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Abstract
Background Clean cooking interventions to reduce air pollution exposure from burning biomass for daily cooking and
heating needs have the potential to reduce a large burden of disease globally.
Objective The objective of this study is to evaluate the air pollution exposure impacts of a fan-assisted efficient biomass-
burning cookstove and a liquefied petroleum gas (LPG) stove intervention in rural Ghana.
Methods We randomized 1414 households in rural Ghana with pregnant mothers into a control arm (N= 526) or one of two
clean cooking intervention arms: a fan-assisted efficient biomass-burning cookstove (N= 527) or an LPG stove and cylinder
refills as needed (N= 361). We monitored personal maternal carbon monoxide (CO) at baseline and six times after
intervention and fine particulate matter (PM2.5) exposure twice after intervention. Children received three CO exposure
monitoring sessions.
Results We obtained 5655 48-h maternal CO exposure estimates and 1903 for children, as well as 1379 maternal PM2.5

exposure estimates. Median baseline CO exposures in the control, improved biomass, and LPG arms were 1.17, 1.17, and
1.30 ppm, respectively. Based on a differences-in-differences approach, the LPG arm showed a 47% reduction (95%
confidence interval: 34–57%) in mean 48-h CO exposure compared to the control arm. Mean maternal PM2.5 exposure in the
LPG arm was 32% lower than the control arm during the post-intervention period (52 ± 29 vs. 77 ± 44 μg/m3). The biomass
stove did not meaningfully reduce CO or PM2.5 exposure.
Conclusions We show that LPG interventions lowered air pollution exposure significantly compared to three-stone fires.
However, post-intervention exposures still exceeded health-relevant targets.
Significance In a large controlled trial of cleaner cooking interventions, an LPG stove and fuel intervention reduced air
pollution exposure in a vulnerable population in a low-resource setting.
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Introduction

Household air pollution (HAP) is one of the world’s largest
environmental health risk factors [1]. Nearly 3 billion
people rely on biomass fuels like firewood, charcoal, animal
dung, and crop residues for their daily cooking and heating
needs [2]. Inefficient combustion from burning biomass
fuels in traditional open fires leads to high levels of air
pollution and environmental degradation. In turn, HAP
exposure is responsible for an estimated 1.6 million pre-
mature deaths and 60 million disability-adjusted life years
annually [1]. There is substantial epidemiological evidence
for the adverse effects of HAP on health [3–9], but to date
there have only been a few randomized controlled trials of
cookstove interventions to improve health [10–16] and
evaluating changes in personal air pollution exposure
remains rare [17–19].

While estimates of health burdens from air pollution
require data on average personal exposure (to fine particulate
matter—PM2.5—principally) [20], exposure assessment
remains a significant challenge in clean cooking intervention
studies [21]. Clean cooking interventions must reduce long-
term average personal air pollution exposure if they are to
improve health. Therefore, contextualizing the results from
clean cooking interventions is only possible through extensive
personal air pollution exposure monitoring to characterize the
effect of interventions on exposure—and thus the potential for
improvements in health. Furthermore, personal air pollution
exposure monitoring enables exposure–response analyses that
are instrumental in establishing health risks [20].

We carried out the Ghana Randomized Air Pollution
and Health Study (GRAPHS) (Trial Registration
NCT01335490), a cluster-randomized intervention trial to
test the effectiveness of a cleaner biomass stove or a clean
cooking fuel to increase birth weight and reduce pneumonia
incidence during the 1st year of life through reduced
maternal and child air pollution exposure [22]. As else-
where [10, 11, 23, 24], only households with an eligible
pregnant mother were provided the intervention stoves,
meaning most participants were surrounded by other family
units still using traditional biomass fires for cooking.

GRAPHS makes several important contributions to the
understanding of the potential for clean cooking interven-
tions to improve health. GRAPHS was among the first
randomized controlled trial to include a liquefied petroleum
gas (LPG) intervention [16], though there are others ongoing
[24–27]. In addition, GRAPHS researchers undertook
extensive personal air pollution exposure measurements to
enable assessments of the effectiveness of the interventions
to reduce exposure and subsequent exposure–response ana-
lyses with health outcomes.

The present study describes the effects of clean cooking
interventions on long-term average personal (maternal and

child) air pollution exposure from a large cluster-randomized
intervention in Ghana. We present exposure results from
intention-to-treat analyses, as well as an exploration of the
variety of factors that affect personal exposure. In doing so, we
provide guidance for future interventions and programs that
seek to reduce air pollution exposure through clean cooking
fuels and cleaner biomass-burning stoves.

Methods

The GRAPHS protocol has been described elsewhere [22].
Briefly, 35 clusters of 38 communities were randomized
into three study arms: control, cleaner biomass stove, and
clean cooking fuel. Eligible women were (1) carrying a live
intrauterine singleton fetus, (2) in their first or second tri-
mester of pregnancy (gestational age ≤ 24 weeks as deter-
mined by ultrasound), (3) the primary cook in their
household, and (4) nonsmokers. The protocol was approved
by the Columbia University Medical Center and the Kin-
tampo Health Research Centre Institutional Ethics Com-
mittee. All pregnant women provided written informed
consent for their and their child’s participation. Participants
were enrolled from August 2013 to January 2014 and data
collection ended in March 2016.

The study included two intervention arms. In one
arm, households received two BioLite HomeStoves in the
cleaner biomass stove study arm (BioLite Inc., Brooklyn
NY). The BioLite stove improves heat transfer efficiency
(i.e., more energy to the pot per unit fuel combusted)
through improved geometry and also increases combustion
efficiency through thermoelectric powered fan circulating
air through the combustion chamber [28, 29]. In the LPG
intervention arm, households received one two-burner LPG
cookstove and two 14.5 kg LPG cylinders. After the base-
line exposure assessment, households received deliveries of
one LPG cylinder refill and stove maintenance and repair as
needed until they exited the study. Additional gas was
available if households ran out prior to the next scheduled
delivery. Stoves and associated hardware were repaired or
replaced when needed in both intervention arms. Repre-
sentative photographs of the stoves across the study arms
are available in Fig. S1. Research staff visited each home
weekly and checked on stove status. Households in the
control arm also received weekly visits. These were framed
as bed net check-up visits.

