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Abstract
Background Air pollution epidemiology has primarily relied on fixed outdoor air quality monitoring networks and static
populations.
Methods Taking advantage of recent advancements in sensor technologies and computational techniques, this paper pre-
sents a novel methodological approach that improves dose estimations of multiple air pollutants in large-scale health studies.
We show the results of an intensive field campaign that measured personal exposures to gaseous pollutants and particulate
matter of a health panel of 251 participants residing in urban and peri-urban Beijing with 60 personal air quality monitors
(PAMs). Outdoor air pollution measurements were collected in monitoring stations close to the participants’ residential
addresses. Based on parameters collected with the PAMs, we developed an advanced computational model that auto-
matically classified time-activity-location patterns of each individual during daily life at high spatial and temporal resolution.
Results Applying this methodological approach in two established cohorts, we found substantial differences between doses
estimated from outdoor and personal air quality measurements. The PAM measurements also significantly reduced the
correlation between pollutant species often observed in static outdoor measurements, reducing confounding effects.
Conclusions Future work will utilise these improved dose estimations to investigate the underlying mechanisms of air
pollution on cardio-pulmonary health outcomes using detailed medical biomarkers in a way that has not been possible before.

Keywords Novel sensor technologies ● Gaseous pollutants ● Particulate matter ● Time-activity-location patterns ● Exposure
misclassification ● Dose estimation ● Health outcomes

Introduction

Over the last decades, in rapidly developing countries, such
as China, the disease burden has shifted from a profile
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dominated by infectious diseases to one increasingly char-
acterised by non-communicable diseases (NCDs) [1]. Air
pollution is now the leading environmental risk factor for
NCDs resulting in millions of premature deaths and accel-
erating rates of chronic disease worldwide [2]. Epidemiolo-
gical studies have had significant impact in the setting of
national and international air quality standards to protect
global populations from the detrimental effects of air pollu-
tion. However, most of these studies commonly derive
metrics of short-term exposure from static outdoor monitoring
networks with low spatial and temporal resolution [3]. Such
measurements are generally highly correlated at these coarser
scales and cannot separate the individual health effects of
pollutants [4]. Failure to capture the high granularity of total
personal exposure introduces exposure misclassification that
can lead to bias in health estimations [5, 6].

A range of complex interacting factors drive the high
ambient air pollution heterogeneity, while individual varia-
bility in personal exposure includes a behavioural component
[7] as a person moves between different microenvironments
with varying emission sources. During daily life, peak
exposure events often occur during commuting [8] while the
indoor environment is a significant site for exposure in part
because people spend substantial fractions (often as much as
90%) of their time indoors [9]. Indoor air is affected by
outdoor pollutants penetrating building envelopes with addi-
tional indoor sinks, sources and emissions from building
materials which cannot be captured by static outdoor mon-
itoring networks [10].

Several studies have identified large discrepancies
between personal exposure measurements and outdoor con-
centrations [7]. These exposure uncertainties may introduce
prediction errors and bias with substantial implications for
interpreting epidemiological studies on air pollution, parti-
cularly the time-series analyses [5]. The between-subject
variability is large because air pollutants concentrations vary
significantly by both location and activity. Therefore, a
comprehensive personal exposure assessment requires two
components: (1) the pollutant concentrations the person is
exposed to; and (2) the recording of a person’s time-activity
patterns that may vary with age, gender, occupation and
socio-economic status [11]. Physical activity levels affect the
potential dose of inhaled air pollution [12].

In light of this challenge, “Effects of AIR pollution on
cardiopuLmonary disEaSe in urban and peri-urban reSi-
dents in Beijing” (AIRLESS) [13] nested within the “Air
pollution and human health in a Chinese megacity” (APHH)
research programme was initiated [14]. The aim of the
AIRLESS project was to address the complex issue of
multipollutant exposures on cardiopulmonary outcomes.
This paper presents the results of the field deployment of 60
portable air pollution sensor platforms for one week during
the winter and summer season in 251 participants of the

AIRLESS panel study residing in urban and peri-urban
China. The expectation is that similar effects would be
evident in the general population hence this paper has wider
significance than just these cohorts. The main objective of
this work is to demonstrate that novel sensor technologies
and computational methods offer a paradigm shift in col-
lecting highly resolved measurements of individualised air
pollutants improving dose estimations in large-scale health
studies.

