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Abstract
Background There is substantial interest in using networks of lower-cost air quality sensors to characterize urban population
exposure to fine particulate matter mass (PM2.5). However, sensor uncertainty is a concern with these monitors.
Objectives (1) Quantify the uncertainty of lower-cost PM2.5 sensors; (2) Use the high spatiotemporal resolution of a lower-
cost sensor network to quantify the contribution of different modifiable and non-modifiable factors to urban PM2.5.
Methods A network of 64 lower-cost monitors was deployed across Pittsburgh, PA, USA. Measurement and sampling
uncertainties were quantified by comparison to local reference monitors. Data were sorted by land-use characteristics, time of
day, and wind direction.
Results Careful calibration, temporal averaging, and reference site corrections reduced sensor uncertainty to 1 μg/m3, ~10%
of typical long-term average PM2.5 concentrations in Pittsburgh. Episodic and long-term enhancements to urban PM2.5 due to
a nearby large metallurgical coke manufacturing facility were 1.6 ± 0.36 μg/m3 and 0.3 ± 0.2 μg/m3, respectively. Daytime
land-use regression models identified restaurants as an important local contributor to urban PM2.5. PM2.5 above EPA and
WHO daily health standards was observed at several sites across the city.
Significance With proper management, a large network of lower-cost sensors can identify statistically significant trends and
factors in urban exposure.
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Introduction

Both long- and short-term exposure to the “fine” fraction of
atmospheric particulate matter (particles <2.5 μm in dia-
meter, PM2.5) are associated with negative health outcomes
[1–5]. In the United States, the concentration of PM2.5 is

regulated based on data from a handful of relatively high-
cost regulatory-grade monitors located in each city. How-
ever, these sparse monitoring networks are not sufficient to
capture the spatial distribution of pollutant concentrations
within an urban area [6], and recent evidence suggests that
higher health risks may be associated with local (<1 km)
and neighborhood-scale (1–10 km) variations in PM2.5 [5].

Recently, there has been substantial interest in deploying
denser networks of lower-cost air quality monitors to better
characterize the factors driving local pollution and the
exposure of urban populations to PM2.5 [7–16]. However,
an ongoing concern with lower-cost PM2.5 monitors is their
uncertainty, which is typically larger than regulatory-grade
instruments. Lower-cost PM2.5 monitors typically use opti-
cal measurements, which are sensitive to changes in the
aerosol scattering coefficient due to hygroscopic growth.
This can lead to overestimation of PM2.5 mass when
humidity is high. Lower-cost optical PM2.5 sensors are also
unable to detect particles under 300 nm, leading them to
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potentially underestimate PM2.5 mass. However, several
studies have shown that careful calibration and corrections
can reduce the errors between lower-cost sensors and
regulatory-grade instruments [7, 16, 17]. While many stu-
dies have focused on the development and evaluation of
lower-cost PM2.5 monitors [7, 12, 14, 18], few studies have
investigated how data from networks of these lower-cost
monitors can be used to examine local air quality issues
[10, 13, 19–21].

To reduce population exposure, the complex interplay of
multiple factors that lead to elevated PM2.5 concentrations
need to be characterized, quantified, and ultimately, con-
trolled. A common approach to characterize intra-urban spatial
patterns of PM2.5 concentrations is saturation filter sampling,
which is often used to develop land use regression (LUR)
models [6, 22–25]. However, filter samples collected over
multiple days or weeks can mask the influence of sources that
are significant on subdaily or even hourly time scales. An
important advantage of lower-cost monitors over filter sam-
pling is the ability to perform long-term, yet time-resolved
(hourly or faster) measurements at a large number of locations.
Time-resolved measurements allow stratification of the data
by time of day or wind direction, enabling better under-
standing of the effects of different modifiable and unmodifi-
able factors on urban concentrations. Modifiable factors are
those that can be controlled by regulatory action, such as
emissions sources (e.g., industry, traffic, restaurants), the built
environment, and human behavior. Unmodifiable factors
include meteorology (temperature, RH, wind direction,
boundary layer height, etc.) as well as topography.

Lenschow et al. [26] proposed a framework in which the
concentration of pollutants in any location is the sum of the
regional background, the urban increment, and
neighborhood-scale sources. Properly characterizing the
regional background is key to understanding the magnitude
of the urban increment, which is defined as the difference in
concentration between a rural site and an “urban back-
ground” location [27]. This can be challenging because
urban emissions and industrial sources often influence the
concentrations in the surrounding “rural” areas where
background measurements are made; this can lead to
underestimating the urban increment [27]. A dense network
of lower-cost sensors could address these limitations by
making simultaneous measurements at multiple background
sites. In addition, time-resolved measurements allow peri-
ods of urban or industrial influence on background sites to
be excluded from the analysis.