Study context

The study sample consisted of women and children from 38
communities in the Bono East Region of Ghana (formerly
known as the Brong-Ahafo Region), including Kintampo
North Municipality and South District of Ghana, West Africa.
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In a formative pilot study in the GRAPHS study population,
biomass fuel use was recorded among 99% of the households
[30]. A nationally representative survey shows that 91% of
rural households and 73% of all households relied on biomass
fuels (firewood and charcoal) for cooking in 2017 [31]. The
region is primarily a tropical savanna climate. Uniquely, West
Africa experiences a season called Harmattan characterized
by episodes of dry and dusty northeasterly winds blowing
from the Sahara Desert over West Africa (December–March).
There is also pervasive crop and field burning during Har-
mattan in this region [32].

Exposure measurements

Rationale

Air pollution exposure assessment in GRAPHS was
designed to optimize available technology and funds based
on pilot experiences in Ghana [22]. Published pilot data
indicated that area sampling (e.g., in the kitchen) was not
predictive of personal exposures [30]. In line with our
objective of identifying the effects of the interventions on
personal exposure and to enable individual-level
exposure–response analyses, we opted to monitor personal
exposure. Furthermore, at the time of designing the study,
the scientific literature indicated that personal CO exposure
was a good predictor of personal PM2.5 exposure [33–35]
and that 48 h of sampling was necessary to effectively
estimate long-term exposure [36].

Mean PM2.5 exposure of the primary cook in the pilot
was 129 μg/m [3] (95% confidence interval (CI): 100–157
μg/m3; median: 122 μg/m3)—an exposure somewhat lower
than other similar studies [18, 37, 38]. At the time of
developing the study, it was believed that there would be a
greater chance of the cooking interventions yielding
observable health benefits as compared hypothetical higher
exposures at baseline because lower exposures are closer to
the steepest part of the PM2.5 dose–response curves for
relevant health outcomes (i.e., ~15–100 μg/m3) [39].

Given budgetary constraints, we opted for CO—which
was cheaper to monitor than PM2.5—as the primary marker
air pollution exposure. Still, given the importance of PM2.5

as an indicator of health risk, we obtained supplemental
funding to monitor personal PM2.5 for the majority of par-
ticipants at two time points after intervention, rather than at
more time points for fewer participants. This approach was
intended to enable the development of a CO to PM2.5 pre-
diction model, thus retaining a large study sample in future
PM2.5 exposure–response analyses. However, we note two
limitations of this approach. First, while at the time of study
development and during data collection the literature sug-
gested that CO to PM2.5 prediction was a feasible and
lower-cost alternative to direct PM2.5 measurements, since

then the predictive power of CO to estimate personal PM2.5

exposure has come under question [40]. Second, as reported
in section “Monitoring plan,” PM2.5 exposure monitoring
did not occur in the baseline period which limits statistical
analysis of the effect of cooking interventions.

Monitoring plan

The primary objective of air pollution exposure monitoring
during GRAPHS was to attribute exposures to individuals to
enable (forthcoming) exposure–response analyses. Figure 1
summarizes the exposure monitoring plan. Baseline exposure
assessments occurred after enrollment and prior to stove
intervention. Field teams then carried out three additional post-
intervention exposure assessments over the remaining duration
of the pregnancy (~9, 6, and 3 weeks prior to delivery).
Mothers and newborns received exposure assessment 1, 4, and
12 months after delivery. A subset of women received co-
located PM2.5 and CO monitoring. Personal exposure mea-
surements were collected for 72-h periods and trained field-
workers visited each participant every 24 h during each 3-day
period to record information about activities during the pre-
vious day and to ensure monitor wearing compliance.

Carbon monoxide monitoring

We used the Lascar EL-CO-USB Carbon Monoxide (CO)
data logger (Erie, PA) as the primary personal exposure
monitoring method. The devices were programmed to record
CO concentrations every 10 s throughout the entirety of the
target 72-h monitoring period. The device reports concentra-
tions between 0 and 1000 parts per million (ppm) and has a
manufacturer-reported precision of ±6%. In addition to fac-
tory calibration, calibrations were checked every 6 weeks
using NIST traceable certified calibration gas in the KHRC
laboratory. Based on these calibration checks, device- and
time-specific correction factors (CF) were generated to adjust
CO observations during data processing [41, 42].

The CO monitor was placed in a rainproof plastic
housing and clipped to clothing near the breathing zone of
the mother. For infants, monitoring equipment was clipped
to swaddling clothes or the cloth that holds the baby on its
mother’s back. Participants were instructed to keep the CO
monitor on their person/near the baby throughout the day
and to place it close to their head while sleeping (see Fig. S2
for representative photographs).

In a subset of samples (N= 132), we carried out co-
deployments of the CO monitors where a participant would
wear two monitors concurrently throughout a deployment
period. Valid 48-h estimates between co-deployed devices
were positively correlated (r= 0.62; p value < 0.001). We
averaged values in analyses when a participant had two valid
48-h estimates.

The effect of clean cooking interventions on mother and child personal exposure to air pollution:. . . 685



Fine particulate matter monitoring

In one prenatal and one postnatal maternal monitoring
session, the RTI MicroPEM V3.2 monitor (Research Tri-
angle Park, NC) was deployed alongside the CO monitor.
The MicroPEM includes a nephelometer for real-time
monitoring, a Teflon filter for analysis of integrated con-
centrations, and an accelerometer for assessing wearing
compliance of subjects. Teflon filters were pre- and post-
weighed on a microbalance after equilibration in an envir-
onmentally controlled glovebox, with static charge dis-
sipated with a Po-210 source and correcting data for
buoyancy, following established protocols at Columbia
University described further in Supporting Information.
Filters were installed in and removed from the MicroPEM
in a clean air hood at the KHRC laboratory. During the first
and last 5-min periods of each deployment, a low back
pressure HEPA filter was attached to the MicroPEM to aid
in correction of the nephelometer baseline drift.

