0 3.99 0.22 9.842

Length800 km 0 17.61 0.17 10.148

Trunk Proximity log(M) 0 3.744 0.13 10.391

Length400 km 0 9.34 0.14 10.318

Primary Proximity log(M) 0 3.67 0.03 10.963

Length100 km 0 1.76 0.05 10.836

Secondary Proximity log(M) 0 3.65 0.08 10.694

Length1600 km 0 16.99 0.09 10.658

Tertiary Proximity log(M) 0 3.48 0.05 10.887

Length1600 km 0 28.00 0.04 10.906

Residential Proximity log(M) 0 3.30 0.02 11.017

Length800 km 0 21.67 0.02 11.014

BKG LoD1 TPI800 / −1.77 44.20 0.00 11.138

Copernicus DEM TPI1600 / −114.62 121.66 0.04 10.932

Weigand et. al. [47] Artificial land Mean800 % 0 94.28 0.11 10.535

Open soil Mean1600 % 0 1.32 0.06 10.815

High, seasonal veg. Mean800 % 0.25 96.67 0.19 10.040

High, perennial veg. Mean1600 % 0.01 16.96 0.15 10.247

Low, seasonal veg. Mean1600 % 0.04 72.53 0.10 10.582

Low, perennial veg. Mean800 % 0 66.01 0.04 10.909

Water areas Mean400 % 0 3.99 0.02 11.015
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inversely correlated to sample size. Second, the overall accuracy
decreased asymptotically for larger sample sets. This holds true for
R2 where values closer to 1 are favored, as well as for RMSE and
MAE where small values indicate a good fit. Nevertheless, the R2 of
both stratified sampling approaches did so on a higher level, i.e.,
the R2 of stratifiedLden not falling below 0.78, respectively,
0.74 stratifiedUrb.Atl,, RMSE and MAE certify statifiedLden larger
residuals though. These observations were backed by highly
significant MANOVAs (p < 0.001 for both, sampling scheme and
size) on R2, RMSE, and MAE. The subsequent Tukey tests point out
that there was a significant difference between all parameters
except increasing the sample size from 500 to 1000 observations
(pR²= 0.19, pRMSE= 0.80, pMAE= 0.97).

Cross-validations
Examining the transferability of a model to unseen samples
(Fig. 4), the four randomized approaches perform notably different
to the two spatially independent LSOCV concepts. Id est, their
cross-validated accuracy measures converge antipodal to the
overall models. Eventually, at 1000 samples, the difference
between the overall R2 (black lines in Fig. 4) and its cross-
validated pendant (colored lines in Fig. 4), fell below the level of
0.15 (specified by 25 and 48) for all but the two LSOCVs at both
stratified sampling schemes. Coefficients of determination
retrieved using LSOCVAdmin. were relatively high at lower sample
sizes, but then drastically decreased at sample sizes >200. In
contrast to this, the mean R2 of LSOCVUrb.Atl. remained steadily
within a range of 0.55 and 0.64, but showed obtrusive values at
N= 50 for the stratified sampling scheme based on the same
strata. Considering the averaged RMSE and MAE, LGOCV50% stands
out in particular. However, no differentiating trends could be

observed between spatial and conventional cross-validation
approaches.

Final model
In our geographical application, we aim to model our complete
test area. For this, we select a specific model. In order to minimize
random effects, such as discussed above, only the largest sample
sizes were considered (N= 1000). Further, aiming for a high
accuracy, stratifiedUrb.Atl. was selected. Although the respective R2

tends to be marginally lower compared to stratifiedLden, the
significant smaller residuals depicted in the RMSE and MAE
outweigh these considerations. At these settings, the overall R2

was 0.702, adjusted R2 0.696, respectively. All accuracy metrics are
presented in Table 3.
In particular for subsequent map interpretation and decision

making, it is of interest to assess the parameters of the final model.
Starting with describing the estimated intercept, the linear
regression model assumes a very high Lden of 130.78 dB(A).
Subtracting thereof, the regression terms regarding the log-
transformed proximity to all but residential roads had negative
estimates. As can be seen in Table 4 though, these were
insignificant in respect to proximity to secondary and tertiary
roads. Where many motorways or tertiary roads were in close
vicinity, Lden is lower; in contrast thereto, an accumulation of the
other road types comparatively increases noise levels. Contem-
plating the other variables, not related to traffic noise emissions, a
small but highly significant (p < 0.001) estimate of −0.04 for the
topographic TPI1600 indicates that increased noise levels can be
found in valley locations. Analogous, the negative estimate (β=
−0.218) regarding TPI800 for buildings is congruent to the findings
of Heutschi [38], but insignificant (p > 0.1). Land cover [47] was a

