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Abstract
Mitigation of adverse effects of air pollution requires understanding underlying exposures, such as ambient ozone
concentrations. Geostatistical approaches were employed to analyze temporal trends and estimate spatial patterns of
summertime ozone concentrations for Houston, Texas, based on hourly ozone observations obtained from the Texas
Commission on Environmental Quality. We systematically assess the accuracy of several spatial interpolation methods,
comparing inverse distance weighting, simple kriging, ordinary kriging, and universal kriging methods utilizing the hourly
ozone observations and meteorological measurements from monitoring sites. Model uncertainty was assessed by leave-one-
out cross-validation. Kriging methods performed better, showing greater consistency in the generated surfaces, fewer
interpolation errors, and lower biases. Universal kriging did not significantly improve the interpolation results compared to
ordinary kriging, and thus ordinary kriging was determined to be the optimal method, striking a balance between accuracy
and simplicity. The resulting spatial patterns indicate that the more industrialized areas east and northeast of Houston exhibit
the highest summertime ozone concentrations. Estimated daily maximum 8 h ozone concentration fields generated will be
used to inform research on population health risks from exposure to surface ozone in Houston.
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Introduction

Seasonally higher temperatures and increased sunlight in
summer result in increases in emissions of biogenic and
anthropogenic hydrocarbons, and facilitate reactions of
those hydrocarbons with nitrogen oxides to form surface
ozone [1]. Background levels of summertime surface ozone
have increased over the last century due to increasing levels

of anthropogenically emitted nitrogen oxides [2]. Warming
in the forthcoming century due to climate change may
contribute to increases [3] in the intensity, frequency, and
duration of daily maximum surface ozone concentrations,
especially during the summer months [4, 5].

Elevated surface ozone concentrations are a concern
because of the harmful effects on human health [1]. Short-
and long-term exposures to elevated levels of ambient ozone
have been associated with a variety of adverse health out-
comes including respiratory [6], cardiovascular [7], and
neurological conditions [8]. Furthermore, sensitivity to
extreme ozone events varies within urban populations, with
elderly and socioeconomically disadvantaged sub-
populations being disproportionately affected [9]. Numer-
ous studies report associations between ambient ozone levels
and respiratory hospital admissions among the elderly [4].

An important input for modeling ozone-related health
risks is accurate, spatially continuous surface ozone con-
centration data over the region of interest. However, such
data are not readily available since ozone observational data
are most often collected from monitoring stations with large
and irregular spatial gradients. Spatial interpolation methods
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provide a means of generating spatially continuous data
from these point observations [5, 10, 11]. Ozone is amen-
able to spatial interpolation methods due to its spatial dis-
tribution, correlation, and constant variance across well-
defined geographic regions [10, 12].

The application of geostatistical methods to estimate
spatial-temporal trends in ozone and other air pollutants is
well supported in the literature, including spatial averaging
[13, 14], nearest neighbor [15–19], inverse distance
weighing [14, 18], and kriging [10–12, 21]. The variety of
interpolation methods available have led to questions about
relative accuracy and appropriate application for different
scenarios. Previous studies have compared spatial inter-
polation methods, with emphasis on understanding the
factors that affect model performance, such as sample
density [21], data variation [22], sampling design [23],
sources of errors in data, and factors affecting reliability
[24, 25]. Results have shown that the performance of spatial
interpolation methods depends on features of the method
itself, as well as the data variation and sample density.
However, there still exist uncertainties in selecting an
appropriate method when large variabilities in sample fre-
quencies and network densities exist.

The primary objective of this study is to systematically
compare the performance of several spatial interpolation
methods, and to identify an optimum method for the gen-
eration of ozone surfaces for metropolitan Houston, Texas,
during summer. A review of the literature indicates that this
systematic evaluation of geostatistical methods for gen-
erating ozone surfaces is the first of its kind for Houston,
and is a key motivating factor for this work. These gener-
ated ozone concentration surfaces will be used as inputs to a
health risk model in a follow-on study that more broadly
examines impacts of ozone and extreme heat on elderly
populations indoors and outdoors [26].

