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Abstract
Accurate identification of distant, large, and frequent sources of emission in cities is a complex procedure due to the presence
of large-sized pollutants and the existence of many land use types. This study aims to simplify and optimize the visualization
mechanism of long time-series of air pollution data, particularly for urban areas, which is naturally correlated in time and
spatially complicated to analyze. Also, we elaborate different sources of pollution that were hitherto undetectable using
ordinary plot models by leveraging recent advances in ensemble statistical approaches. The high performing conditional
bivariate probability function (CBPF) and time-series signature were integrated within the R programming environment to
facilitate the study’s analysis. Hourly air pollution data for the period between 2007 to 2016 is collected using four air
quality stations, (ca0016, ca0058, ca0054, and ca0025), situated in highly urbanized locations that are characterized by
complex land use and high pollution emitting activities. A conditional bivariate probability function (CBPF) was used to
analyze the data, utilizing pollutant concentration values such as Sulfur dioxide (SO2), Nitrogen oxides (NO2), Carbon
monoxide (CO) and Particulate Matter (PM10) as a third variable plotted on the radial axis, with wind direction and wind
speed variables. Generalized linear model (GLM) and sensitivity analysis are applied to verify and visualize the relationship
between Air Pollution Index (API) of PM10 and other significant pollutants of GML outputs based on quantile values.
To address potential future challenges, we forecast 3 months PM10 values using a Time Series Signature statistical algorithm
with time functions and validated the outcome in the 4 stations. Analysis of results reveals that sources emitting PM10 have
similar activities producing other pollutants (SO2, CO, and NO2). Therefore, these pollutants can be detected by cross
selection between the pollution sources in the affected city. The directional results of CBPF plot indicate that ca0058 and
ca0054 enable easier detection of pollutants’ sources in comparison to ca0016 and ca0025 due to being located on the edge
of industrial areas. This study’s CBPF technique and time series signature analysis’ outcomes are promising, successfully
elaborating different sources of pollution that were hitherto undetectable using ordinary plot models and thus contribute to
existing air quality assessment and enhancement mechanisms.

Introduction

Air pollution represents the condition of air pollutants in the
atmosphere at high enough concentrations within serious or
above normal ambient levels, and it often has a dominant
effect on the quality of life [1]. Normal and above normal
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levels are mainly measured with air pollutant index (API)
which is defined in terms of the effects of pollutants on
human health [2, 3]. Generally, modeling the receptor to
identify and characterize emission sources is typified by
difficulties like incomplete information of the sources and
the complexities of modeling boundary layer processes.
Therefore, identifying effective modeling tools for receptor
data record is essential in detecting local, distant, and
diverse emission sources in ambient air pollution manage-
ment studies [4, 5].

The methods used to identify, quantify, characterize and
predict pollutants’ emission sources in literature can be
grouped into two main classes-receptor models (RMs)
[6, 7] and dispersion models (DMs) [8]. RMs are statistical
approaches used for identification and quantification of
pollutants’ sources at receptor site. DMs are mathematical
simulation approaches used to predict pollutants’ disper-
sion in the atmosphere. In a comprehensive review of
RM models, Pokorná et al. [9] identified the following
prevalent methods: chemical mass balance, multivariate
methods (including target transformation factor analysis,
unmix, positive matrix factorization, and constrained
models), other complex models (e.g., multiple sample
type data and time synchronization model), multiway data
(e.g., spatially distributed data and size–composition–time
data), ensemble methods, methods using local wind data
(e.g., conditional probability function, nonparametric
regression, nonparametric wind regression (NWR) and
sustained wind incidence method), methods incorporating
back trajectories (e.g., potential source contribution func-
tion), simplified quantitative trajectory bias analysis and
Future directions.