Identifying valid air pollution exposure estimates

The purpose of this study is to assess the effect of two clean
cooking interventions on the personal exposure of women and
children in Ghana. To best address this research question, we
utilized a stringent data validation procedure and retained only

the data in which we have the highest confidence. The study
protocol dictated 72-h monitoring periods for both CO and
PM2.5 deployments. However, only 47% of CO exposure
sessions achieved 72 h of run time. Still, more than 90% of all
CO exposure deployments achieved more than 48 h of run
time. Therefore, we used mean 48-h CO exposure as the
primary study outcome. Data after the 48-h mark were dis-
carded to maintain comparability across samples due to the
diurnal patterns observed in personal exposure to air pollution
(e.g., low exposures during the night, very high exposures
during cooking events) and to not arbitrarily capture a different
number of short-term cooking events which largely drive the
average CO exposure. We utilized the same procedure for
PM2.5 exposure; 92% of PM2.5 exposure deployments
achieved 48 h of run time. Full details on deployments meet-
ing validation criteria are reported in the “Results” section.

Carbon monoxide exposure validation

CO exposure data was validated according to three independent
criteria described here, in the Supporting Information, and at
length elsewhere [41]: (1) deployment duration; (2) visual
validity of the exposure time series; and (3) CF confidence.

● Deployment duration: deployments lasting fewer than
48 h were removed from final data analysis.

Fig. 1 Personal air pollution exposure monitoring plan for
GRAPHS. Participants (pregnant women) received baseline carbon
monoxide (CO) exposure monitoring at the time of enrollment in the
study or shortly after (77% the same day; 86% within a week). Three
weeks after intervention stove delivery (itself 1-2 weeks after enroll-
ment), all participants received personal CO exposure monitoring and
a subset of participants (65%) each received simultaneous personal CO
and personal PM2.5 exposure monitoring. Sessions 3 and 4 were per-
sonal CO exposure monitoring only, spaced at three-week intervals
prior to birth. One month after birth, both the mother and newborn
received personal CO exposure monitoring. Three months later, all

mothers received personal CO exposure monitoring and a subset (65%,
partially overlapping with the first subset) received simultaneous
personal CO and personal PM2.5 exposure monitoring. At this time, all
newborns received personal CO exposure monitoring. Newborns did
not receive personal PM2.5 exposure monitoring due to the size of the
monitor. Eight months later, at child age 1 year, the mother and child
received personal CO exposure monitoring. Session numbers (1-7) are
associated with the relative timing of the planned monitoring sessions
(i.e., baseline = 1, three weeks before birth = 4, four months after
birth = 6).
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● Visual validity (valid, low, or invalid): with oversight
from study leadership, two members of the research
team plotted the time series exposure data and visually
assessed the validity of the measurements according to
three criteria and blinded to study arm, which were
codified in a standard operating procedure [41]. First,
patterns of “spikes” of increased exposure were assessed
as valid—as opposed to plateaus of high exposure,
increasing or decreasing CO values over the entire time
series. Second, elevated baseline where majority of CO
readings hover above 0 ppm was assessed as invalid.
Third, long periods of baseline 0 ppm which were
evaluated on a case-to-case basis (e.g., periods of flatline
at 0 ppm while CO spikes still occur may not be
problematic, but a sudden change from more responsive
data to sudden flatline was deemed invalid). Only
visually valid files were retained for this study.

● CF confidence (high, low, or none): monitors were
tested against a standardized 50 ppm CO tank every
6 weeks, from which we calculated CF (CF=measured
value divided by the expected value). Confidence levels,
developed after visual inspection of the data and to
avoid large corrections, were assigned as follows:
“high” if the CF is in the range 0.6 ≤CF ≤ 1.2, “low”
if CF is >1.2 or if 0.2 ≤CF < 0.6, and “no” confidence if
CF < 0.2. Only samples with a high CF confidence were
retained for this study.

Fine particulate matter exposure validation

Fine particulate matter exposure assessed using the RTI
MicroPEM underwent a multi-stage validation process to
utilize the real-time and time-integrated data and estimate
48-h personal exposure. A full description of the exposure
validation procedure is available in Supplementary Infor-
mation Section 1.2. Briefly, the time series data were
visually validated, checking if the data contained negative
readings, improbable plateaus of high values, “stair-step”
increases and decreases in baseline, or if the pre- and post-
deployment HEPA period readings were outside of the
expected range (±20 μg/m3). Only visually valid data were
retained for this study.

Three corrections were done to each deployment to get
final average 48-h PM2.5 concentrations. First, an initial
baseline correction was applied where valid interpolated
HEPA readings for each minute were subtracted from
nephelometer readings. If the endline monitoring-period
HEPA filter reading was missing, then the pre-HEPA
reading was assumed to be valid for the entire deployment.
Second, for deployments with valid gravimetric filter
weights (no holes, tears, or lost filters), a gravimetric cor-
rection was carried out by multiplying each nephelometer

reading by the ratio of the gravimetric PM2.5 concentration
divided by the average nephelometer PM2.5 concentration
for the total deployment time. For deployments without
valid gravimetric samples, an average CF for the individual
MicroPEM device was used. Nephelometer measurements
were assigned an average CF using the most recent or
bracketed (before and after deployment) paired valid
gravimetric samples. Third, all nephelometer data points
were corrected as described above prior to averaging the
first 48 h of active data collection.

Statistical analysis

We carried out a difference-in-difference analysis to assess
the effect of the cooking interventions on maternal air
pollution exposure. We also present two additional analyses
using data subsets to (1) demonstrate the importance of
leveraging the full randomized design to assess the effec-
tiveness of the cooking interventions and (2) to provide a
comparison to other studies using cross-sectional or before
and after designs.

We carried out three types of regression analyses with
log maternal 48-h CO exposure as the primary outcome to
assess the effect of interventions on exposure (see Table 1).
Secondary outcomes included log child 48-h CO exposure
and log maternal 48-h PM2.5 exposure. For all regression
analyses, we utilized generalized estimating equations
(GEEs) with robust standard errors using the “sandwich”
variance estimator and an exchangeable correlation matrix
to account for both multiple observations per participant and
the village-level nature of the GRAPHS intervention, as
implemented in other studies with repeated measurements
among individuals nested within clusters [43, 44]. In GEEs,
parameter estimates of interest are interpreted as “popula-
tion-averaged,” because they are averaged across the clus-
ters (i.e., villages and participants in those villages).