After presenting the methods, the results and discussion
are divided into two major sections. First, we describe the
observational data and discuss trends in ambient ozone
concentrations. Second, we assess the spatio-temporal
estimates of ozone concentrations for the Houston area
generated by several geostatistical approaches. Specifically,
we compare inverse distance weighing (IDW), simple kri-
ging (SK), ordinary kriging (OK), and universal kriging
utilizing varying combinations of temperature, relative
humidity, and wind speed as covariates.

Methods

Study area

Our geographic domain is the Houston–Galveston–Brazoria
(HGB) metropolitan area, with emphasis on the city of

Houston, Texas. Specifically, we defined an approximately
20,000 km2 domain centered on the city of Houston (Fig. 1).
Houston is the largest city in Texas, the fourth largest city in
the United States, and the most ethnically diverse metro-
politan area in the United States [27]. Along with its growth
and diversity, come challenges such as an aging population,
educational and income disparities, and poor air quality. A
concern about ambient levels of air pollution in Houston has
existed for decades and Harris County is known to be a
“severe ozone non-attainment area'' for the 1 h standard of
the Clean Air Act [28, 29]. An extensive transportation
network accounts for high emissions of nitrogen oxides
(NOx) and volatile organic compounds (VOCs) from
mobile sources in the region [30]. Additionally, the pre-
sence of large amounts of vegetative and forested areas in
the northeast of Houston allows for substantial contributions
of biogenic VOCs [31]. Furthermore, the Houston Ship
Channel is home to one of the largest concentrations of
petrochemical industries in the United States, and represents
a substantial source of NOx and reactive VOCs in the
region [32, 33]. This combination of emissions from
anthropogenic NOx sources and biogenic VOC emissions
under favorable meteorological conditions, especially dur-
ing summer months, can contribute to the formation of high
O3 concentrations in the study area [31, 34].

Description of observation data

Hourly observations of ozone during the summer season (1
June to 30 September) were obtained from the Texas
Commission on Environmental Quality (TCEQ) monitoring
network in the HGB metropolitan area for 1990–2016.
TCEQ maintains an extensive network of Continuous
Ambient Monitoring Stations (CAMS) that measure ambi-
ent ozone concentrations located on the perimeter, as well
as the urban core of the Houston area. Figure 1 shows the
geographic domain and the distribution of the monitoring
sites. A total of 86 sites reported data. Of these, 61 sites
were designated as regulatory sites by TCEQ, identified as
meeting the requirements for assessing the federal ozone
standards. The remainder were classified as “lite'' or “non-
regulatory'' sites. Ozone monitors at the “lite'' sites were not
calibrated as often or as thoroughly as those at regulatory
sites. Monitors at “non-regulatory'' sites were well cali-
brated, but located on the tops of buildings or towers instead
of at ground level. We used data from all monitoring sites to
create ozone concentration interpolated surfaces and ana-
lyze spatio-temporal ozone trends.

Valid sample days were defined as those having more
than 18 h of data. We calculated daily maximum 8 h ozone
concentrations (MD8) by applying an 8 h moving window
to the hourly time series and selecting the 8 h time window
with the highest ozone concentration value during each 24 h
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period starting at local midnight. The 8 h windows were
determined as missing if ≥3 missing hours occurred in the
window. We applied MD8 as our summary statistic for
assessing temporal trends and modeling the spatial dis-
tribution of summertime ozone. We utilized the entire
temporal extent of the data (1990–2016) to elucidate ozone
temporal trends. Temporal trends were computed by fitting
linear regression lines through the annual (June–September)
values of the 95th, 75th, 50th, 25th, and 5th percentiles of
MD8. The trend was considered statistically significant if p
< 0.05 according to Student’s t-test. For the analysis of the
spatial distribution of MD8, we restricted the years to 2000–

2016 which corresponds to the period for which we have
health surveillance data for the follow-on study that will
utilize these estimates.