Fig. 3 Descriptive statistics on sampled data, separated by sampling scheme (vertical facets) and size (X-axis). a Depicts mean (Y-axis) and
standard deviation (color) of Lden. Dashed lines reference to complete data set. b Shows p value of the consequent Shapiro–Wilk test (Y-axis).
Solid line refers to 5% confidence interval.
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significant parameter for four out of the seven land-cover classes
(p < 0.10): for example, low, perennial vegetation reduced Lden by
−0.17 dB(A) per percentage fractional cover within a radius of 800
m, respectively, −0.09 dB(A) for high but seasonal vegetation at
the same radius. The full model is presented in Table 4.
To comprehend this model further, a subsequent assessment of

the residuals though showed that most of the modeled values
within the range of 35–75 dB(A) align well to the official road Lden
(Fig. S3c). As is visualized by the width of the boxplots, this
concerns the majority of pixels. The spatial representation
(Fig. S3a) of the residuals depicts two distinct issues. Large
positive residuals can be found along certain roads, where in
officially higher noise levels occur. Conversely, large negative
residuals are found in otherwise quiet canyons. Analogous, a

Fig. 4 Comparing accuracy measures of overall models (black) cross-validations (colored), separated by sampling scheme (vertical facets)
and size (X-axis). With respect to R², RMSE and MAE, each point condenses the means of 100 repetitions.

Table 3. Accuracy metrics of final model (sampling= stratifiedUrb.Atl.,
N= 1000, seed= 98).

R2 RMSE MAE

Overall model 0.702 6.25 4.24

LSOCVGADM 0.592 6.92 5.30

LSOCVUA 0.536 6.27 4.74

LOOCV 0.683 6.46 4.35

LGOCV10% 0.707 6.48 4.41

LGOCV25% 0.680 6.53 4.41

LGOCV50% 0.678 6.53 4.43
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tendency toward smaller negative residuals was found in back-
yards of residential blocks, indicating that it is potentially quieter
here. Putting the residuals into place, we last but not least
intersected them with our building model. With respect to these
vulnerable areas, the supplementary histogram (Fig. S3b) shows
that actually 44% of them have an error ranging between −2.5
and 2.5 dB(A) at most. In summary, we only found an exposure-
specific MAE of 3.84 dB(A) here.
The selected final model was then deployed on the urban, peri-

urban, and rural regions of Koblenz and surroundings. The map
(see Fig. 5) shows that 90.8% of the Rhine valley are below the
threshold of 55 dB(A). With respect to exposed populations in
particular, the same is true only for 79.2% of the build-up areas. An
example of such is visualized for the flat and highly populated city
Neuwied (Fig. 5a), bordering in the northwest of Koblenz.
Moreover, our results also show that in close vicinity to the Rhine,
where primary roads can be found on both river sides, such critical
noise levels can be found in peripheral regions as well (Fig. 5b).
Vice versa, it is interesting to see at the example of Bacharach
(Fig. 5c) that existing noise preventive planning such as bypass
roads are highly effective. Id est, this example illustrates very well
how built-up structures can block propagating noise. However,
some noise is still emitted along the village’s main road itself,
particular in the northern part. But, this does not exceed the
critical threshold of 55 dB(A) Lden. In summary, the resulting final
noise map provides valuable insights about possibly affected
populations in suburban and peripheral areas.

DISCUSSION
In this study, we transferred noise information encoded in official
noise maps to statistical models. Thereby, the very details of
sampling noise, in this case evaluated using thousands of virtual
microphones, and their influence was assessed. In contrast

thereto, a small feature set was held constant. Overall, the model
proves accurate results for a large-scale area. However, some
critical aspects of our approach are to be pointed out: when
subsampling END conform noise for training LURs, two issues
arise: first, as LURs usually are used to extrapolate in situ noise
measurements into larger areas, one may discuss training them
with Lden maps. In this study, we substituted in situ noise
measurements with Lden maps and could show that generally
existing noise map can be predicted beyond its administrative
limitations to estimate respective noise exposure levels for
surrounding areas at low costs. Second, one needs to be aware
that errors and methodical shortcomings of this input source will
propagate. EU compliant calculation methods are configured
conservatively, such that the predicted noise levels and the
consecutive number of people exposed to noise both are
overestimated (cf. [34]). In addition, it needs to be noted that
Lden quantifies noise exposure dosage but insufficiently predicts
health relevant noise annoyance [50]. Therefore, we need to be
aware that a finer temporal resolution of noise levels, e.g., 10 min,
1 h, etc., or quantifying significant noise peaks is not included in
the analysis, but would be interesting from an epidemiological
point of view [51].
In addition, and also relevant for conventionally sampled LUR