This paper describes PM2.5 measurements from a dense
network of lower-cost air pollution monitors operated over
two years at 64 sites in and around Pittsburgh, Pennsylva-
nia. Pittsburgh, like many urban areas around the world, is
impacted by vehicular emissions, local commercial activ-
ities (e.g., restaurants), and regional transport. It is also

impacted by nearby major industrial facilities. First, we
characterize the combined uncertainty of the measurements
due to the sensors and the sampling strategy, especially as it
relates to long-term exposure measurements. We then
quantify the spatial patterns of PM2.5 pollution and leverage
the time-resolved data to investigate the contributions of
different sources to urban PM2.5. This analysis demonstrates
how dense, time-resolved lower-cost monitor networks can
be used to quantify the modifiable factors driving pollutant
concentrations in urban areas.

Experimental methods

Study area

A network of lower-cost sensors was deployed in Pittsburgh
and surrounding suburban and rural areas (Fig. 1). Pittsburgh
is a city located in southwestern Pennsylvania, USA, and has a
population of 0.3 million with an additional 2 million people
in the surrounding metropolitan area. The city is characterized
by complex topography at the confluence of three major river
valleys (Allegheny, Monongahela, and Ohio Rivers). The
Pittsburgh region ranks among the 10 highest annual average
PM2.5 concentrations in the United States [28]. US Steel’s
Mon Valley Works: Clairton Plant, the largest metallurgical
coke production facility in North America, is located 17 km
south of the city of Pittsburgh.

Downtown

Clairton Plant10 km

ACHD sites
Airport
Urban
Suburban/Rural
Near Clairton PlantPittsburgh

Pennsylvania

Fig. 1 Lower-cost monitoring network in the Pittsburgh, PA
region. The black outlines show the Pittsburgh city limits. The purple
square indicates the location of the US Steel’s Mon Valley Works:
Clairton Plant, a large industrial site. The triangles show the locations
of the five regulatory PM2.5 monitoring sites operated by the Alle-
gheny County Health Department (ACHD). The green star shows the
Allegheny County Airport (AGC), the location at which the meteor-
ological measurements were made. The blue, red, and orange points
show urban, suburban/rural, and near Clairton Plant monitoring sites,
respectively. The inset shows the location of Pittsburgh in the state of
Pennsylvania in the Northeast US.
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Measurements

The Center for Atmospheric Particle Studies at Carnegie
Mellon University built an urban-scale network using the
lower-cost Real-time Affordable Multi-Pollutant (RAMP)
monitors (manufactured by formerly SenSevere, now part
of Sensit Technologies, Valparaiso, IN), which have been
described in detail elsewhere [7, 19, 29, 30]. The RAMP
network provides spatiotemporally resolved data from sites
in and around Pittsburgh, PA (Fig. 1). At the time of
writing, RAMPs had been deployed at 69 sites. Of these,
five sites were excluded from this analysis due to limited
data collection. We therefore consider data from a network
of 64 RAMPs. The network was deployed starting in late
July 2016; this manuscript considers PM2.5 data collected
through March 2019. Given the deployment and main-
tenance schedules, the sampling period at the individual
RAMP sites ranged from 11 to 563 days, with an average
length of 284 days (a complete list of sensors can be found
in Table S1). A photograph of a typical RAMP setup can be
seen in Fig. S1. Sites were chosen to characterize pollution
concentrations in a range of different environments, such as
suburban, downtown, near busy roadways, and urban
background, and to span various land-use characteristics
(traffic, restaurants, and proximity to industrial sources)
commonly used to create LUR models.

As previously described [7, 29, 30], the RAMPs include
five gas sensors (CO, CO2, NO2, either O3 or VOCs, and
either SO2 or NO), and were deployed with one of two
external optical PM2.5 sensors: the Met-One Neighborhood
Particulate Monitor sensor or the PurpleAir PM2.5 monitor.
This manuscript focuses on data from the PM2.5 sensors.
Malings et al. [7] describes an extensive evaluation of the
optical PM2.5 monitors used here, including the develop-
ment of a correction based on colocations with Beta
Attenuation Mass Monitors (BAM, Met One Instruments,
Grants Pass, OR, USA), a federal equivalent method,
operated by the Allegheny County Health Department
(ACHD). The corrections account for hygroscopic growth,
particle mass below the instrument detection limit of 300
nm, and sensor drift. All data discussed here has been
corrected to BAM-equivalent values using the algorithm
(Eqs. (4) & (5)) in Malings et al. [7]. Malings et al. [7] did
not find significant differences between the two types of
PM2.5 sensors (Met-One Neighborhood Particulate Monitor
sensor or the PurpleAir PM2.5 monitor) and we have treated
them the same in this analysis. The data were collected four
times per minute and then averaged to time scales from 1 h
to the entire multiyear dataset for this analysis.

Wind direction data were measured at the Allegheny
County Airport (AGC, a small regional airport between
Pittsburgh and the Clairton Plant, shown in Fig. 1. It is
located 7.6 km northwest of the Clairton Plant and 10 km

south of the Carnegie Mellon University Campus), and were
retrieved from the National Oceanic and Atmospheric
Administration’s Climate Data Online database [31]. Local
topography, such as street canyons and the river valley, will
impact the wind direction at RAMP sites. However, the data
from AGC are a reasonable estimate of regional wind
direction—the data from this site were consistent with those
from other sites in the Pittsburgh area (See Fig. S2).