The first equation assesses differences in exposure
“across study arms” utilizing only post-intervention data.
The parameter of interest in this model is the effect of study
arm indicator variables, with the improved biomass and
LPG arms being compared to the control arm. The second
equation carries out a “before and after” comparison for all
study arms. Here, the parameter of interest is the effect of
the post-intervention study period indicator variable. This
model effectively controls for subject characteristics but has
limited ability to control for confounding by time-varying
determinants of exposure. The third and final equation is a
“difference-in-differences” approach that utilizes all study
data and includes indicator variables for study arm and post-
intervention study period. The main parameters of interest
are the interaction variables between intervention groups
and post-intervention study period. This is similar to car-
rying out the “across study arms” comparison but with the
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added adjustment for any potential differences between
study arms.

When exponentiated the parameters of interest represent
the fraction of exposure experienced by the control group
that the group of interest experienced. We transformed these
results into the final outcome of interest: percent reduction
in personal exposure due to treatment status. The “differ-
ence-in-differences” model is our primary specification
because it fully leverages the study design and data col-
lection and best accounts for potential confounding.
Nonetheless, we present the “across study arms” and
“before and after” models because they are comparable to
other common study designs [18] and demonstrate the
importance of the randomized nature of our intervention.

Then, the fourth equation assessed the effectiveness of
interventions disaggregated to each monitoring session.
This analysis mirrored the “difference-in-differences”
approach, but rather than treating the post-intervention
period as a unit, we analyzed each session to assess the
effectiveness of the intervention over time.

In an additional analysis, we examined the association
between population density surrounding participants and
personal exposure. We calculated the number of individuals
living within a 50m radius of each study household using
local census data to estimate population density [45], and
therefore potentially capture neighboring air pollution emis-
sions. We considered measuring population density as the
number of individuals living within 100 and 200m radii, too,
finding similar associations in analysis, limited changes in
population density ranking. Therefore, we opted for the
closest distance to ensure the plausibility of the association as
a measure of contributions from neighboring cooking events.

As a check of robustness, we jointly applied the CO and
PM2.5 validation procedures to sessions with co-deployed CO
and PM2.5 monitors to obtain a smaller, “paired high-valid-
ity” maternal PM2.5 and CO exposure data set (N= 1 048).
We observe consistency between our main results and those
obtained in this paired exposure data set and only report these
results in Supplementary Information Section 2.1.

All analyses were performed in R software version 3.6.0
[46]. GEEs were implemented using “geepack” [47]. Code
that supports the analyses presented in this study will be
made available upon publication.

Results

Table 2 reports descriptive statistics for the GRAPHS study
participants with a valid CO exposure estimate. Participants
were nonsmoking pregnant women, on average in their late
20s, with ~2 years of completed formal education on
average. Households had on average between six and seven
members. Most households had their primary cooking

location fully outside, though many had multiple cooking
locations, one of which was at least semi-enclosed (95%).
Approximately half of households shared their primary
cooking location with another household—though study
households were the sole users of their intervention stoves.
In addition, half of study households had a dedicated room
in the house for cooking. Firewood was the dominant pri-
mary cooking fuel for households prior to randomization,
though half used charcoal as a secondary fuel. Households
in the LPG cluster had a slightly higher average number of

Table 2 Baseline descriptive statistics of GRAPHS population with a
valid CO exposure estimate.

Control Improved
biomass

LPG

Cluster size 515 519 355

Maternal characteristics

Age, mean (SD) 27.6 (8.3) 28.1 (7.6) 26.8 (6.7)

Level of education completed, N (%)

No formal education 188 (37%) 198 (38%) 120 (47%)

Primary school 141 (27%) 162 (31%) 55 (20%)

Middle/junior
high school

163 (32%) 140 (27%) 71 (28%)

Greater than middle/
junior high school

23 (4%) 19 (4%) 15 (5%)

Household characteristics

Number of people in the
household, mean (SD)

6.6 (3.6) 6.4 (3.4) 6.7 (3.8)

Persons living within 50
m, mean (SD)

46.8 (29.0) 50.1 (33.3) 53.3 (35.2)

Electricity access, N (%) 171 (33%) 133 (26%) 32 (9%)

Primary cooking location, N (%)

Fully outside 306 (73%) 296 (68%) 230 (79%)

Fully enclosed 96 (23%) 109 (25%) 46 (16%)

Semi-enclosed 20 (5%) 31 (7%) 14 (5%)

Secondary cooking
location is fully outside,
N (%)

76 (19%) 68 (18%) 35 (14%)

Cooking location shared
by another family, N (%)

256 (50%) 307 (60%) 185 (52%)

Separate room in
household dedicated to
cooking, N (%)

234 (45%) 255 (49%) 144 (41%)

Charcoal is used for cooking, N (%)

Primary fuel 17 (3%) 18 (4%) 20 (6%)

Secondary fuel 273 (53%) 217 (42%) 176 (50%)

Principal method for obtaining firewood, N (%)

Gather 476 (93%) 490 (95%) 310 (87%)

Purchase 18 (4%) 7 (1%) 13 (4%)

Gather and purchase 13 (3%) 11 (2%) 21 (6%)

Somebody in the
household smokes
tobacco products, N (%)

94 (18%) 110 (21%) 72 (20%)

The effect of clean cooking interventions on mother and child personal exposure to air pollution:. . . 689



persons living within 50 m of the household. The use of
tobacco products was relatively rare; only one-fifth of
households had a smoker (almost exclusively men).
Observed household- and individual-level differences
across study arms resulted from randomization taking place
at the community level [22].

Exposure measurements and validation

The GRAPHS study team carried out 11,898 CO exposure
deployments (8540 maternal and 3358 child) on 1405
mothers and 1083 children. More than 75% of mothers
received six or seven sessions and more than 75% of children
received all three of their intended sessions (Table S2). Nearly
all mothers (97%) received baseline exposure monitoring and
at least one post-intervention monitoring session. The per-
centage of mothers and children receiving exposure mon-
itoring during each session is detailed in Table S3.