Interpolation methods

There are several well-developed interpolation techniques
for modeling spatial data. These include deterministic
methods such as triangulation, local polynomial interpola-
tions, trend surface analysis, splines, IDW, and geostatis-
tical methods such as kriging and its many iterations
[35–37]. Triangulations produce a continuously

Fig. 1 Map of Houston–Galveston–Brazoria metropolitan area, with the City of Houston superimposed, showing the locations of ozone monitoring
sites and the Houston Shipping Channel
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differentiable surface but give no measure of prediction
accuracy, while local polynomial interpolations and trend
surfaces do not model account for fine-scale variations, and
thus are not applicable when local prediction accuracy is
important [10, 38]. Kriging is a best linear unbiased pre-
dictor of a spatial variable that produces a set of predictions
that minimizes the error variance. It accounts for clustering,
is an exact estimator, and produces error estimates [11, 39].
It must be highlighted that the variability in kriging esti-
mates will be less than the variability in the true spatial
process due to the “smoothing” nature of the method, and
its results depends entirely on the representative sampling
data for the region of interest. A non-uniform or sparse
network may limit the accuracy of the resulting interpolated
surface due to insufficient sampling of the extreme sub-
regions of concentrations in the spatial domain. Conse-
quently, kriging may not be able to resolve small scale
spatial trends, such as titration of ozone near NOx sources.

IDW produces estimates that are simply weighted
averages of the nearby data points, where the averaging is
based on some criteria. Previous studies indicate that with
careful consideration to the choice of parameter values,
IDW can provide estimates with nearly the same prediction
accuracy as kriging [10, 39, 40].

Here, we investigate IDW and kriging. We choose to
evaluate kriging because it provides a solution to the pro-
blem of estimation of a surface by taking spatial
correlation into account. The deterministic IDW was chosen
for comparison due to the simplicity of its formulation and
the fact that it combines the idea of estimation based on
proximity, and the gradual change of a trend surface. Both
of these methods are weighted average methods with the
same basic mathematical formulation. Essentially, we seek
to compute ozone concentration, z, at an unsampled loca-
tion, x0, given a set of neighboring values sampled at
locations denoted by xi. The interpolating relationship is
given by: [36, 41]

z x0ð Þ ¼
Xn
i¼1

λi � z xið Þ¼where
Xn
1¼1

λi ¼ 1;

where λi represents the weights assigned to each of the
neighboring values, and the sum of the weights is one.
Interpolation involves defining the search area around the
point to be predicted, locating the observed data points
within the neighborhood, and assigning appropriate weights
to each observed data point.

In IDW, interpolation weights are computed as a func-
tion of the distance between the observation locations and
the predicted/unknown locations. An observed value closer
to the unknown location of interest is assigned a heavier
weight. IDW assumes that each measured point has a local
influence that diminishes with distance, and is characterized

by the following formulation: [39]

z x0ð Þ ¼
Pn

i¼1 wðdiÞ � zðxiÞPn
i¼1 wðdiÞ

;

where z(x0) and z(xi) represent the predicted and observed
values respectively, n is the number of measured sample
points used in the prediction, w(di) is the weighting
function, and di is the distance from x0 to xi. Here, the
weight is assigned as the inverse of the distance raised to a
mathematical power. This power parameter facilitates the
control of the significance of known points on the
interpolated values based on their distance from the output
point. A higher power value places more emphasis on the
nearest points. Thus, nearby data will have the most
influence, and the surface will have more detail (be less
smooth). Specifying a lower value for power has been
shown to result in undue influence being assigned to
surrounding points that are farther away, resulting in a
smoother surface. Since the IDW formula is not linked to
any real physical process, there is no way to determine that
a particular power value is too large. A default value of 2 is
typically used, however, and we conducted sensitivity
testing on power values ranging from 0.5 to 3, and
considered the value with the minimum mean absolute
error as optimal.