Holmes and Morawska [10] presented an overview of
DMs applied to the dispersion of particulate matters (PM).
These models were separated into four main classes: box
models, Gaussian models, Lagrangian models and compu-
tational fluid dynamic models. Generally, the large number
of pollutants around the monitoring stations makes the
identification process more difficult [1]. Moreover, the
distant locations of major resources reduce the detection
sensitivity while the minor elements that are locally avail-
able close to monitoring stations also impede clear detec-
tion. To overcome these limitations, some studies have
developed combined models in order to detect the pollu-
tants’ emission sources with high precision. Qin and
Oduyemi [11] combined the receptor model (positive matrix
factorization) and dispersion model (Gaussian plume dis-
persion model) to identify aerosol sources and estimate
source contributions to air pollution in Dundee, UK. The
dispersion model identified sources that were undetected by
the receptor model. Kim and Hopke [12] combined positive
matrix factorization (PMF) and conditional probability
function (CPF) to identify sources of PM in Spokene, an

arid city in the Northwestern part of U.S. This approach
enhanced the identification of emission sources.

The models which incorporate meteorological data (e.g.,
clear wind patterns) produce the most reliable results [10],
particularly when integrated with CPF for apportionment of
pollutants’ emission sources. CPF is an effective statistical
technique for providing directional information for pollu-
tants’ sources as well as isolate specific source types using
wind direction, wind speed and concentration of specific
pollutants [13, 14]. CPF analysis with wind speed, direction
and time of day can help isolate specific source types for
further analysis [13]. Using CPF, Henry et al. [15] con-
cluded that large sources of pollution might have a minor
contribution to concentrations of SO2. Kim and Hopke [12]
investigated the advantages of using CPF approach over the
non-parametric regression approach, while Bae et al. [16]
applied the CPF method to identify the direction of major
sources of pollutants in New York State. Furthermore,
optimizing data collected by few monitoring stations in
complex study areas is crucial. In this context, [17] devel-
oped a new approach which combines bivariate polar plots
with a CPF to detect and characterize source contributions.
This approach, called the conditional bivariate probability
function (CBPF), is an extension of the commonly used
CPF. The CBPF offers more information on the type of
sources being identified by highlighting important disper-
sion characteristics [17].

Other studies have identified pollutants’ sources from
the time series of PM concentrations using RMs or artifi-
cial neural network (ANN) modeling methods. Marmur
et al. [18] used RMs to determine pollutants’ sources
emission from the time series of PM concentrations in the
southeastern United States. The study concluded that
pollutants’ sources have significant temporal variation
with the likelihood of shortcomings with respect to spatial
representation. Elangasinghe et al. [19] developed a new
approach based on ANN, bivariate concentration-wind
speed-wind direction relationships and k-means clustering
for identifying source performance signals from the time
series of ambient PM concentrations in a coastal area in
New Zealand. They emphasized that the identification of
periodic and aperiodic source performance signals is a
useful technique to enhance the prediction accuracy of
hourly average concentrations.

Most recently, Jeričević et al. [4] used a combination of
different source apportionment methods to determine
the major pollutant sources of PM, Hydrogen sulfide (H2S),
NO2 and SO2 in a complex urban area in Croatia
(Slavonski Brod). The methods included chemical PM
speciation, time series of pollutant concentrations, PMF and
CBPF. The study confirmed the importance of the CBPF
method for the identification of pollutants’ sources and
noted a larger uncertainty of CBPF method, which is related
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to the representation of peak concentrations transported
with wind speeds higher than 8 m/s. Similarly, determina-
tion of the extent of influence of the pollutants’ emission in
ambient atmosphere and its impact on the urban areas are
important for environmental management planning.

In addition to these approaches, Geographic Information
Systems (GIS) modeling techniques have the capability to
support pollutants’ source detection [20, 21]. Wang et al.
[22] proved that GIS is useful for identifying and mapping
the potential sources of pollutants. Although a number of
researches have integrated these techniques for optimal
performance, many of the studies focus on developed cities,
mostly in America and Europe. Attempts to implement such
advanced statistical and programming algorithms in devel-
oping cities, particularly in Asia and Africa, are limited.
Mukherjee and Agrawal [23] combined CBPF, land use
regression (LUR) and trajectory statistical models (TSM)
to detect the sources of PM and their relationships with
gaseous pollutants (NO2, SO2, O3, and CO) and meteor-
ological parameters (wind direction, wind speed, relative
humidity, and temperature) in middle Indo-Gangetic plain,
India. The study concluded that meteorological parameters
aided increase in PM concentration than associated gaseous
pollutants. Further, the traffic in the northwestern part of
India was identified as the most probable source of PM.
A combination of CBPF and statistical models was also
used to investigate the effect of meteorological parameters
on PM concentration in four cities in the Yangtze River
Delta, China [24]. Rana and Khan [25] used CBPF and
Concentration Weighted Trajectory (CWT) methods to
assess the impact of congenial meteorology on PM con-
centrations in six urban areas in Bangladesh while Kang
et al. [26] confirmed a negative relationship between PM
concentrations and meteorological parameters in Nanjing
city, China. Also, Jain et al. [27] indicated that the traffic
emission and biomass burning contribute greatly to PM
concentration in Delhi, India, especially during winter.
Despite these studies, implementation of the integrated
spatial- CBPF technique in Asia remains relatively limited.
Therefore, it is imperative to extend these techniques to
cities in the high-risk developing region (UN News, 2012),
in order to ascertain their suitability for adoption therein.