Materials and methods

This section briefly describes the methodology employed
for creating a comprehensive database of validated personal
concentrations and time-activity location patterns of 251
participants of a health panel study matched with intensive
monitoring of outdoor air pollution levels. In the last sub-
section, methodologies for estimating dose with traditional
and highly resolved exposure metrics are outlined. The
AIRLESS project will integrate these results of detailed
doses and exposures to multiple air pollutants with changes
in cardio-pulmonary health outcomes to ensure the biggest
scientific and policy impact.

The participant sample

The measurements were collected as part of the AIRLESS
project which was designed as a panel study with repeated
personal exposure and clinical measurements of 123 urban
and 128 peri-urban participants during the winter (14th
Nov–21st Dec 2016) and summer seasons (22nd May–21st
Jun 2017). Each participant carried a personal air quality
monitor (PAM) for 1 week in each season. Thirty PAM
devices were deployed at both the urban and peri-urban
clinic sites, which enabled the recruitment of 30 subjects
each week at each location. This paper will mainly focus on
the analysis of the winter campaign data. The participants
residing in the urban site were 59–75 years old, and were
primarily retired (88%). In the peri-urban site the age range
was between 50 and 73 years old, and their primary occu-
pation was agriculture (53%) followed by retirement 17%
and housekeeping 13% [13].

Outdoor air pollution measurements

Intensive ambient air pollution monitoring campaigns were
launched simultaneously next to the urban and peri-urban
clinics, which were in close proximity to most subjects’
residential addresses. Both stations measured background air
pollution levels, as they were located away from direct
sources. These measurements had the same time resolution as
the personal measurements (1 min). A detailed description of
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the ambient air pollution monitoring campaign is presented in
Shi et al. [14].

The personal air quality monitor (PAM)

The PAM is an autonomous unit that incorporates multiple
sensors for activity, and for physical and chemical para-
meters [15]. The compact and lightweight design of
the PAM (∼400 g) makes the unit suitable for personal
exposure assessment. The time resolution of the measure-
ments was set at 1 min time intervals resulting in a battery
life on a single charge of ∼24 h. The PAM collects multiple
timestamped geo-coordinated measurements of gaseous
pollutants, particulate matter, temperature, relative humid-
ity, background noise levels and accelerometry. Measure-
ments are transmitted to a secure server through GPRS for
further processing.

Previous work [15] characterised the performance of the
PAM that integrates multiple miniaturised sensors for
nitrogen oxides (NOx), carbon monoxide (CO), ozone (O3)
and particulate matter (PM) measurements. Overall, the air
pollution sensors showed high reproducibility (mean R2=
0.93, min–max: 0.80–1.00) and excellent agreement with
standard instrumentation (mean R2= 0.82, min–max:
0.54–0.99) in outdoor, indoor and commuting micro-
environments across seasons and different geographical
settings making it suitable for collecting highly resolved
exposure metrics at large scale. There were some indica-
tions that the EC sensor performance is less reliable at high

temperatures (>40 °C); however, such extreme environ-
mental conditions were not encountered during the actual
personal exposure sample periods discussed here. A lim-
itation of all optical PM sensors, including the one used
here but also reference instrumentation, is that they cannot
measure small particles below a critical size threshold.
We have shown that by appropriate local calibration, this
shortcoming can be largely accounted for. Following the
methodology described in Chatzidiakou et al. [15], the raw
measurements of gaseous pollutants and particulate matter
were converted to physical units.

The data capture of the personal measurements was 81%,
including data losses from participants not complying with the
protocol (e.g., no charging of the monitor) and from data
cleaning procedures, demonstrating the deployment feasibility
and participant acceptability of novel sensor technologies.

The time-activity model

This subsection provides a brief overview of the progressive
composite model (Fig. 1) that classifies time-activity-location
patterns automatically using: (1) auxiliary parameters col-
lected with the PAM (geo-coordinates, background noise and
acceleration levels) as input; and (2) machine learning tech-
niques of spatio-temporal clustering, movement analysis
methods, geographical information systems (GIS) [16] and
rule-based algorithms. The participants carried the PAMs
during their daily life (Fig. 1a). In the first step, the model
computes the space-time utilisation distributions of the GPS
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Fig. 1 Flow chart of time-activity model. a Raw GPS data of 251
participants carrying 60 PAMs during the winter fieldwork campaign
(14th Nov–21st Dec 2016) plotted on urban and peri-urban maps. Map
data Google 2019. b 3D map of a representative participant illustrating
the relative amount of time spent in visited locations. The space-time
utilisation distribution was constructed using advanced spatio-temporal