Uncertainty analysis

Uncertainty is a key issue with drawing robust conclusions
on air pollution exposure from lower-cost sensor data. We
accounted for two types of uncertainty: (i) instrument
uncertainty associated with the sensors themselves and (ii)
sampling uncertainty caused by noncontinuous and non-
simultaneous deployments. In addition, we estimate the
reduction in uncertainty when concentrations from an
individual RAMP are averaged over time and when data
from multiple RAMP monitors are averaged together.

Instrument uncertainty

This work extends the analysis of Malings et al. [7] to
evaluate sensor performance, covering more sensors and the
period of this study. Instrument uncertainty was determined
by comparing measurements from the RAMPs colocated at
two different regulatory monitoring sites operated by
ACHD over a ~2-year period. One site was in an urban
neighborhood (Lawrenceville, AQS#42-003-0008), and the
other was downwind of the Clairton Plant (Lincoln,
AQS#42-003-7004).

One RAMP monitor was colocated at each of these two
ACHD sites for the entire study period. For more limited
periods (up to 100 days) 38 RAMP monitors were colocated
at one of the ACHD sites. This was done on a rolling basis
with different RAMPs to continually evaluate instrument
performance. Therefore, our dataset allows us to both
evaluate the effects of different averaging times on RAMP
monitor performance, as well as intercompare performance
across a set of RAMP monitors.

We quantified the instrument uncertainty as the 75th
percentile of the absolute percent error between the PM2.5

measurements of the two long-term pairs of colocated
RAMP and BAM monitors as a function of averaging time,
ranging from 1 h to a year. This conservative approach
assumes that all the variance between the two measurements
is due to the RAMPs, while the BAM monitors are mea-
suring the true value. However, the EPA’s national preci-
sion estimate for BAM measurements exceeds 20% for
daily average values [32].

Since the colocation datasets were typically longer than
the different averaging periods, we randomly subsampled
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the data from each RAMP and calculated the absolute
percent error relative to the BAM. This subsampling
approach creates a distribution of comparisons for a single
RAMP during a given averaging period. The lines in Fig. 2a
shows the 75th percentile of the absolute percent error
(henceforth, “uncertainty”) for the two long-term coloca-
tions. We compare the uncertainties of the two long-term
colocations to all 40 RAMPs (the two long term and 38
additional limited periods, shown in the box-whisker plots
in Fig. 2a), to ensure their uncertainties are similar. At
averaging times of at least 10 days (240 h), the uncertainty
of the two long-term colocated RAMPs are higher than

most of the others, indicating that our estimate is
conservative.

At 1-h resolution, the uncertainty of the RAMP sensors is
large, between 40 and 50%, which correspond to 4-5 μg/m3

for the average PM2.5 concentration in Pittsburgh. However,
the uncertainty decreases with averaging time. For about
half the colocated RAMPs, averaging one day of data
reduced the uncertainty to 20% or less. Averaging 10-days
of data reduces the uncertainty for 75% percent of the
colocated RAMPs to 11% or less, and reduces the MAPE
(mean absolute percent error) for 90% of the colocated
RAMPs to 20% or less. There is little additional reduction
in uncertainty after about 10-days of averaging. As we will
discuss, this level of performance is sufficient to quantify
spatial patterns in Pittsburgh. The data in Fig. 2a demon-
strate that although the lower-cost sensors can be noisy at
short time scales and are sensitive to the effects of humidity
on particle growth, averaging over time reduces these
effects, which do not appear to create long-term biases. This
performance is similar to that reported by Malings et al. [7].

Instrument uncertainty can be further reduced by aver-
aging data from multiple RAMPs operating simultaneously
in similar urban environments. This reduction was esti-
mated by bootstrapping data collected using 11 RAMPs that
were simultaneously colocated at one of the ACHD sites for
a 17-day period. The results from the analysis are shown in
Fig. S3. The reduction in uncertainty by averaging data
from multiple RAMPs together scales with 1= ffiffi

n
p , where n is

the number of sensors.

Sampling uncertainty

A second source of uncertainty is the sampling uncertainty,
a result of RAMPs not operating continuously at each site
over the entire study period. Therefore, the average con-
centration from each RAMP might not be representative of
the long-term average at that site, because of daily and/or
seasonal differences in PM2.5.

To correct for noncontinuous sampling, we used data
from BAM monitors operated by ACHD at sites not
dominated by local sources as a reference to temporally
adjust for any changes in background pollution levels using
the approach of De Nazelle et al. [8]. The hourly RAMP
measurements were multiplied by the ratio of the long-term
average of the ACHD sites, Cann to the average hourly
ACHD BAM concentration, Ct,,

CRAMP t ¼ CRAMP orig � Cann

Ct
: ð1Þ

For example, if the hourly average of concentrations at the
ACHD sites (Ct) is larger than the ACHD long-term average
background concentration (Cann), the reference site correc-
tion ratio of Cann

Ct
would be less than one. This correction
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reduces the influence of episodic, daily, and seasonal
differences on estimated long-term average concentrations
when not all sites were sampling simultaneously.