studies, important methodical aspects could be tested with this
approach. Random and systematic sampling schemes both
retrieve the most representative samples. However, they both
were sensitive to random effects and require larger sampling sizes
—probably impracticable for time and cost expensive field
campaigns. Stratified sampling on the other hand is sensitive to
the precise sampling scheme. Referring to sample size only, we
found no significant model improvement for N > 500. Stochasti-
cally, 500 samples in our 105 km2 large area refers to a Euclidean
distance of 458 m between the virtual microphones. Most
probably due to wireless sensor networks [52], such dense

Table 4. Estimates of final LUR model.

Source Feature Attribute Beta Std. Error t value Pr(>|t|) p value

Intercept 130.78 4.85 26.96 0.00 ***

OSM Motorway Proximity −11.93 0.69 −17.39 0.00 ***

Length800 −0.39 0.00 −2.28 0.02 *

Trunk Proximity −8.81 0.69 −12.86 0.00 ***

Length400 0.55 0.00 2.42 0.02 *

Primary Proximity −2.43 0.63 −3.86 0.00 ***

Length100 17.42 0.00 5.39 0.00 ***

Secondary Proximity −0.56 0.55 −1.01 0.31

Length1600 0.16 0.00 1.31 0.19

Tertiary Proximity −0.81 0.53 −1.53 0.13

Length1600 −0.18 0.00 −2.60 0.01 **

Residential Proximity 0.95 0.41 2.29 0.02 *

Length800 0.235 0.00 3.17 0.00 **

BKG LoD1 TPI800 −0.218 0.19 −0.93 0.35

Copernicus DEM TPI1600 −0.04 0.01 −4.43 0.00 ***

Weigand et. al. [47] Artificial land Mean800 −0.05 0.03 −1.65 0.10 #

Open soil Mean1600 5.12 1.41 3.62 0.00 ***

High, seasonal veg. Mean800 −0.09 0.03 −2.95 0.00 **

High, perennial veg. Mean1600 0.12 0.12 0.98 0.33

Low, seasonal veg. Mean1600 0.00 0.04 0.02 0.98

Low, perennial veg. Mean800 −0.17 0.03 −5.36 0.00 ***

Water areas Mean400 −0.03 0.02 −1.16 0.24

Levels of significance: ***p < 0.001; **p < 0.01; *p < 0.05; #p < 0.1.
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sampling strategies appear economically feasible for limited areas.
For assessments on national levels or the like, however, this still is
not the case and will be difficult to achieve. Thus, END conform
that predicted noise maps are an alternative.
Further, on smaller scopes, the spatial distribution of noise can

be both, clustered i.e., along line sources as well as disperse. Such
spatial autocorrelation is known to challenge statistical modeling

and can jeopardize the assumptions of cross-validations [28, 53].
Particularly at larger sample sizes, the cross-validated accuracy
measure converges with the overall models’ R2. As this effect was
best observed with stratified sampling, where especially very loud
samples were limited and therefore in close vicinity, we infer it
being caused by spatially neighboring samples. Confirming the
experiences made in ecological studies [28], the informative value

Fig. 5 Predicted noise levels for the Rhine valley. Zooms show (a) highly dense suburbs and (b) low populated villages along the river
Rheine, as well as (c) an exemplary detail at very low scale. Continuous colorscheme akin to DIN 18005, dotted line depicts 55-dB(A) contour,
build-up areas are colored white.
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of conventional leave-n-out cross-validations may be limited in
such structured data. Only LSOCV does encounter jeopardizing
the credibility of CV in regards of actually assessing overfitting.
Nevertheless, the administrative blocking proved holding out
circumscribed portions of the predictor space, i.e., very loud
motorways in the peripheral, north eastern district of Rübenach. In
such cases, the model needs to extrapolate into unknown
administrative areas. The same holds true for LSOCVUrb.Atl, where
we specifically challenged the model to transfer into unknown
settlement structures. In both cases, the accuracy measures
retrieved with the cross-validations actually reflect these transfer
abilities. To reduce further covariations in the data introduced by
proactive landscaping, likewise other spatial blocking concepts,
such as rectangular, hexagonal, or radial, may be considered in
future.
Aiming for an easy reproducible study design, the model