analysis of the GPS data [17]. c Separation of static clusters from clusters
with directional movement using derived parameters from step b.
d Classification of mode of transport using movement analysis methods
[23], GIS [16], PAM data (e.g., speed, acceleration) and questionnaire
responses collected in the panel study. e Time spent in different
core locations (home, transit and other static) by the two cohorts.
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coordinates for each participant (Fig. 1b) [17]. The resulting
metrics (time spent in each location, re-visitation rate and
metrics of directional movement) were used to classify each
point in one of three core location categories (Fig. 1c): home,
other static locations and in transit. Sleeping was further
classified in the home category using local time, background
noise levels and deposition of coarse particulate matter. In
transit category was classified into five modes of transport
(walking, cycling, motorbike, car/bus and train/tube) (Fig. 1d)
to capture distinct air pollution microenvironments and dif-
ferent inhalation rates.

The time-activity classification of the data collected during
the winter campaign showed that, in line with previous
research [9], the participants spent as much as 90% of their
time at home (Fig. 1e) partly due to socio-economic factors
(e.g., little agricultural activity in winter and large percentage
of retired participants). Travel behaviour is a complex issue
affected by a multitude of factors, for instance supply and
costs of transportation alternatives, incomes as well as urban
size and spread. In line with previous studies [18], the urban
participants spent 5% of their time budget travelling, and
covered a larger spatial area than the peri-urban group that
were relatively sedentary (Fig. 1a).

Personal concentrations, exposure and dose
estimates

The basic concepts used in exposure assessments were
developed in the early 80s [19]. Personal exposure is
defined as the contact of a person with a pollutant of con-
centration c, at a particular time t. We refer to the mean
personal exposure as the average pollutant concentration in
the visited microenvironment over the corresponding time
period [20]. In the following, exposure misclassification is
defined as the difference between exposure estimated from
measurements at a fixed monitoring station and personal
exposure measured by portable sensors.

The air pollution dose describes the amount of pollutant
that is actually received by the organism by inhalation. As a
first approximation, the potential dose can be defined as the
inhaled amount of a pollutant, assuming a total absorption
of the pollutant by the body. In the following, the term
“dose” will refer to this potential dose. The dose D(t) per
time unit [µg min−1] is the product of the air pollution
concentration c [µg m−3] with the inhalation rate f [m3 min
−1] [20] (Eq. 1). The total dose is the integral of D(t) over a
defined period of time, in this study over the participation
time of each individual (7 days).

D tð Þ ¼ f tð Þc tð Þ ð1Þ
In epidemiological studies, ambient monitoring data are

typically averaged for the study area and short-term exposure
on any given day is assumed to be the same for the entire

population [21]. To understand the differences that arise from
the spatial resolution of air pollution measurements employed
and the varying time-activity-location patterns of individuals,
three approaches were adopted to estimate dose:

● Method A uses air pollution measurements from the static
monitoring station closest to the participant’s residential
address cstat(t) representing the method employed by the
majority of epidemiological studies to estimate exposure.
Although this approximation is generally poor, the
relevant parameter for interpretation is the extent to which
actual personal exposures are correlated to the area-
average exposure over time [21]. This method uses
generic inhalation rates fgen= 9 Lm−1 as the level of
physical activity may not be available [12].

● Method B assumes the same generic inhalation rate fgen,
but utilises highly resolved air pollution measurements
in the immediate proximity of the participant collected
with the PAM cPAM.

● Method C estimates intake in an optimal way by using
air pollution concentrations measured in the immediate
microenvironment of each participant at high temporal
resolution (cPAM), and inhalation rates derived from the
physical activity intensity (fact) estimated with the time-
activity model (“The time-activity model” section).

Results

Seasonal variation of outdoor and personal air
pollution concentrations

In summary, the outdoor air pollutant levels were very high in
Beijing and surroundings, particularly during the winter
months with the exception of ozone which was higher during
the summer (Fig. 2). Synoptic-scale meteorological analysis
suggests that the degraded outdoor air quality in winter was
due to the greater stagnation and weak southerly circulation
[14]. More specifically, winter outdoor air pollution was
characterised by several high PM2.5 pollution events, with
peak hourly concentrations ranging up to 617 µgm−3;
whereas, during the summer there were events of high ozone
concentrations with the highest hourly average of 168 ppb.

Concentrations measured with the PAMs carried by
participants showed two distinct profiles (Fig. 2) consistent
between seasons:

● Personal CO and NO concentrations. Partially driven
by the outdoor concentrations, levels of CO and NO,
measured with the PAMs showed a strong seasonal
variation with higher levels measured during the winter
season. The difference between personal and outdoor
concentrations was much higher during winter

984 L. Chatzidiakou et al.



indicating stronger sources in proximity to the partici-
pants compared with the summer.