To quantify the reduction in uncertainty using the
reference-site correction, we compared averages with and
without the correction applied to measurements from five
ACHD monitoring sites. At each averaging period length,
we compared the average concentration of the entire dataset
at a given location to that of subsamples from that site.
Because random sampling is more likely to approximate the
true average than the average of continuous time periods,
we used a “sliding window” technique for a more con-
servative estimate of the sampling uncertainty. For example,
for a one-day average we started with the first 24 h of
measurements. Then, we would slide the 24-h “window”
forward 1 h, such that the window started at the second
hour. Each hourly ACHD measurement in the window was
multiplied by Cann

Ct
, then the values in the window were

averaged and compared with the long-term average. This
procedure was repeated across the entire colocation period
for each length of averaging period to create several thou-
sand comparisons for each site.

Figure 2b shows the 75th percentile of the absolute
percent error between the subsamples estimated average for
different averaging periods and the true long-term average
for that site, for both uncorrected data and data using the
reference site correction. As expected, in both cases the
sampling uncertainty decreases with increasing averaging
period length and the reference site correction reduces the
sampling uncertainty. For example, for sampling periods
between 40 and 100 days, the average sampling uncertainty
of the uncorrected data was ~2 μg/m3 (or roughly 20% of
long-term average PM2.5 concentrations in Pittsburgh). The
reference site correction reduces this sampling uncertainty
(Fig. 2b) by about a factor of 10 to 0.3 and 0.2 μg/m3 for 40-
and 100-day averages, respectively.

Total uncertainty

To estimate longer-term average concentrations, we applied
the reference-site correction and averaged all data collected
at given site during the period of interest. We apply a
minimum cutoff of 240 h (10 days-equivalent) of data, not
necessarily continuous, when calculating averages. Fifty-
one sites had more than 4800 h (200 days) of data. The
instrument and sampling uncertainty were combined in
quadrature to estimate the total uncertainty:
Utotal ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

intrument þ U2
sampling

q
.

The total uncertainty for the long-term average values for
each of the 64 RAMP sites ranged from 0.75 to 1.13 μg/m3,
with an average of 0.92 μg/m3. The uncertainty of differ-
ences in concentrations between two RAMPS was also
calculated as the uncertainty of the two values combined in

quadrature: Ui�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

i þ U2
j

q
. In this paper, values given

after the “±” symbol indicate the uncertainty of the reported
value, not the variability or standard deviation of the data.

Statistical tests

We used two different nonparametric statistical tests to
compare differences in distributions. The Wilcoxon signed-
rank test was used for paired samples. The Mann–Whitney
U test was used to compare unpaired distributions with
unequal sample sizes. To confirm the suitability of this test
to compare populations with substantially different sample
sizes, we took 5000 random samples the same size as the
smaller set from the larger set (n1= 859 & n2= 4142; n1=
929 & n2= 5456). In cases where we report a statistically
significant result, the differences between all subsamples
were significant to 95% confidence level for each random
sample.

Background concentrations

In order to estimate the contribution of local sources to
concentration differences within the city, we need to sub-
tract the regional background concentrations [26] instead of
applying a reference site correction. To do this, we used
data from nine RAMP sites in rural/suburban locations (the
red points in Fig. 1). The regional background at a given
hour was defined as the median PM2.5 concentration mea-
sured at all the background sites operating during that hour.
Periods when background sites were influenced by emis-
sions from the city or industrial sources were largely
eliminated by using the median value of the backgrounds
site concentrations. To confirm this, we compared the
results when excluding periods when the wind direction was
within 20° of the bearing between a background site and the
Clairton Plant or downtown Pittsburgh. There was no dif-
ference in the calculated regional background value
between these two cases. Therefore, we included all data in
our calculation of the background concentration.

LUR models & land-use variables

To investigate the contribution of different modifiable
and unmodifiable factors to the spatial pattern in measured
PM2.5 concentrations, we built LUR models using measured
PM2.5 concentrations and land-use data from GIS databases
[33]. These variables included land use type, traffic, popu-
lation density, restaurant density, and proximity to industrial
point sources (see complete list in Table S2). Traffic-related
variables were extracted for circular buffer sizes from 25 to
1000 m, point source-related variables were calculated at
buffer sizes between 1000 and 30,000 m, and all other land
use variables at buffer sizes from 50 to 5000 m. In total, we
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included 30 land use categories (totaling 110 variables at
different buffer sizes).

We followed the ESCAPE protocol to build LUR models
[34]. The long-term average PM2.5 concentrations were
used as the dependent variables in stepwise multiple linear
regression, and the land-use variables were used as the
predictors. Predictor variables are only added to the model
if they increased the R2 by ≥0.01, if the correlation p value
was statistically significant (p < 0.05), if the sign of the
coefficient agreed with expected influence on concentra-
tions, and if its addition to the model did not change the
sign of previously added variables. Once a variable at a
specific buffer size was selected, its value was then sub-
tracted from those of larger buffer sizes, while smaller
buffer sizes were removed. For example, if traffic density at
a 300 m buffer was selected, the traffic densities at 25, 50,
and 100 m would be excluded, and traffic density for the
300 m buffer size would be subtracted from those at 500
and 1000 m.