Kriging is a stochastic technique similar to IDW, in that
it uses a linear combination of weights at known points to
estimate the value at an unknown point; however, in con-
trast to the deterministic IDW, kriging takes into account
the spatial correlation between measurement points in pro-
viding a solution. The spatial correlation between the
measurement points is quantified by means of a variogram
function: [39, 42]

γ hð Þ ¼ 1
2NðhÞ

XNðhÞ
i¼1

z xið Þ � z xi þ hð Þ½ �2;

where γh is the estimated semivariance at a separation
distance, h, and z(xi) and z(xi+ h) are the observed values at
xi and xi+h separated by h. N(h) is the number of pairs of
measurement points with distance h apart. The variogram is
used to compute weights, λi, which minimize the variance in
the estimated value. The semivariance can be a function of
both distance and direction, and most often increases as h
increases, indicating that points close together tend to be
more similar than those far apart. A parametric function is
used to model the semivariance for different values of h.
Although the spherical model is most widely used, we also
explored Gaussian, exponential, and Matern models. Once
the model variogram is fit to the empirical data, it is used to
compute the weights, λi, such that the estimation variance is
less than the variance for any other linear combination of
the observed values [41, 43].
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We explored simple kriging, ordinary kriging, and uni-
versal kriging, utilizing observed meteorological variables
(temperature, relative humidity, and wind speed) from
monitors co-located at the ozone monitoring sites to
improve estimates. When spatial correlation between a
covariate and the variable of interest is high, universal
kriging has been shown to give better results for the esti-
mates than ordinary kriging [39]. Additionally, high ozone
pollution episodes have been shown to be correlated with
high temperatures, low wind speeds, clear skies, and stag-
nant weather [44–46]. Simple kriging assumes that the
mean value is known, while ordinary kriging assumes that
the mean is unknown, focuses on the spatial component,
and only uses samples in the local neighborhood for the
estimate. Universal kriging explores non-stationary varia-
tion by assuming a trend in average values across the
domain [39, 43]. We applied each interpolation method to
generate daily MD8 ozone concentration surfaces at 1 km ×
1 km spatial resolution for the 20,000 km2 (100 km × 200
km) domain.

Assessment of interpolation methods

We assessed the spatial interpolation methods in two ways.
First, we plotted the spatial MD8 patterns generated by each
method for a randomly sampled summer case day in order to
provide a visual depiction of the patterns and differences
among methods, and to assess predictions of MD8 quantiles.
Second, we computed numerous model fit statistics over a
5-year period in order to robustly assess and compare the
methods with a large set of independent MD8 observations.

We randomly selected summer 4 August 2010, as our
case day, and used the MD8 ozone concentration as our test
statistic to evaluate initial model parameters. We estimated
an empirical variogram by comparing both the classical and
Cressie robust estimators for binned and un-binned dis-
tances, and settled on a binned variogram with a maximum
distance restricted to 100 km [47, 48]. Next, we estimated
the parameters of several candidate parametric variograms,
comparing among exponential, Matern, and Gaussian cov-
ariance models, and between ordinary least squares and
weighted least square estimation procedures for each
method. The parameters from the fitted variogram model
were then used to implement and assess the kriging
methods.

We selected 2012–2016 (June–September) for our 5-year
model fit assessment, using leave-out-one cross-validation
to evaluate the performance of each interpolation method.
We used the period 2012–2016 since this period coincided
with the period of highest monitor density in the observa-
tion network. This was achieved by taking each observation
in turn out of the sample dataset and estimating it from the
remaining observations. A total of 6501 ozone

concentration surfaces were generated from 591 days and 8
interpolation techniques. This process allowed us to esti-
mate mean error (ME) and the root mean squared error
(RMSE) test statistics for each interpolation. The ME was
used to detect bias, and should ideally be zero if the pre-
dictions are centered on the measurement values. The
RMSE was used to compare the ability of the interpolation
methods to predict the measured values. A smaller RMSE
suggests better model performance. We also calculated the
95% prediction interval coverage probability (Cov95) and
the mean prediction standard deviation (AveSE) as metrics
for evaluating model performance. The validated model was
applied to produce spatial estimates of MD8 ozone con-
centrations for the Houston area; these estimates will inform
our efforts to understand population health risks from
extreme ozone episodes. Spatial interpolation methods were
performed using the geoR (Version 1.7.5.2) [52] package
on the R (version 3.4.1) [50].