● Personal NO2, PM2.5 and O3 concentrations. Contrary
to personal CO and NO levels, which broadly followed
the outdoor trends, NO2, PM2.5 and O3 levels (Fig. 2) were
significantly lower than outdoor levels in both seasons and
showed little (PM2.5 and O3) or no (NO2) seasonal
variation.

The personal measurements show that there is a substantial
exposure misclassification that could be introduced when
using outdoor measurements as exposure metrics. Apart from
the substantial difference in the magnitude of personal and
outdoor measurements, there is also a poor correlation (R2 <
0.2 across all pollutants; see Fig. S1 in Supplementary
Material) indicating that in that environment exposure metrics
derived from the outdoor monitoring stations explained an
insignificant amount of the variability in personal exposure.

Correlation between individual pollutants

The previous subsection highlighted that measurements
from static outdoor monitoring sites are poor surrogates for
personal exposure levels stressing the need for measure-
ments as close as possible to the individual to capture the
high granularity of personal exposure.

A further significant limitation introduced when using
measurements from static monitoring stations as metrics of
exposure is usually the high correlation between different
species. For example, COMEAP report [4] concluded that
insufficient evidence on the health impacts of NO2 due to the
high correlation of this pollutant with other traffic-related
pollutants such as primary combustion particles, particle
number concentration or carbon monoxide. As a result, the
statistical associations of each individual pollutant with a

health effect will, to some extent, also reflect the effects of
other pollutants in the group.

The difficulty of interpreting the results of highly cor-
related pollutants persists even when multipollutant models
are applied in the statistical analysis, as the multicollinearity
introduced from highly correlated species prohibits multi-
pollutant health models from assigning specific health
effects to individual pollutants. In addition, if one correlated
pollutant has a larger exposure misclassification than
another, this may result in the effects associated with a
causal relationship being underestimated whilst non-causal
associations are spuriously overestimated [4].

The correlation between outdoor pollutants will vary by
location, in this case, Fig. 3(a) shows scatter plots between the
outdoor NO2 and PM2.5 concentrations measured at the static
outdoor monitoring station at the primary urban site used, and
(b) measured with mobile sensors carried by the urban par-
ticipants. While the two pollutants were strongly correlated at
the outdoor monitoring station (R2= 0.64), low correlations
were observed in the personal measurements (R2= 0.05).
This demonstrates clearly that personal monitoring can break
the correlation between outdoor correlated pollutants because
they capture variable emissions from sources in the direct
environment of a person with changing compositions.

Figure 3(b) uses the personal exposure measurements
and breaks them down by location as classified by the time-
activity model (“The time-activity model“ section). A low
correlation between the two pollutants was observed at
home and other static locations (R2 < 0.1), whereas the two
pollutants were moderately correlated in transit environ-
ments (R2= 0.25). This is due to similar emission sources in
traffic outdoor environments where pollutants are generally
more correlated, also reflected in the measurements at the
outdoor monitoring site. Although not shown here equiva-
lent arguments apply to CO and O3.
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Exposure and dose estimations

The large differences between outdoor and personal con-
centrations highlighted in the previous subsection were
driven by time-activity-location patterns of individual par-
ticipants as well as infiltration rates of outdoor pollutants in
visited indoor microenvironments.

The bar plots in Fig. 4 show the average inhaled dose
of urban and peri-urban participants calculated with the
three-dose estimation methods described in “Personal con-
centrations, exposure and dose estimates” section.
A detailed description of the calculations used to create
Figs. 4–6 is given in Section S1.

As methods A and B are integrating a constant inhalation
rate and the measurements were taken over the same time
period, the average dose depends only on the measured
pollutant concentrations in the surrounding microenviron-
ment. Therefore, the doses are directly proportional to the
exposures, and the difference between the two methods is a
measure of the exposure misclassification between personal
and outdoor estimates which was substantial in all cases.
For example, the outdoor stations overpredicted PM2.5

exposure by up to fourfold, while exposure to CO was
under-predicted by up to fivefold.

The difference between method B and method C, both
derived from personal measurement, was marginal (Fig. 4)
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despite integrating activity-dependent inhalation rates in
method C. This was mostly due to the low physical activity
levels of the participants which resulted in an average
inhalation rate similar to the generic one used for method A
and B. The home microenvironment was the most important
modifier of personal dose, partly because participants spent
most of their time there (Fig. 1e). In addition, strong indoor
sources of CO and NO operated in the home micro-
environment elevating personal dose. On the other hand,
indoor doses of NO2, O3 and PM2.5 were lower indicating
the presence of strong chemical sinks.