Based on the foregoing, this current research aims to
determine the source direction of the major pollutants in the
study area and investigate possible relationships between
these pollutants. We also aim to forecast potential emission
of pollutants in the near future. Therefore, we present an
integrated approach based on CBPF, sensitivity analysis,
time series signature and GIS to identify, characterize, and
model pollutants’ emission sources in a complex region in
Malaysia (Kuala Lumpur city and surroundings areas).
The selected pollutants are Sulfur dioxide (SO2), Nitrogen
oxides (NO2), Carbon monoxide (CO), and Particulate

Matter (PM10). Also, the correlation between PM10 and
other pollutants was explored using generalized linear
model (GLM).

Study area

Kuala Lumpur metropolis is the federal and economic
capital of Malaysia and is surrounded by the state of
Selangor. It has six strategic zones with a total area of
242.8 km2 [28]. Air pollution due to airborne particulate
matter (PM10) is an environmental issue in the Southeast
Asia (SEA) region, particularly Indonesia, Singapore,
Brunei, and Malaysia. Because of its rapid urbanization,
industrialization and increased vehicular traffic, Kuala
Lumpur has witnessed unprecedented infrastructural
development, causing alteration of its landscape and con-
tamination of the environment [29]. Accelerated urbaniza-
tion, continuous industrial emission, vehicle emission and
re-suspension of soil dust have increased the volume of
PM10 mix in Malaysia’s atmosphere and exacerbated
toxicity [30]. Smoke-haze episodes are regular occurrences
in Kuala Lumpur, which cause frequent emissions of
hazardous particles and gases into the surrounding atmo-
sphere [31]. Particle pollution from urban activities and
transboundary inputs are major sources of PM10 pollution
in the city [32]. In its study of risks posed by major air
pollutants in Kuala Lumpur, Tajudin [33] noted hospitali-
zations due to cardiovascular diseases in relation to expo-
sure to NO2 and Ozone (O3). This sustained emission of
pollutants from multiple sources make Kuala Lumpur an
ideal study area as shown in Fig. 1. The figure also shows
the land use and relative locations of the air quality stations
in the study area.

Methodology

Data used

Four stations were used to collect the data from 2007 to 2016
(Fig. 1). These include station Ca0025 located at Taman Tun
Dr Ismail Jaya, Shah Alam. The area is surrounded by a
complicated industrial land use, the Sepang Airport and
heavy industries in the southern zone. Station Ca0054, which
is the source of 2009 to 2017 hourly data, is located at Seri
Permaisuri, KL and is surrounded by a number of industries.
It is near the city center which experiences heavy traffic.
Station Ca0016 is located at Petaling Jaya, western part of
KL with industries situated on the southern and western
parts. Station Ca0058 is in the northern part of KL, specifi-
cally at Batu Muda, and surrounded by some industries on
the north and north eastern part. The stations are surrounded
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by complex industrial areas and were selected for this study
because of ease of detection by distant resources due to
surrounding flat terrain. Thus, wind flows are not affected by
issues related to terrain.