Figure S3 summarizes the air pollution exposure vali-
dation process. Overall, two-thirds of maternal CO exposure
sessions resulted in a high-validity 48-h exposure estimate;
the percentage was slightly smaller for child exposure
monitoring sessions (57%) (Table S4). Estimates were
removed according to validation criteria: 10% lasted <48 h
(maternal median= 71.85 h, child median= 71.93 h); less
than one-quarter were not visually valid (maternal: 16.3%,
child: 23.9%); and some had an invalid calibration factor
(maternal: 18.9%, child: 24.5%) (Table S5). Figure S4
shows representative images in each visual validity cate-
gory. Approximately 70% of samples were valid in the
prenatal period, but in the postnatal period the fraction of
valid samples declined to around 60% (Table S6).

A final sample of 5655 valid 48-h maternal CO exposure
estimates and 1903 valid 48-h child CO estimates was
obtained after the validation criteria were applied and after
removing a small number of sessions for having an
improbable 48-h CO concentration of 0 ppm (maternal N=
4; child N= 4) and averaging valid co-deployments
(maternal N= 92). Mothers (N= 16) and children (N= 1)
with no valid exposure estimates were dropped from
analyses.

The GRAPHS study team also carried out 1750 PM2.5

monitoring sessions for 980 women, conducted in conjunc-
tion with a subset of the CO monitoring sessions. A procedure
similar to the CO validation procedure was conducted for the
PM2.5 measurements (see section “Fine particulate matter
exposure validation”). A small number were removed due to
insufficient run time (N= 134), low visual validity (N= 184),
and missing gravimetric sample validity (N= 29). In total,
more than 80% of PM2.5 monitoring sessions resulted in high-
validity 48-h exposure estimates (N= 1 389). Ten of these
high-validity estimates were removed because they took place
during the baseline period.

Summarizing maternal and child air pollution
exposure

In the baseline period, 0.6% of 24-h maternal CO exposure
estimates exceeded the World Health Organization (WHO)
CO 24-h guideline of 6.11 ppm (equivalent to 7 mg/m3)
[37]. Table 3 provides descriptive statistics for maternal CO,
maternal PM2.5, and child CO exposure estimates. Baseline
CO exposures did not differ significantly across study arms.
CO exposure decreased in the post-intervention period for
all study arms. The distributions of post-intervention 48-h
maternal CO and PM2.5 and child CO exposures for each
study arm are visualized in Fig. S5. In the post-intervention
period, the percent of 24-h maternal CO exposure estimates
in excess of the WHO 24-h guideline was 1.4% in the
control study arm, 0.7% in the improved biomass study arm,
and 0.6% in the LPG study arm.

Mean child CO exposure was lower than maternal CO
exposure in all study arms. Among paired samples where
child and maternal CO exposure was monitored during the
same session, the two exposures were weakly correlated
(Pearson’s r= 0.36) (Fig. S6). The median ratio between
child and maternal CO exposure was 0.78 (interquartile
range: 0.30–1.79), though observed ratios varied greatly
across paired samples (Fig. S7).

Figure 2 shows a time series of 48-h maternal CO and
PM2.5 exposure estimates from all study arms throughout
the post-intervention period (November 2013 to February
2016). Here, two patterns emerge. First, CO exposure
appears to decline throughout the study period. Second,
PM2.5 exposure shows a marked seasonal pattern with
periods of higher exposures during the Harmattan season.
As a result of these observed patterns, we carried out several
different analyses to assess the effect of cooking interven-
tions on exposure.

Estimating the effect of clean cooking interventions
on personal air pollution exposure

Before conducting our “difference-in-differences” primary
specification, we assessed the effect of cooking interven-
tions on exposure using two approaches: (1) “across study
arms” and (2) “before and after.”

Table 4 reports results from the “across study arm”

approach (first equation). As compared to the control arm,
both the LPG and improved biomass arms had reduced
mean maternal CO exposure (LPG: 42% lower, 95% CI:
35–48% lower; improved biomass: 10% lower, 95% CI:
1–18% lower). An exploration of seasonal patterns found
that exposure reductions in the intervention arms were
greatest among the subsample of sessions obtained during
non-Harmattan months (April–November, representing
59% of maternal samples). The difference in CO exposure
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between the LPG arm and the control arm was somewhat
attenuated during Harmattan months (35% lower, 95% CI:
22–45%) and we observed no difference between the
Improved study arm and the control arm during these
months (3% lower, 95% CI: 17% lower to 12% higher). We
found that child CO exposure was only reduced in the LPG
arm as compared to the control arm (22% lower, 95% CI:
6–35% lower; improved biomass: 6% lower, 95% CI: 21%
lower to 11% higher).

Two-thirds of post-intervention mean maternal 48-h
PM2.5 exposure estimates exceeded the WHO Annual
Interim-I guideline (35 μg/m3) [37] in the LPG study arm,
with the fraction for the improved biomass and Control
arms being higher (86% and 88%, respectively) (Table S7).
In addition, more than 85% of mean maternal 24-h PM2.5

exposure estimates exceeded the WHO 24-h guideline of
25 μg/m3 and nearly all exposure estimates were above the
10 μg/m3 annual guideline. Mean maternal PM2.5 exposure
was only reduced among the LPG arm as compared to the
control arm (32% lower, 95% CI: 26–38% lower; improved
biomass: 4% lower, 95% CI: 11% lower to 4% higher).
PM2.5 exposure estimates were higher among Harmattan
subsamples and during this season we observed no sig-
nificant differences in exposure across the study arms. The
reductions of the LPG intervention arm were larger during
the non-Harmattan season than the reduction observed
when including all monitoring sessions.

In comparison to the “across study arms” models, the
“before and after” models described in the second equation

Table 4 Summary of personal exposure after intervention.