focused on road-related traffic noise. Therefore, the predictor
variables scope road infrastructures, urban morphology and the
natural environment only. Although this variable set is relatively
small, nevertheless it was capable of explaining large proportions
of the overall variance. Moreover, similar to the models of Harouvi
et al. [24], proximity of the traffic-related features is more
significant than the cumulated sum. The negative betas of road
proximity for example appear logical, as with increasing distance
to an emission source, noise levels decrease. For residential roads
though, most frequently found in respective residential areas, the
proximity thereto was rather an indicator for quietness. A
significant correlation (r=−0.87, p < 0.05) between the proximity
estimates (Table 4) and the respective mean per road type
(Table 1) proves their model integration plausible. Nevertheless,
the mapped residuals and the standard deviations shown in
Table 1 reveal local constraints when relying on six different
functional road types only. Additional information, if available,
such as driving speed, traffic volume, and road surface could help
declaring these variations. Further, also the urban morphology
could be represented in further detail. This could be achieved by
invoking shape and landscape metrics. However, alike variables
tend to also correlate, such as the linear model may be biased.
This is very well exemplified with the cumulated length of
residential roads within a radius of 800m and the land-cover
fraction of artificial land at the same radius (r= 0.795, p < 0.001).
Last, when selecting the most relevant contextual features, the
rather generous radii of the moving windows were surprising.
Particular, a radius of 800m for the TPI of urban morphology does
not correspond to the small-scale acoustical phenomena caused
by built-up morphology [38] and might have led to insignificant
estimates. We assume that the large proportions of sparsely built-
up areas were grasped as a major spurious collinearity instead of a
local detail by the overall linear feature selector. We thus
apprehend, selecting features based on univariate regression
models as suggested by Ragettli et al. [22] and Liu et al. [26]
cannot meet the multifactorial relationships observed. Second,
with respect to the observed residuals, the linear regression was
not capable of coping with acoustical phenomena such as
reflections, refractions, and shadowing effects. While this could
be encountered by a larger and more complex feature space,
more elaborate models capable of grasping higher dimensional
interactions need to be considered in the future. First steps in this
direction were presented by Liu et al. [26] comparing random
forest regressions against generalized additive models. Consider-
ing ongoing developments in computer sciences, deep convolu-
tional neural networks hold immense potential. In the
combination of the aspect mentioned above, future works shall
investigate models more robust in regards to collinearity, such as
they are capable of considering multiple contextual scales
altogether. The deployment of a linear model here, however,
was important to investigate the sampling schemes and their
consequential artefacts.

The resulting broad scale noise assessment is novel for most of
the small communities in the Rhine valley and fills a previously
blind spot spatially. Further, congruent to our continuous base
data, the predicted map depicts local variances below of the
critical mapping threshold of 55 dB(A) and therefore enables
analysis of environmental justice in higher granularity for the
suburban parts in the Rhine valley as well. The subsequent
residual analyses revealed that the most common noise
levels between 35 and 75 dB(A) Lden were estimated concurrent
to the conventional END conform map. With respect to exposure
sciences, it is important to note that overall the map lacks
accuracy for very loud and quite areas, respectively. In
addition, the error was found to be lower for built-up areas in
particular.

CONCLUSION
In general, noise is a complex phenomenon, consisting of
emission, propagation, and interactions with the environment.
Therefore, the—very accurate—engineering noise mapping
methods are highly sophisticated (see [14]) but technically
inapplicable for large-scale epidemiological studies [21]. In this
study we showed, however, that the acoustical phenomena being
encoded in such END conform maps can be used to train
statistical models, also known as LURs. Subsequent extrapolations
can then be applied to estimate noise accurately at comparably
low costs.
Yet, utilizing this most valuable data source, we were able to

show that sampling design has a major impact on such models.
Regarding the models’ predictive power, we conclude that the
decreasing overall R2 at larger sample sizes reflects the complexity
of acoustical phenomena. In few cases, smaller sample sizes could
grasp them, but most probably lead to oversimplifying these
physical mechanisms. This effect was most visible observed at
N= 50 and LGOCV50%, where only 25 points were used to carry
the regression, but dramatically underperformed during the
validation. Vice versa, due to spatial autocorrelation, very large
sample sizes compromise conventional leave-n-out cross-
validation approaches. Following the guide by Roberts et al.
[28], we recommend spatially blocked cross-validations. However,
as each cross-validation approach tests distinct transfer abilities,
we conclude the combined evaluation of multiple CV approaches
being most meaningful. Last but not least, as to the unmet
discrepancy between END conform noise maps and the reproduc-
tions using LUR, we acknowledge further development possibi-
lities related to feature space and model architectures. Eventually,
the aim must be to enable large-scale noise pollution assessments
of previously excluded areas. Only then, affected populations can
be identified and subsequent noise attenuation measures may
be taken.
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