We collected data from approximately 40 sites using land
use map provided by the Federal Department of Town and
Country Planning (PLANMalaysia), and digitized locations
using Google earth service. The selected data comprise of
industrial zones only as it is the most likely to emit the
biggest share of pollutants. Roads and other landuse were
ignored due to data limitation. Figure 1 shows distribution
of the air gauges. CA0058 and CA0025 are surrounded by
multiple sources of pollutants, while CA0054 and CA0016
are situated in neighborhoods with limited emission of
pollutants. Sources of pollution in the study area include
food and beverage companies, automobile maintenance and
services, chemical industry, and a complex road network.
ESRI’s ArcGIS software was used to map the study area
and relative locations of the roads, main emission sources
and industrial areas to the monitoring site.

The maximum values of 1-hour concentration of SO2,
NO2, CO, and PM10 are found in stations CA0016 and
CA0025 (Table 1). This can be attributed to the location of
these stations within the city center and in close proximity

to highly dense industrial zones. All pollutants were mea-
sured in volumetric units’ parts per million by volume
(ppm), except PM10 which was measured in Gravimetric
unit (μg/m3). Wind speed was measured in meter/second
(m/sec), with the Max. value (26.5) registered at CA0054
and Min. value (0.7) registered at CA0016 and CA0025.
The duration of all the data measurements collected from
the site and analyzed in this study was from 1st January
2006 to 31st December 2016, except data at station
CA0054, which covered the period from 2007 to 2016.

Missing data imputation

The acquired data records were examined to detect missing
data that need to be imputed before proceeding as
recommended by Shah et al. [34]. Using 4 stations encir-
cling the study area, we collected daily record covering a
period of 10 years. The largest amount of missing data,
represented by wind direction, reached a maximum of 28%
in CA0025, and the maximum missing wind speed data
was 20% in CA0054 as shown in Fig. 2. The other vari-
ables (pollutants) vary but do not exceed 10%. Generally,
the missing data is not very high, and the data imputation
technique is applicable to cover this source of uncertainty.
Figure 3 shows the data summary after data imputation
using predictive mean matching (PMM) in MICE package
of R programming environment.

It presents the mean concentration values of the pollu-
tants combined with wind direction, plotted on radial axis,
and indicates the most critical directions of the dominant
pollutant sources around the stations. The meteorological
data and air condition are also summarized in the summary
plot. Since the land use data does not contain detailed
information on the industrial land use, it is difficult to
compare the research outcomes with acceptable or dominant
range of pollution concentration for each industry (Table 2).

Conditional bivariate probability function

For a given wind sector, CPF estimates the probability that
the measured concentration goes beyond the fixed threshold
[14]. CPF was originally used to show the wind directions
that dominate a specified high pollutant concentration,
indicating the probability of such concentrations occurring
due to wind direction [14].

CPFΔθ¼
mΔθ C�xj
nΔθ

ð1Þ

Where mΔθ= number of samples in the wind sector θ, C=
pollutants concentration, x= threshold value of high
percentile of concentration e.g., 95th, nΔθ= total number
of samples from wind sector Δθ

Fig. 1 Study area. The study area showing industrial land use loca-
tions, density, and locations of the air quality monitoring stations.
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Conditional bivariate probability function (CBPF)
combines CPF with the wind speed, which is considered
the third variable in the equation. It assigns the pollutants’
concentration to the cells that are defined by the wind
direction and wind speed, having a higher reliability than
the conventional methods that consider only wind direc-
tion [14]. CBPF is appropriate in areas characterized by
high source complexity, with the potential of identifying
more pollutants’ sources in comparison with currently

used techniques such as the CPF [17].

Mathematically; CBPFΔθ;Δu ¼
mΔθ;Δu C�xj
nΔθ;Δu

ð2Þ

Where mΔθ,Δu= number of samples in the wind sector Δθ,
Δu=wind speed interval; C= pollutants concentration,
x= threshold value of high percentile of concentration
e.g., 95th, nΔθ,Δu= total number of samples in that wind
direction-speed interval [17]
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Fig. 2 Missing data. Percentage
of missing data for all variables
in the 4 stations.

Table 1 Minimum and maximum concentration of pollutants at the four stations.