The models were assessed by performing leave-one-out
cross validation (LOO-CV). LOO-CV reduces the variance
and bias compared with k-fold cross validation for smaller
datasets [35]. We report two metrics of the LUR models:
Mean-square-error-R2 (MSE-R2, which describes how well
the relationship between measurements and predictions
follows the 1:1 line), and MAPE for both the overall and
LOO-CV evaluation.

Results and discussion

Long-term average PM2.5 concentrations

Figure 3 shows the long-term average PM2.5 concentrations
measured at the 64 RAMP sites, which ranged from 7.7-
11.4 μg/m3. Data from urban sites are plotted in Fig. 3a;
Fig. 3b shows sites near the Clairton Plant. The horizontal
red lines in Fig. 3 indicate the regional background PM2.5

concentration, 8.2 ± 0.4 μg/m3, which is somewhat higher
than the value at a very rural site operated by the PA
Department of Environmental Protection located in a large
state park 35 km west (upwind in the prevailing wind
direction, see Fig. S4) of Pittsburgh (7.7 μg/m3, Florence
AQS#42-125-5001). This difference suggests that there is
some contribution from local sources to the PM2.5 con-
centrations at sites in the RAMP network used to define the
regional background, highlighting the challenges with
defining background [27].

Similar to previous studies [36, 37], we find that PM2.5

levels in the Pittsburgh region are dominated by regional
transport rather than local sources. The regional background
contributes between 72 and 100% of the concentrations at
the 46 urban RAMP sites.
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Fig. 3 Long-term average PM2.5 concentrations in the Pittsburgh,
PA area. Panel (a) shows urban sites and (b) shows sites near
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with longitudes of each site on the maps in lower panels. The
error bars show the combined instrument and sampling uncertainties.
The horizontal red line and shaded area corresponds to
regional background PM2.5 concentration and uncertainty (8.2 ± 0.4
μg/m3), defined based on the rural/suburban sites (red points in Fig. 1).
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Figure 3b illustrates the dramatic effect that a large
industrial source can have on local PM2.5 concentrations.
The Clairton Plant is the largest point source in Allegheny
County, emitting 33% of the primary PM2.5 listed in the
EPA’s 2017 National Emissions Inventory for the county
[38]. At sites immediately upwind (west) of the Clairton
Plant, long-term average PM2.5 concentrations are essen-
tially the same as background levels (Fig. 3b). However, at
sites immediately downwind (east) of the Clairton Plant the
long-term average PM2.5 concentrations are 2-3 µg/m3

above background levels. These are some of the highest
PM2.5 levels measured in the Pittsburgh region.

We also used the RAMP data to quantify the contribution
of local sources, including the urban increment [26] and
neighborhood-level sources. Figure 4a shows boxplots of
the long-term average concentrations at sites categorized
based on land use: background, urban, or industrial. The
average concentration at all urban sites was 9.6 ± 0.13 µg/
m3. This is the sum of the regional background, the urban
increment, and neighborhood-level sources [26]. To isolate
the urban increment, which is the PM2.5 contribution from
all of the sources spread across the city, we first removed
the influence of Clairton Plant from the data measured at 31
urban sites without high traffic or restaurant density. This
was done by excluding periods from our long-term averages
when wind directions were within 20° of the bearing
between a given site and the Clairton Plant. At these 31
urban sites, the long-term (Clairton-excluded) average
PM2.5 concentration was 9.1 ± 0.16 µg/m3 (Fig. 4c). We
define the difference between this value and the regional
background as the urban increment. This difference is 0.89
± 0.43 µg/m3, which is 11% of the regional background.

We also used the RAMP data to estimate the neighbor-
hood or hyperlocal sources at sites with high restaurant and
traffic density (defined as in the top 15% in either of these
categories of land use value in the city). These sites had an
average (Clairton-excluded) PM2.5 concentrations of 9.6 ±
0.24 µg/m3. This means that, at these high activity sites,
hyperlocal sources contributed, on average, an additional
0.5 ± 0.47 µg/m3 (Fig. 4c) in PM2.5 mass above a typical
urban site. The urban increment also includes the con-
tribution from these sources (which, in addition to smaller
sample sizes, could explain why this difference was not
statistically significant, p ¼ 0:12, Mann–Whitney U test).
This analysis illustrates how a network of lower-cost sen-
sors allows us to separate different sources of PM2.5, and
reduces the uncertainty in the average person’s exposure to
outdoor concentrations in different urban areas.

We used both the density and temporal resolution of the
RAMP network to investigate whether the spatial pattern in
PM2.5 concentration varied by time of day. We find the
spatial pattern of long-term average PM2.5 concentrations
persists across the network when the hourly RAMP data are
sorted by time of day; the Spearman rank-order correlation
between the average concentration during a given period of
the day and the long-term average for the same site was
high (Spearman rho of 0.82–0.94, Fig. S5). This indicates a
consistent spatial pattern of persistent enhancements: sites
with high long term-average concentrations are high
throughout the day. This kind of insight can inform expo-
sure studies that take into account peoples’ movements
during a typical day.