Using PM2.5 and NO2 as an example, Fig. 5a shows the
total pollutant dose of each participant over their partici-
pation week (calculated with dose estimation method C).
The contributions from different microenvironments to the
total dose are colour-coded. While generally the urban
participants receive a lower PM dose than the peri-urban
group, the urban participants received higher doses of NO2

making, therefore, the exposure profiles of these two groups
distinct. However, the variation between individual parti-
cipants was larger than the variation between the two
groups (Fig. 5b). Although the participants spent little time
in transportation, it was a significant site of exposure to both
pollutants particularly for the urban participants.

Figure 6 shows the average pollutant dose per minute the
participants inhaled during different activities, calculated
with the three methods A, B and C. As method B integrates
one generic inhalation rate for all activities, the average
dose is proportional to the pollutant concentrations the
participants were exposed to during the different activities.
The home environment had the biggest impact on CO dose
which was probably caused by indoor emission sources
such as cooking and heating. The average NOx dose was
highest during street-level transportation possibly due to
strong sources in the traffic environment. When inhalation
rates were taken into account (method C), the maximum

dose was received during active modes of transport (walk-
ing, cycling) due to the increased physical activity levels
and inhalation rates. It is therefore likely that the inhaled
dose would be significantly underestimated in more active
subgroups of the population.

Discussion

Exposure misclassification of air pollution remains one of the
biggest limitations of epidemiological research on the health
impacts of air pollution, preventing the discipline to move
from general associations to specific ones. In the absence of
personal/indoor measurements, health studies have mainly
relied on available outdoor monitoring network data to assess
short-term exposures [21]. This paper demonstrates a new
methodological framework where novel sensor technologies
and advanced computational methods offer a paradigm shift
to estimate activity-weighted air pollution exposure in large-
scale health studies.

In total, 60 validated personal air quality platforms with
miniaturised novel sensors that measure physical para-
meters, gaseous pollutants and particulate matter were
deployed to 251 participants of two established cohorts
residing in urban and peri-urban Beijing, China [13]. Time-
activity-location classifications were derived automatically
using GPS coordinates, accelerometry and background
noise levels collected with the personal monitors. Because
such auxiliary data can be collected with widely used
smartphones from a large number of the population [22],
this technique potentially provides unobtrusive means of
enhancing epidemiological exposure data at low cost
minimising participant burden.

The relatively sedentary elderly participants spent ~90%
of their time at home and as little as 2% outdoors, which is
in line with previous research in developed countries [9].
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The home environment was, therefore, the major con-
tributor to overall exposure, and an important modifier of
personal concentrations for all investigated air pollutant
species. Exposure differences between the two participant
groups were attributed partly to the variation in domestic
energy use e.g., in winter the urban building stock in China
relies on centralised gas heating system, while traditional
biomass and coal stoves remain the key emission source for
heating and cooking in peri-urban areas. However, the
exposure variability between participants was larger than
the variability between the two groups, stressing the need to
go beyond current methodologies to estimate population
exposures.

We found low correlations and substantial differences in
the magnitude estimated from outdoor and personal air
quality measurements. An important implication for health
studies is that relying on outdoor measurements could
introduce significant error and bias in health models
depending on individual pollutants’ chemical reactivity and
strength of local emission sources. The magnitude of the
health effects derived from improved exposure estimates is
likely to be different than previous estimations using out-
door measurements as metrics of exposure [3]. The extend
of misclassification is hard to quantify as it varies sig-
nificantly with season and location.

Traffic-related pollutants, such as NO2 and PM2.5, are
generally highly correlated when measured at coarse spatial
and temporal scales, making it challenging to distinguish
a causal link between a single pollutant and a specific health
outcome [4]. A major advantage of the proposed metho-
dology is that novel sensor technologies enable the

collection of personal measurements at high spatial resolu-
tion, and therefore significantly reduce the correlation
between individual air pollutants observed at monitoring
stations.

Further work matches these estimations with detailed
medical biomarkers to draw more reliable associations
between air pollution exposure and health impacts [13]. This
paper focused on a participant sample with specific personal
and socio-economic characteristics that resulted in generally
low physical activity. However, the demonstrated approach is
applicable in diverse geographical settings and subgroups.
The expectation is that the dose misclassification will likely
be larger in subpopulations that are more physically active,
such as children, increasing the importance of the proposed
methodology in disentangling the complex mechanisms of
health risks and individual susceptibility to air pollution.
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