Pollutant Max. concentration Station(s) with Max. Min. concentration Station(s) with Min. Unit

SO2 0.025 CA0016 0 All Parts per million by volume (ppm)

NOX 0.361 CA0016 0 All Parts per million by volume (ppm)

CO 5.670 CA0025, CA0016 0 CA0025,CA0016, CA0054 Parts per million by volume (ppm)

PM10 426 CA0025 9 CA0058, CA0025 Gravimetric unit (μg/m3),
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Fig. 3 Summary plot.
Summary plot and statistical
summary of pollutants’
concentration variables at the
4 stations.
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The R programing package “OpenAir”, which shows
durability and efficiency in terms of data size and proces-
sing time, was used to implement the CBPF technique.

Generalized linear model (GLM)

The generalized linear model (GLM) was generated
for determining the correlation between PM10 with other
pollutant sources. Linear regression serves as a workhorse
of statistics but cannot handle some types of complex data.
A GLM expands upon linear regression to include non-
normal distributions including binomial and count data.

Logistic regression is used to predict a class i.e., a
probability, and it can predict a binary outcome accurately.
Imagine you want to predict whether a loan is denied/
accepted based on many attributes. The logistic regression is
of the form 0/1. y= 0 if a loan is rejected, y= 1 if accepted.

A logistic regression model differs from linear regression
model in two ways.

● First, the logistic regression accepts only dichotomous
(binary) input as a dependent variable (i.e., a vector of
0 and 1).

● Second, the outcome is measured by the following
probabilistic link function called sigmoid due to its
S-shape.:

σ tð Þ ¼ 1
1þ exp �tð Þ

The output of the function is always between 0 and 1
The sigmoid function returns values from 0 to 1. For the

classification task, we need a discrete output of 0 or 1.
To convert a continuous flow into discrete value, we can

set a decision bound at 0.5. All values above this threshold
are classified as 1

by ¼ 0 if bp < :5

1 if bp � :5

�

timetk: a tool kit for working with time series in R

For the future prediction of PM10, testing data is used in time
series to analyze the residual and forecast PM10 occurrence

for 3 months. Residual plot for the stations is prepared taking
data for a year (1-1-2016 to 31-12-2016).

The time series signature is a collection of useful features
that describe the time series index of a time-based data set.
It entails a wealth of features that can be used to forecast time
series containing patterns. In this vignette, the user imple-
ments advanced statistical analysis to predict future outcomes
in a time-based data set. The timetk package, comprising tools
to get the time series index, signature, and summary from
time series objects and time-based tables, enables a user to
work with time series objects more easily in R. The robust
platform also supports inspecting and manipulating the time-
based index, expanding the time features for data mining and
machine learning, and converting time-based objects to and
from the many time series classes.

Results and discussion

Pollutants’ concentration and sources

Figure 4 shows box plots of median concentration of PM10
(monthly average) while Fig. 5 presents Whisker plots of
PM10 API concentration for the period of study. Box and
whisker plots are effective tools for summarizing data over
different time scales, including day of the week, day of the
year, and month of the year. These show variations in
pollutant concentrations over different time scales, provid-
ing valuable clues on pollutants’ sources and their respec-
tive levels of significance. From Fig. 4, it is observed that
the concentration of PM10 at each of the station’s peaks in
March, June, May, September, and October. This trend
occurs at all the four stations. However, the highest monthly
concentrations are observed in August in station CA0025,
presumably due to its proximity to Subang airport, which
has significant chemical pollution episodes. In its investi-
gation of the environmental and health impacts of proximity
to airport infrastructure in Malaysia, Sahrir et al. [35]
reported that aviation services, particularly airplane emis-
sions, produce numerous hazardous materials such as CO,
O3, SO2, NO2, and PM, confirming the likelihood of high
emissions in areas close to the Subang airport.

Analysis of Fig. 5 with respect to the Department of
Environment’s API limits (Low pollution (0–50), Moderate
(51–100), Unhealthy (101–200), Very unhealthy (201–300),
and Hazardous and risky (301–500) [36]), shows that the
value of PM10 did not exceeded 150 API (unhealthy), except
in 2013 and 2015, and with maximum individual hour API
values of 426 in Oct 2015, 416 in Oct 2015, 390 in Oct.2015,
and 322 in June 2013 at stations ca0025, ca0058, ca0016 and
ca0054 respectively.

Station CA0016 falls in the middle of a highly polluted
area. This renders the conventional mean plot ineffective

Table 2 Major pollutants’ concentration in each station (Bolded values
refer to maximum value for each station).