Sources that have previously been identified as important
contributors to the urban increment and neighborhood
enhancement in Pittsburgh include vehicle emissions, res-
taurants [37], and industrial emissions, such as from
Clairton Plant [39]. In subsequent sections, we use the
RAMP network to systematically explore the contribution
of each of these source categories to PM2.5 concentrations
across the Pittsburgh region

Quantifying the contribution of a major industrial
source

Clairton Plant has been well-documented as an important
source of PM2.5 in the Pittsburgh area [39–41]. In this
section, we illustrate an approach to quantify the contribu-
tion of similar major industrial sources across a broad urban
environment while addressing the uncertainty of measure-
ments from lower-cost sensors. We further show that the
RAMP network can be used in ways that integrated (typi-
cally 24-h or biweekly) filter measurements and centralized
real-time measurement sites cannot.

We leveraged both the density and the time resolved
nature of the RAMP network to quantify Clairton Plant’s
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influence across the entire city. We first sorted the hourly
PM2.5 data collected at each site into two categories: mea-
surements made when the site was downwind from the
Clairton Plant (defined as when the wind direction was
within 20° of the bearing between the RAMP location and
the Clairton Plant) and data from all other periods. Figure 5a
shows an example of this analysis for one site ~17 km north
of the Clairton Plant (star on Fig. 5b) that is representative

of residential areas impacted by the Clairton Plant plume.
At this site, the long-term average PM2.5 concentration was
7.4 ± 0.8 µg/m3 for periods when wind from the Clairton
Plant were excluded, essentially the same as the regional
background. However, when the site was downwind from
the Clairton Plant the average concentration at this site was
9.6 ± 1.1 µg/m3. The difference, 2.2 ± 1.4 µg/m3, is statisti-
cally significant (p ¼ 5:5x10�28, Mann–Whitney U test)
and indicates that the Clairton Plant can have a substantial
impact on local PM2.5 concentrations during periods when
sites are downwind. We call this average increase in con-
centration when a site was downwind of the Clairton plant
the episodic Clairton enhancement.

We repeated the analysis shown in Fig. 5a for every
RAMP site in the city. Figure 4b shows boxplots of average
concentrations for the two different wind conditions. The
uncertainty of the episodic Clairton enhancement measured
at individual sites was often similar in magnitude to the
measurement uncertainty, one of the limitations of lower-
cost sensors. However, the dense network allowed us to
reduce this uncertainty by averaging data from all 46 urban
RAMP sites. On average, when a site was downwind from
the Clairton Plant the PM2.5 concentration was 11.2 ± 0.3
μg/m3 versus 9.6 ± 0.2 μg/m3 when the wind was not from
Clairton. Therefore, the average episodic Clairton
enhancement at the 46 urban RAMP sites was 1.6 ± 0.36 μg/
m3. Dense networks also mean that there is a sufficient
sample size to perform statistical tests, which confirm that
the impact of Clairton Plant is statistically significant
(p ¼ 9:3x10�6, Wilcoxon signed rank test). This illustrates
how robust conclusions on the influence of a particular
source can be drawn by averaging data across a dense
network of lower-cost sensors.

Using data collected in 2001–2002, Chu et al. [39] per-
formed a similar analysis for a single site located in
Schenley park adjacent to the Carnegie Mellon University
campus during the Pittsburgh Air Quality Study. This site is
located 17 km NNW from the Clairton Plant. They also
reported that the Clairton Plant had a large impact on short-
term PM2.5 concentrations. For example, while Chu et al.
[39] did not explicitly calculate the contribution from
Clairton Plant, their figures suggest that the average PM2.5

concentration was frequently greater than 20 µg/m3 when
the Schenley Park site was downwind of the Clairton Plant,
compared with a long-term average concentration of 15.5
µg/m3. Data from the RAMP network, collected more than
15 years later, indicate much lower concentrations and less
impact of Clairton across a broad range of sites. For
example, at the RAMP site on the Carnegie Mellon campus,
the average concentration excluding periods when it is
downwind of Clairton Plant is 9.1 ± 0.9 µg/m3, compared
with 10.5 ± 1.0 µg/m3 when the site is downwind of
Clairton Plant. The episodic Clairton enhancement at this
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site of 1.4 ± 1.4 µg/m3 is statistically significant (
p ¼ 4:1x10�11, Mann–Whitney U test). The reduction of
the episodic Clairton enhancement relative to the Analysis
of Chu et al. [39] highlights the effectiveness of regulations.
The dense network of sites in the RAMP network allowed
our analysis to be done across a much broader spatial
domain then the Chu et al. [39] analysis.