N Control
(median, IQR)

Improved biomass
(median, IQR)

Intervention effecta

(percent, 95% CI)
LPG (median, IQR) Intervention effecta

(percent, 95% CI)

Mother CO (ppm)

All 4652 0.82 (0.37–1.65) 0.74 (0.33–1.47) −10 (−18, −1) 0.52 (0.20–1.16) −42 (−48, −35)

Harmattan 1894 0.76 (0.33–1.69) 0.78 (0.32–1.58) −3 (−17, 12) 0.56 (0.20–1.23) −35 (−45, −22)

Non-Harmattan 2758 0.86 (0.38–1.61) 0.73 (0.34–1.41) −16 (−25, −5) 0.49 (0.19–1.07) −47 (−53, −39)

Child CO (ppm)

All 1903 0.48 (0.17–1.23) 0.51 (0.17–1.10) −6 (−21, 11) 0.39 (0.12–0.94) −22 (−35, −6)

Harmattan 598 0.47 (0.16–1.21) 0.39 (0.12–1.01) −16 (−37, 14) 0.38 (0.14–0.94) −5 (−33, 33)

Non-Harmattan 1303 0.48 (0.18–1.27) 0.56 (0.21–1.13) −1 (−19, 21) 0.42 (0.12–0.94) −28 (−42, −11)

Mother PM2.5

(µg/m2)

All 1379 67 (46–97) 67 (44–94) −4 (−12, 3) 45 (32–65) −32 (−38, −26)

Harmattan 365 80 (57–106) 78 (59–99) 1 (−12, 11) 72 (56–96) −11 (−22, 1)

Non-Harmattan 1014 63 (41–87) 61 (40–90) −2 (−11, 7) 38 (29–53) −37 (−43, −31)

aEstimates are derived from the models described in the first equation for Improved Biomass or LPG, respectively. Estimates refer to the percent
difference in mean exposure across the study arm during the post-intervention period.

Bolded effect estimates are those whose 95% confidence interval does not cross 0.

Fig. 2 Post-intervention 48-h CO and PM2.5 exposure measure-
ments during the GRAPHS study period show seasonality during
Harmattan. Time series of post-intervention 48-h measurements of
maternal CO (upper panel) and PM2.5 (lower panel) exposure from
November 2013 to February 2016. Points display 48-h individual
measurements from all study arms. Solid lines show a local weighted
smoothing (LOESS) function with light gray areas showing the 95%
confidence interval of the local mean. Time periods shaded gray depict
Harmattan season (December–March) when episodes of dry dusty
winds are typically more prevalent.
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incorporate data from the baseline period in addition to the
post-intervention study period for each study arm. Exposure
fell significantly in the post-intervention study period
among all study arms as compared to the baseline (Table 4
and Fig. S8). Indeed, even the control group had an esti-
mated 32% lower (95% CI: 24–39% lower) mean maternal
CO exposure in the post-intervention period. This trend
makes the “difference-in-differences” approach where we
use all exposure estimates obtained during GRAPHS par-
ticularly important.

In the “difference-in-differences” analysis, then, we see
that as compared to the change observed in the control arm
in the post-intervention period, only the LPG arm experi-
enced a significantly greater CO exposure reduction (47%
lower, 95% CI: 36–56% lower) (Table 5). Using the same
approach, but with a non-logarithmized outcome, we esti-
mate that the absolute reduction in personal CO exposure
attributable to the LPG intervention is 0.52 ppm (95% CI:
0.28–0.75 ppm lower). In contrast, the change in exposure
after the intervention in the improved biomass study arm
was not different from the control arm (8% lower, 95% CI:
21% lower to 8% higher).

Effect of interventions on exposure over time

Maternal CO exposure fell throughout the study period for
all study arms, including the control arm (Fig. S9). We
conducted a session-specific difference-in-differences ana-
lysis to evaluate whether the effect of the intervention
diminished over time. In the LPG arm, no attenuation of the
intervention effect was seen during the prenatal period. In

the postnatal period, the intervention effect was somewhat
attenuated, but still significant as compared to control.
Similar trends over time were observed in the improved
biomass arm, although reductions in exposure were not
significant as compared to the control arm (Fig. 3).

Assessment of population density and exposure

Given the focus on intervening during pregnancy, partici-
pants in the intervention study arms were in close proximity
to households not enrolled in the study. Close proximity to
nonintervention households using three-stone fires may
have affected personal air pollution exposure in intervention
study arms. Population density across the study groups
varied somewhat (control mean (SD) persons within 50 m:
48.4 (29.6); improved biomass mean (SD): 48.6 (31.9);
LPG mean (SD): 53.9 (35.0)). Households in the LPG study
arm living with more than 50 persons within 50 m
(approximately the median) had average 48-h CO exposure
of 1.00 ppm (SD: 2.58), whereas those living with fewer
than 50 persons within 50 m had average 48-h CO exposure
of 0.72 ppm (SD: 0.88).

Discussion

In this study, we presented the results from the largest
randomized clean cooking intervention trial to report air
pollution exposure results to date. First, we described
the validation procedures we employed to ensure high
confidence in exposure estimates. Then, we described the
overall results of CO and PM2.5 maternal and child exposure
deployments, characterizing both the distribution of
deployments over the study period and across study arms.

Table 5 Estimates of the effect of the cooking interventions on
maternal 48-h CO exposure using different model specifications,
expressed as a percent change in mean exposure.

N Difference 95% CI

Before and aftera

Control 2114 −32% (−39%, −24%)

Improved biomass 2114 −37% (−44%, −30%)

LPG 1426 −64% (−69%, −59%)

Difference-in-differencesb 5654

Improved biomass −8% (−21%, 8%)

LPG −47% (−56%, −36%)

aEstimates are derived from the models described in the second
equation, which are carried out for each study arm independently.
bEstimates are derived from models described in the third equation
(primary specification), which leverage all data included in the study
and constitute our best estimate of the effect of clean cooking
interventions on air pollution exposure. In this approach, the change in
before and after change in exposure among the control arm is itself the
reference for the differences observed in the intervention arms.

Bold values indicate those whose 95% confidence interval does not
cross 0.

Fig. 3 CO exposure differences between the LPG study arm and
improved biomass study arm compared to the control study arm
throughout the study. Results from models described in the fourth
equation—the “session-specific difference-in-differences” regression
approach—to explore the potential interaction between the effects of
the intervention over time by cluster. Point estimates are the percent
change in CO exposure as compared to the control study arm baseline
period with 95% confidence intervals. Models account for within-
subject clustering over time and the cluster-randomized nature of the
intervention using generalized estimating equations.
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We showed that the LPG stove significantly reduced per-
sonal CO exposure as compared to the control three-stone
fire and that PM2.5 exposure was lower in the LPG arm as
compared to the control in the post-intervention period. We
also showed that there was no attenuation of the interven-
tion effect during the prenatal period among LPG stove
users, but that there was some evidence of effect attenuation
after birth. We also demonstrated that a fan-assisted bio-
mass stove did not lead to statistically significant reductions
in CO or PM2.5 exposure as compared to the control.