CA0058 CA0054 CA0016 CA0025

SO2 (ppm) 0.198382 0.110015 0.160800 0.099133

NO2 (ppm) 0.171824 0.220054 0.103706 0.247021

CO (ppm) 0.419687 0.261765 0.248654 0.392757

Spatial identification and temporal prediction of air pollution sources using conditional bivariate. . . 715



to observe the pollutants’ sources, thus, underscoring
the limitations of existing techniques in such instances.
A similar scenario exists in station CA0058 due to the
presence of some industrial areas in the north and north
east directions. Also, station CA0025 falls in the middle
of highly polluted area and an airport, which complicates
the detection of pollutants’ sources. Therefore, to over-
come this limitation, CBPF is required to divide the mean
values into 10 quantiles for further analysis. Figure 6
depicts the CBPF plot of mean values of main pollutants
measured at the four stations. However, the absence
of dominant pollutants around CA0054 enables a clear
rendition of the effects of KL on the north and north west
areas.

Although every pollutant has a specific emission range,
this is usually ‘washed out’ in the normal conventional polar
plot [37]. Therefore, considering the quantiles intervals using
the CBPF’s interval classification can reveal more information
on pollutants’ sources.

The CBPF was calculated for all the stations (Fig. 7) by
taking the 10 quantiles of each pollutant for better visuali-
zation of different emission sources. This is particularly
pertinent for stations CA0016 and CA0025 that did not
reveal clear sources and directions for the pollutants as
shown in Fig. 6. The CBPF plots reveal significant hidden
information about different pollution sources which was not
discernable in the ordinary plot, especially for the stations
that are located in the middle of high-density industrial
areas and pollutants. Subsequent analysis focused on the
main pollutant in the two stations, PM10, since it always
has the highest value in comparison to other pollutants,
thus, determining the Air Pollution Index (API).

Nearer land use at station CA0016 have the highest
percentile values while the distant ones recorded low per-
centiles. Analyzing Fig. 7 in tandem with Fig. 1, land uses
in the NW direction were detected by two percentiles,7th
(47–52) and 8th (52–58), while the third zone of land use at
the southern direction of the station is represented by SW

ID: CA0025 ID: CA0016 

ID: CA0054 

(µ
g/
m
3 )

(µ
g/
m
3 )

ID: CA0058 

Date Date 

Date Date

Fig. 5 Whisker plots. Whisker
plots of PM10 API
concentration for the period
Jan.2007-July.2016, except ID
CA0058 that started two years
later (Jan.2009).

Fig. 4 Box plots. Box plots of
median concentration of PM10
(monthly average).
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9th (58–70) and SE 10th (70–390) percentiles. Despite their
low API values, CPBF successfully detected distant pollu-
tants at the NE direction, in the 1st (12–29) and 2nd (29–33)
percentiles.

The presence of many land use surrounding station
CA0025 presents unique challenges in identifying sources
of diverse pollutants, but the CBPF percentile plot presents
some interesting findings. In the N and the NW direction,
we observed the Subang airport and a huge industrial area,
respectively. These were measured by stations on 2nd
(30–35) and 3rd (35–39) percentiles, respectively. In S and
SW directions, the effect of these two regions was higher

than the airport’s location, and detected by 9th (64–76) and
10th (76-426) percentiles respectively, in addition to the 5th
percentile (43–47) that detected the pollution originating
from the center of the study area (eastern direction of the
station). Other stations detected many sources that were not
observed in close region to the station, but with low effect.
The major effect originated from the close land use as
shown in Fig. 7 for the two stations (ca0058 and ca0054).

Further insights can be gained by considering how
percentile values vary in relation to other factors i.e.,
conditioning. For example, the plot shows the seasonal
variation and whether it is nighttime or daytime. Also,

(µµg/m3)ppm 

ppm ppm 

ID: CA0016 

ID: CA0054ppm

ppm ppm

(µg/m3)

NOX

SO2 CO

NOX PM10

PM10

SO2 CO

Fig. 6 CBPF plot. CBPF plot of
mean values of main pollutants
measured in four stations in
volumetric units (ppm), except
PM10 measured in Gravimetric
unit (µg/m3).
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PM10 concentration results in Fig. 7 indicate that identi-
fication of sources varies according to percentiles (high to
low), while Fig. 8 highlights the impact of seasonal var-
iation on identification of pollutants’ sources. At station
CA0016, PM10 is higher in September, October, and
November, which refers to the SE direction that was
indicated in Fig. 7. It is important to note that there are no
significant differences between day and night concentra-
tions. This suggests that PM10 is not affected by day or
night temperature, but rather by the pollutants’ active
hours and seasons.