While the analysis shown in Fig. 5a indicates that the
Clairton Plant can make a large contribution to short-term
concentrations, data from the RAMP network can also be
used to estimate the contribution of Clairton to the long-
term average concentration (across all time periods). We did
this by calculating the difference between the long-term
average including all wind directions and the average after
excluding periods when each site is downwind of Clairton
Plant. On average, the Clairton Plant contributes 0.3 ± 0.2
μg/m3 to the long-average PM2.5 concentrations at the 46
urban the sites in the RAMP network, though it varies
widely by site (Fig. 5b). The enhancement depends, in part,
on the fraction of time a site is downwind of the Clairton
Plant. The magnitude of the long-term Clairton increment at
individual sites was often smaller than the measurement
uncertainty. However, the density of the RAMP network
provides a sufficient sample size to conduct statistical tests
to confirm that this average difference is significant (p ¼
4:0x10�9; Wilcoxon signed rank test).

Unlike the analysis of Chu et al. [39], which was per-
formed at one central location, the density of the RAMP
network provided insight into spatial patterns and the fac-
tors that cause the intra-urban variation of the influence of
Clairton Plant. Certain sites appear to be more influenced by
the emissions from the Clairton Plant, in part due to local
topography. For example, Fig. 5b shows a map of the long-
term Clairton increment across all urban sites superimposed
on the elevation above sea level. The long-term Clairton
increment was greatest at the eastern Pittsburgh city limits,
along a corridor north of the Clairton Plant. When the wind
conditions are right, the topography appears to create a
channel, which directs the plume from the Clairton Plant to
travel downriver and up this corridor. Identifying this kind
of spatial pattern requires a dense network of sites and
would not be possible using only the measurements from
the sparse network of ACHD regulatory monitors.

Quantifying the contribution of traffic and
restaurants

We also used the RAMP data to investigate sources
responsible for the hyperlocal enhancement over the urban
increment. We leverage the temporal resolution of RAMP
data to remove measurements made when the site was
downwind from the Clairton Plant (defined as when it was
within 20° of the bearing between the RAMP location and

the Clairton Plant) to investigate sources, such as traffic and
restaurants, that are found in major cities around the world.
We then fit an LUR model (Table S3) to the Clairton-free
data using the predictor variables listed in Table S2.

The best fit model includes three variables: the density of
PM-emitting point sources (1000 m), the density of PM-
emitting point sources weighted by emissions (5000 m), and
the housing density (300 m), listed in order of the highest
correlation (see Table S4). The buffer sizes of point source
predictor variables within the city are outside of the range of
Clairton Plant; these variables include institutions like uni-
versities and hospitals as well as smaller industrial facilities.

The model intercept was 8.1 μg/m3, similar to the estimated
regional background concentration of 8.2 μg/m3. The LUR-
predicted city average PM2.5 concentration was 8.8 μg/m3.
Fig. S6a shows the concentration surface predicted by the
LUR model over the city of Pittsburgh; Figs. S6b-d shows the
distributions of the predictors over the city. This model
describes about half of the measured variability in the local
PM2.5 (MSE-R2 of 0.52 and a MAPE of 5.1%). This is
comparable to performance of similar intra-urban LUR mod-
els in the literature; Hoek et al. [22] and Liu et al. [42] review
PM2.5 LUR studies from the UK, Europe, North America, and
China. The number of predictor variables in these studies
range from 2 to 6, and R2 values range from 0.17 to 0.95.

We also fit LUR models to different subsets of the data:
seasonal averages and averages over specific times of day
(Table S4). The MSE-R2 ranged from 0.29 to 0.65 and the
MAPE ranged from 4.2 to 8.6%. Most predictor variables
were associated with PM2.5-emitting point sources, though
commercial land use, population density, and housing
density were also found to be important. The models that
performed the best were fit to daytime average data (8AM-
8PM). During these periods, restaurant density was the most
highly correlated predictor variable. This points to the
importance of emissions from restaurants driving local
patterns in PM2.5 concentrations in Pittsburgh.

Traffic was not identified as a statistically significant
parameter in our LUR model fitting. This was true even for
models fit to data subsampled from rush hour periods,
despite the immediate proximity of several RAMP sites to
major highways, busy urban roads, and bus corridors. While
previous studies have identified traffic as an important
contributor to spatial patterns of PM2.5 composition in
Pittsburgh [37, 43, 44, 45], others have shown that overall
urban PM2.5 mass concentrations do not decrease with
distance from roads [46].

Daily concentrations compared with EPA and WHO
standards

We also used the RAMP network to investigate the fre-
quency of high-concentration events. For daily averages,
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only days with data with at least 18 h out of 24 were
included, which is the practice of the US EPA. Figure 6
shows the number of days per year that the daily average
concentration measured at the 64 RAMP sits exceeded two
different short-term standards: the 24-h World Health
Organization’s (WHO) standard of 25 µg/m3 (Fig. 6a) and
the U.S. EPA 24-h National Ambient Air Quality Standard
(NAAQS) for PM2.5 of 35 µg/m3 (Fig. 6b). Daily average
concentrations are more uncertain than the long-term aver-
age concentrations (as discussed previously); the one-day
uncertainty is 1.75 µg/m3 for the typical concentration in
Pittsburgh, which is 7 and 5% of the WHO and EPA
standards, respectively. To compare data on a consistent
basis, we calculated the fraction of days when the con-
centrations exceeded these standards during each sampling
period, then applied it to estimate the number of days per
year that exceeded a given threshold.