This study makes several important contributions to the
field. Although the validation procedures were stringent,
GRAPHS nonetheless yielded more than 5600 48-h
maternal CO exposure estimates, 1903 48-h child CO
exposure estimates, and 1379 48-h maternal PM2.5 exposure
estimates, one of the largest personal air pollution exposure
monitoring efforts in the context of clean cooking inter-
ventions to date. Low within-subject correlation across all
exposure measurements justified our repeated measure-
ments approach (see Supplementary Information Section
2.1). GRAPHS marks one of the largest deployments to date
of a clean cooking fuel intervention in a randomized con-
trolled trial, and the first time the impact of LPG stoves on
personal exposure to air pollution has been rigorously tes-
ted. While there are some clean cooking fuel intervention
efforts ongoing [48], few prior studies have presented
exposure results [18, 49]. This study also offers insights into
air pollution exposure among pregnant women, a particu-
larly sensitive group where exposure reductions can yield
substantial public health benefits.

The main results from the present study show that the
mothers in the LPG study arm experienced 47% lower mean
48-h CO exposure compared to the control arm using pre-
and post-intervention data and 32% lower mean 48-h PM2.5

exposure using post-intervention data. We also show that a
fan-assisted biomass stove did not reduce CO nor PM2.5

exposure in statistically significant ways. These results
further support the findings from a recent meta-analysis that
concludes that improved biomass-burning stoves have not
reduced personal PM2.5 exposure below WHO air quality
guidelines [18]. Stoves using clean fuels like gas, elec-
tricity, or alcohol have the potential to reduce air pollution
exposure much more than “cleaner” biomass stoves in real-
world use. Our study demonstrates that statistically sig-
nificant exposure reductions are possible through an LPG
stove intervention. Still, two-thirds of post-intervention
mean maternal 48-h PM2.5 exposure estimates in the LPG
study arm exceeded the WHO Annual Interim-I guideline of
35 μg/m3.

There have been multiple reasons proposed in the lit-
erature to explain the failures of improved and/or clean fuel
stoves to achieve expected exposure reductions, notably: (1)
insufficient emissions reductions over the long term due,

potentially, to stove breakage and/or maintenance issues
over time; (2) continued traditional biomass stove use in
parallel to the intervention stove (termed, “stove stacking”
or “fuel stacking” when referring to the use of multiple
fuels) for a variety of different reasons [50–53]; and (3) high
levels of ambient air pollution due to interventions in single
households in communities where the majority of house-
holds continue to use traditional stoves.

The LPG arm experienced significantly lower exposure
compared to the control arm throughout the entire study
period (median time between first and final sessions:
357 days). Furthermore, we observed consistent LPG stove
use during the entire study period and before and after birth
(Figs. S10 and S11). Improved biomass stove use, however,
declined over time and exposure in the improved biomass
study arm was not different from the control arm throughout
the majority of the study period.

Given the growing body of literature discussing the
potential for clean cooking intervention to improve health,
it is valuable to contextualize our results. First, we note
that there are relatively few directly comparable studies—
that is, randomized controlled trials with clean fuel
interventions reporting personal CO exposure measure-
ments. The most comparable study to our own to present
results to date is the Randomized Exposure Study of
Pollution Indoors and Respiratory Effects (RESPIRE)—a
randomized controlled trail with an improved solid fuel
stove with a chimney in Guatemala. Geometric mean
maternal CO exposure declined by 61% (95% CI: 57–65%
lower; baseline concentration 3.4 ppm) in RESPIRE,
though throughout the study only 529 personal CO
exposure estimates were collected [17]. A review of eight
studies that examines pre- and post-improved solid fuel
stoves with chimney intervention personal CO exposure
estimated a weighted mean reduction of 52% (3.4 to 1.6
ppm) (totaling 778 estimates, most coming from
RESPIRE) [18]. This same review only found three stu-
dies that included a clean fuel intervention—one for LPG
in Sudan (N= 57 estimates) and two for ethanol in in
Ethiopia and Madagascar (N= 85 estimates combined)—
though neither utilized personal air pollution exposure
monitoring and instead only had kitchen monitoring.
These studies reported declines in kitchen CO con-
centrations between 76 and 82%, though pre-intervention
concentrations were between 11 and 33 ppm. The cur-
rently underway Household Air Pollution Intervention
Network trial—a large multisite randomized controlled
efficacy trial providing unlimited LPG refills to 3200
households for 18 months [54]—will increase the avail-
able evidence on the potential for clean fuels to reduce
personal air pollution exposure.

The observed estimates of personal air pollution expo-
sure in this study are somewhat low in comparison to other
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similar studies. As noted above, a review of eight studies
[18] with personal CO exposure estimate a weighted pre-
intervention mean of 3.4 ppm and post-intervention at 1.6
ppm. However, these studies came from a range of geo-
graphic contexts—largely Central and South America—that
may not be as relevant to Sub-Saharan Africa. In a cross-
sectional study in Accra, Ghana—a large urban city—
households only using LPG had mean PM2.5 exposure of
24 µg/m3, though households also reporting wood use or
charcoal use had somewhat higher exposures (between 31
and 79 µg/m3) [55]. A study in rural Kenya estimated 48-h
personal CO exposure to be between 0.8 and 1.3 ppm—

concentrations comparable to those presented in this study
[56]. A study in Rwanda reported mean 48-h personal PM2.5

exposure to be around 220 µg/m3 across intervention and
control arms (no difference in exposure), though the inter-
quartile range extended from about 95 to 300 µg/m3 [57].

In summary, personal air pollution exposure concentra-
tions are highly variable within and across contexts and
while exposure estimates in this study may be somewhat
lower than in other studies, there is significant overlap in the
distributions. In addition, the range of exposures observed
in this study fall in ranges of the integrated
exposure–response functions for PM2.5 and lower respira-
tory infections [39], for example, where even modest
declines in exposure might yield meaningful reductions in
relative risk.