Correlation between PM10 and other pollutants

Generalized linear model

The three major pollutants, SO2, NO2, and CO, show
positive correlation with PM10 in all stations based on
outputs of generalized linear model using percentile value.
CO has the highest correlation value in station CA0058,
followed by CA0025.

A similar trend is observed in other cities, particularly in
the Asian region. Table 3 documents selected studies on

ID: CA0058 ppm (µµg/m3)

ppm ppm

ppm ppm

ppm (µg/m3)ID: CA0025 

NOX PM10

SO2 CO

NOX PM10

SO2 CO

Fig. 6 (Continued)
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major pollutants and their concentration in different Asian
cities. The data in the table shows the average concentration
of the major pollutants, SO2, NO2, CO, and PM10.
A correlation between PM10 and the other pollutants is
established in all the cities, which aligns with the findings of
our present study. Vehicle emission and proximity to
industrial areas is the major source of pollutants in these
cities and our study area too.

Sensitivity analysis

Sensitivity analysis was conducted at all stations to observe
the relation between PM10 and three major pollutants based
on the correlation observed from outputs of generalized
linear model using percentile value. CO, NO2, and SO2 are

taken as explanatory variables whose values are kept con-
stant at their minimum 20th percentile, 40th percentile, 60th
percentile, 80th percentile and maximum percentile. At
station CA0058, NO2 and CO clearly displayed non-linear
relation with PM10, showing a logarithmic growth and tend
to level off with increasing value of the pollutants. S02 had
almost negligible response. At station CA0054, the sensi-
tivity model for SO2 and NO2 showed exponential growth
trend in the first four quantiles and descended at maximum
quantile. At station CA0025, the pattern of response by
PM10 varied with respect to quantiles. In the first four
quantiles in CO and NO2, the graph shows slow logarithmic
growth at the beginning, followed by a sharp increase. In
contrast, for the maximum concentration quantile values,
PM10 exhibited an exponential growth with respect to both

ID: CA0025 

ID: CA0054 

Fig. 7 Polar plots. Polar plots of
concentrations at 4 stations
based on the CBPF function for
a range of percentile intervals
from 0–10, 10–20, …, 90–100.
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CO and NO2. However, SO2 shows a linear relationship
with the occurrence of PM10. At station CA0016, CO and
PM10 displayed a unimodal relation. The response pattern
of PM10 is non-linear with different patterns in different
quantiles. PM10 tends to show linear response with respect
to SO2.

The sensitivity analysis at station CA0025 (Fig. 9)
indicates that the current pollutants are not driven by day-
light and night hours. This is evident in the concentration
pattern from September to November, which increases
especially towards the NE sources (Airport and city center).
Between June and august, some pollutants started to emit
PM10 with lower values. However, these sources fall out-
side the data coverage, necessitating further investigation to
understand the variance in seasonal concentration especially
in PM10.

Time series signature and forecast

By using tk functions in R, we obtain residual and fore-
casting plots. Figures S1a, S2a, S3a, and S4a (see Supple-
mentary Material) show the mean residual of testing data for
the period 1 Jan 2016-31 Dec 2016 for the stations CA0058,
CA0054, CA0025, and CA0016, respectively. In these
figures, the blue line shows the residual values and gray
points represent tested data. Generally, the residual plots
show an irregular pattern at all stations. Figures S1b, S2b,
S3b, and S4b (see Supplementary Material) illustrate the 3-
month forecast of PM10 for the stations CA0058, CA0054,
CA0025, and CA0016, respectively. The red points repre-
sent the modeled values of PM10 while the white line
represents the mean values of predicted concentration of
PM10. The forecast plots reveal a cyclical pattern at all

ID: CA0058 

ID: CA0016 

Fig. 7 (Continued)
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stations, indicating a seasonal behavior. It is also observed
that the forecast concentration of PM10 is very near and
represent a continuous distribution to tested data.