Fifty-eight sites in the RAMP network recorded daily-
average concentrations that exceeded the WHO threshold of
25 µg/m3. Of these 58 sites, the number of exceedances
varied from one day per year to 27 days per year (mean:
5.8 days per year). Only 22 sites had average daily

concentrations that exceeded the daily average NAAQS of
35 µg/m3. The number of exceedances of the EPA standard
varied between 1 and 7 days per year (mean: 1.9 days per
year). During 2001–2002, Chu et al. [39] found that 24 of
322 days (7.5%) had 24-h average concentrations exceeding
35 µg/m3 at the Carnegie Mellon site. During this study, we
did not record any days with concentrations exceeding 35
µg/m3 at the Carnegie Mellon site, indicating the effec-
tiveness of emission controls implemented over the last two
decades. However, the RAMP network identified other
areas across the city that still require attention.

The sites that exceeded the EPA’s daily standard were
primarily near Clairton Plant and in the city’s east end
corridor discussed earlier (Fig. 5b); several other sites were
along the rivers and therefore may have been influenced by
local inversions. While the regulatory monitors (triangles in
Fig. 6) are located in some of the locations that experience
exceedances of the daily standards, there were no mea-
surements at many of the RAMP sites with daily averages
over the thresholds before we deployed the network. This is
an example of how lower-cost sensor networks could be
used to complement existing regulatory networks by filling
in spatial gaps, and how they can inform the placement of
future regulatory air quality monitoring stations by identi-
fying previously unmonitored urban locations that may
exceed ambient air quality standards.

Recommendations

Lower-cost sensors enable highly time-resolved, long-term
measurement of urban air pollution at a never-before-
possible spatial resolution and with modest ongoing main-
tenance. Despite the uncertainty of individual lower-cost
sensors, we demonstrate that measurements from networks
of these monitors can be used to robustly identify
patterns of PM2.5 within urban areas that other measurement
methods miss, and to quantify the contributions of modifi-
able factors to PM2.5 exposures across an urban area. Two
key aspects of the network that allow for this kind of ana-
lysis are the high temporal resolution and the network
density.

High time-resolution (1-h) measurements allow data to
be categorized by season, time of day, and wind direction
(which can vary throughout a single day). This allows
isolation of different modifiable factors, such as a large
industrial source. In contrast, these analyses are difficult to
perform with traditional integrated filter-based daily or
weekly samples, while the high costs of reference-grade
instruments that measure hourly PM2.5, like the BAM or
TEOM, prevent a dense network of measurements. In this
study, we leveraged time-resolved lower-cost sensor mea-
surements (in combination with sensor location) to isolate
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the influence of different modifiable factors. This has
allowed us to identify the influence of Clairton Plant, as
well as remove its effects in order to examine the impacts of
traffic and restaurants.

A dense spatial network of sites is also a key factor in
this analysis. The uncertainty of these measurements is too
high to draw conclusions from comparisons of individual
monitors. To reduce uncertainty, it is important to have
multiple sensors located in a given area or land-use category
of interest. By comparing averaged data from groups of
sensors, we quantified the contribution of the regional
background and the urban increment. The data from these
sensor networks can also be used to identify some of the
hyperlocal sources contributing to the urban increment
when coupled with readily-available meteorological data
and land-use characteristics. The density of the RAMP
network was also critical for constraining how large
industrial sites, topography, and meteorology influence
acute (24-h) exposures in Pittsburgh.

For future studies utilizing lower-cost sensors, we
recommend the following:

Uncertainty reduction

We demonstrate that the effect of relatively high uncertainty
on individual measurements can be managed by employing
multiple strategies. First, by careful calibration with reg-
ulatory grade monitors, as covered in detail by Malings
et al. [7]. Second, by deploying monitors for sufficiently
long sampling periods to allow data averaging (we used a
minimum length of 240 h, equivalent to 10 days, of data for
analysis of long term trends). Third, applying reference site
correction technique to reduce the uncertainty associated
with discontinuous and nonsimultaneous sampling
throughout the network. Finally, data from multiple sensors
at each land use type or within the same neighborhood can
be averaged together to reduce the uncertainty in the aver-
age concentration.

Network design

We systematically deployed sensors across a range of land
use types (urban background, urban core, near industrial,
near road, etc.) and deployed monitors at multiple sites with
similar land-use characteristics. Averaging data across
sensors deployed at similar sites allowed us to better con-
strain the influence of different modifiable factors. How-
ever, the limited number of sites with high traffic and high
restaurant density included in this study reduced the power
of statistical tests we conducted. More sensors should be
placed in high traffic/high restaurant areas and near other
likely sources of pollution. This will increase confidence in
the influence of such sources.

Our data suggest that a network of lower-cost multi-
pollutant monitors is preferable to a network of lower-cost
PM sensors only. Lower-cost gas sensors like NO2, CO, and
ozone (part of the RAMPs used in this study) provide
complementary evidence of pollution and are also asso-
ciated with adverse health effects [47]. For example, we did
not find evidence of traffic influence using PM2.5 data alone.
However, measurements of NO2 and CO can be used to
identify traffic contributions [19, 21].
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