Limitations

The results of this study should be considered in light of its
limitations. The methods and protocols for this study were
developed between 2010 and 2013, with data collection
occurring between 2013 and 2016. Since then, there have
been shifts in the air pollution exposure technology and the
state-of-the-science knowledge on best practices, so we
report extensively on the limitations of this study as advice
for future similar studies.

First, as we have discussed previously in the “Methods,”
due to resource constraints, CO was used as the primary
exposure metric in GRAPHS. Chronic and short-term CO
exposure is an important health risk factor associated with
asthma, cardiovascular disease, and impaired neurological
development and acute symptoms and mortality, respec-
tively [58]. Furthermore, CO is a marker of incomplete
combustion and is included in the WHO’s Air Quality
Guidelines for Household Fuel Combustion alongside
PM2.5 [37]. Still, PM2.5 is thought to be the best indicator of
health risk from air pollution [21, 59, 60]. When designing
the study, we planned to use CO as a proxy for PM2.5

exposure. Now, evidence is accumulating that CO may
perform poorly as a proxy for PM2.5 exposure in HAP
studies [40], but these findings were not available during the

design phase of GRAPHS. Still, our findings show that
across arm exposure reductions were of a similar magnitude
for CO and PM2.5 samples. We report an additional lim-
itation that PM2.5 exposure measurements did not take place
at baseline, limiting our PM2.5-related analysis to cross-
sectional post-intervention assessments.

Second, ambient air pollution was not measured during
the GRAPHS study period due to limited resources. Our
results showing the positive association between population
density around a participant and air pollution exposure
indicate the potential for neighbors’ air pollution to have
affected participants’ air pollution exposure. The lack of
ambient monitoring limits our ability to determine the
relative contribution of a household’s own cooking prac-
tices from community-level ambient air pollution to perso-
nal exposure. However, it is rare for entire communities to
transition from biomass-based cooking to the exclusive use
of clean fuels, so the intention-to-treat analysis in this study
offers useful real-world results of a clean fuel stove and fuel
refill intervention. LPG stove uptake in rural communities
in Ghana was uncommon during the study period [61],
suggesting that it is unlikely that neighboring transitions
from solid fuel use to clean fuel use would have changed
ambient air pollution over the course of the study. Still were
there to be such a transition, we do not expect that any shifts
would occur differentially across study arms.

Third, we carried out only limited pretrial field mea-
surements with the Lascar CO exposure monitor—though
we did consult with other research teams experienced in
its use. While we did not observe any evidence of issues
with deployment, more extensive pretrial testing can be a
valuable and important step for establishing good prac-
tices for data collection, cleaning, and analysis as well as
establishing internal and external credibility of exposure
estimates.

Fourth, although post hoc truncating exposure esti-
mates to 48 h were intended to ensure having a similar
number of cooking events per deployment, this truncation
also induced a limitation of our PM2.5 estimates. We only
used the first 48 h of the gravimetric-corrected light-
scattering nephelometer data, even though the CF was
based on the full deployment length (median= 72 h). As
such, any significant variations in particle sources with
different optical properties during the first 48 h as com-
pared to the entire deployment may bias our estimates.
However, there is limited likelihood that the truncated
time period after 48 h captured different particle sources
that would significantly impact our estimates because 48 h
comprises a large proportion of the full deployment
length. Furthermore, a strength of our use of the micro-
PEM is that the device provides a gravimetric correction
for every deployment, rather than a common approach of
co-locating nephelometer-only sensors with gravimetric-
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only monitors in a small subset of deployments that is
subject to bias [62].

Fifth, stove stacking may also have played a role in the
levels of air pollution exposure observed in this study. This
study focused on intention-to-treat analyses, categorizing
households according to treatment irrespective of cooking
fuel use patterns in the household. A limitation of GRAPHS
is that there was not comprehensive stove use monitoring
during all personal air pollution monitoring sessions or
throughout the longer study period. Use of nonintervention
stoves was reported during GRAPHS based on weekly
household surveys, as reported in the Supplementary
Information and published elsewhere [63]. However, given
the lack of complete stove use monitoring we are unable to
undertake a full analysis of the contributions of stove use to
observed personal exposure. Future studies may benefit
from comprehensive stove use monitoring paired with
personal air pollution exposure to assess the degree to
which the benefits of stove interventions are attenuated by
fuel stacking with polluting fuels like biomass and kero-
sene. Additionally, stove use monitoring can enable the
analysis of the contribution of cooking events to time-
resolved personal air pollution exposure, potentially disen-
tangling overall air pollution exposure from those directly
affected by cooking interventions and thus whether reduc-
tions in exposure during cooking are the primary drivers of
overall differences in exposure.

Sixth, our strategy using visual validation of the data lacked
a formal evaluation of inter-rater reliability. Due to the highly-
localized nature of air pollution exposure trends from day to
day, visual validation remains a top way to detect deviations
from the norm and—potentially—indications of sensor failure
in addition to objective monitoring criteria and survey-based
questions to the participant on exposure monitoring wearing
behaviors during the monitoring period.

Conclusions

There is increasing demand for interventions to reduce
HAP exposure and improve health in Sub-Saharan Africa
and the rest of the world as researchers and policymakers
learn more about the health and climate effects of biomass
combustion. The particular interventions that will be best
suited to achieve these goals remain a subject of debate.
Ghana, along with other countries in the region, is estab-
lishing national clean cooking programs to scale-up clean
cooking fuels—especially LPG—to reduce forest degra-
dation while also improving livelihoods and population
health [61]. In this study, we provide evidence from a
controlled trial in a low-income setting demonstrating that
an LPG stove intervention outperformed a fan-assisted
biomass stove intervention in reducing air pollution

exposure among a population of pregnant women vulner-
able to the adverse health impacts of air pollution. Recent
studies from around the world emphasize the importance
of cost and access in determining the sustained use of
clean fuels in the long term [64]. Future work should
investigate how clean fuel stoves can be adopted sustain-
ably in real life and over the long term to reduce air pol-
lution exposure among vulnerable populations.
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