Conclusion

In the current article, we proposed an enhanced methodol-
ogy to reliably identify the sources of PM10, SO2, CO, and
NO2 in high density urban areas of Kuala Lumpur,
Malaysia, and other surrounding areas. We also investigated
the correlation between PM10 and the other pollutants and
forecast the future occurrence and sources of PM10 to aid
air pollution mitigation and management strategies. To
achieve the study’s objectives, we selected 10 years’ data
from four randomly distributed air pollution stations-
CA0016, CA0025, CA0058 and CA0054. The study

leveraged recent advances in statistical programming algo-
rithms such as CPBF; polar plot; percentile seasonal and
daily plot; and whisker plot embedded in OpenAir package
within the R programming environment. These advanced
algorithms have the capability to optimize the visualization
mechanism of long time series air pollution data of large
urban regions that are naturally correlated in time and
spatially complicated to analyze, thereby elaborating dif-
ferent sources of pollution that were hitherto undetectable
using ordinary plot models. Further, Generalized Linear
model (GLM) and sensitivity analysis was applied to assess
the relationship between Air Pollution Index (API) of PM10
and other significant pollutants of GML outputs based on
quantile values. The whisker time series plot showed that
the value of PM10 was within the city’s healthy API range,
with exceptions in 2013 and 2015. Results from the CBPF
plot indicated that CA0058 and CA0054 enable easier

ID:CA0025

ID:CA0016

Fig. 8 Rose plot. A percentile
Rose plot of PM10
concentration plotted for 3
months average (season) and
relation to daylight and
nighttime at two stations at the
study area.
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detection of pollutants’ sources in comparison to CA0016
and CA0025 due to their location near industrial areas. The
highest monthly concentrations were observed in August at
station CA0025, presumably due to its proximity to Subang
airport, which has significant chemical pollution episodes.
The CBPF plots revealed significant hidden information
about different pollution sources in the study area, which
was not discernable in ordinary plot, particularly for the
stations that are located around high-density industrial
areas. The sensitivity analysis at station CA0025 revealed
that the pollutants are not affected by daylight and night
hours and temperature. Rather, PM10 concentration is
influenced by seasonal variations. Analysis of the Time
series signature and forecast revealed that the residual plots
generally indicate an irregular pattern at all stations while
the forecasting plots reveal a cyclical pattern at all stations,
which is indicative of a seasonal behavior. Based on these
findings, the major conclusion from this study are sum-
marized below:

– Despite missing data attributes and scarcity of air
quality stations, the use of long-term data with advanced
statistical and spatial analysis enhances the under-
standing of the mobility of pollutants along the study
area, spatially and temporally.

– Proper distribution of air quality monitoring stations
provides deep insights on temporal scenarios of
pollution distribution, aided by detailed land use maps
and Google earth services.

– CBPF plot can identify the sources of pollution in cases
where the stations are located at the edge of pollutants’
sources or there is a great variance in pollution
concentration. Otherwise, CBPF’s results will not be valid.

– Polar plot of concentrations based on the CBPF function
for a range of percentile intervals from 0 to 100 success-
fully elaborated the different sources of pollution around
the stations, which was not visible in the ordinary plot.

– Closer pollutants with high intensity have major impact
on the stations’ concentration reading, although small
concentrations emanating from distant pollutants can
still be detected.

– There are no significant differences between day and
night concentrations in the study area. This offers
interesting insights on the nature of PM10, which is not
affected by temperature of daylights and night. How-
ever, further investigation of the impact of vehicular
traffic is necessary.

The visual interpretation of results and analysis has
impacts on comprehending the urban air pollution dynamics
using advanced statistical models to convey vital informa-
tion to the local community, decision makers and all
stakeholders.Ta
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Fig. 9 Sensitivity analysis.
Sensitivity analysis at the study
area showing the effect of
variable values’ splits with
response.
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For future work, it is imperative to get a detailed land use
data within the industrial land use for the purpose of com-
paring the outcome with acceptable or dominant range of
pollution concentration for each industry.
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