Results and discussion

Trends in ozone observations

We examined the trend in ozone observed by 62 active
monitoring sites for the summer months from 1990 to 2016
(Fig. 1S in the Supplementary Materials). In the first decade
of the interval, an average of 13 sites were active per year.
This number increased to 35 sites in the second decade, and
45 in the final 6 years. Considering the trend across the
entire interval, reporting from active sites was generally less
than 50% prior to 2004 and increased substantially there-
after (greater than 60%). The fraction of valid station days
observed was consistently high across all years, averaging
greater than 85% over the period.

We also examined the observed MD8 ozone concentra-
tions for June–September 1990–2016, emphasizing station
days when the MD8 ozone exceeded the regulatory standard
of 70 ppb (National Ambient Air Quality Standards (2015
NAAQS) as defined in the US Code of Federal Regulations
(80 FR 65292)) (Fig. 2S, Supplementary Material). A
greater proportion of station days exceed the 8 h ozone
standard in the earlier years of the period, and also a greater
number of exceptionally high ozone station days with
values exceeding 120 ppbv, classified as severe non-
attainment for the 8 h ozone standard. One-fifth of sum-
mer station days in 1999 and 2000 exceeded the 8 h ozone
standard. This trend decreased over the summers of sub-
sequent years, ranging from an average of 14% of summer
station days exceeding the standard during the 2001–2006
interval, to an average of 4% of days for the remaining years
(2007–2016). The number of occurrences of exceptionally
high ozone station days also displayed a decreasing trend,
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especially in the last 8 years of the period, with relatively
few station days exceeding the standard threshold compared
with the preceding interval. The observed trends in MD8
ozone concentrations exceedances are largely attributed to
changes in the ozone standard over the period. This includes
the change in 1997 from a 1 h, 120 ppbv ozone US NAAQS
to an 8 h, 80 ppbv ozone standard (NAAQS). This standard
was further revised in 2015 (NAAQS) from 80 ppbv to 70
ppbv by the Environmental Protection Agency (EPA)
[51, 52].

Figure 2 gives the trend in the 95th, 75th, 50th, 25th, and
5th percentile distributions of MD8 ozone, respectively,
over the interval. The 95th and 75th percentile distributions
demonstrated a decreasing trend that was significant at the
0.05 level, at a rate of −1.3 and −0.6 ppbv/year, respec-
tively. The median ozone rate, while not significant, also
demonstrated a decrease (−0.2 ppbv/yea) over the period.
At the lower extreme, the 5th percentile distribution showed
an increasing trend over the interval that was significant at
0.2 ppbv/year. Overall, MD8 ozone concentrations in the
study area demonstrated a decreasing trend.

The temporal characteristics in MD8 summer ozone
concentrations are presented in Fig. 3. Summer ozone
concentrations, both the extreme (Fig. 3a) and average
(Fig. 3b), displayed an increasing trend in the first decade of
the period, peaked in 1995, and then gradually decreased
over the remainder of the interval. This trend was consistent
across the majority of the monitoring sites with some spatial
variation. We do note two inflection points in the later part
of the interval at 2011 and 2015.

The monthly averages of MD8 ozone concentrations are
shown in Fig. 3c exhibit interesting temporal variability
within the summer season. We observe a decrease in the
mean MD8 ozone concentrations from June to July, before
increasing for the remainder of the summer months. This
mid-summer decrease is attributed to meteorological phe-
nomenon called the Bermuda High, a quasi-permanent high
pressure system that influences summertime weather over
the eastern and southern United States [53, 54]. The system
extends further west in mid-summer than during other times
of the year and brings clean maritime air over the eastern
half of Texas, usually carried by relatively brisk winds. The
result of this influx of clean air and associated winds is a
decrease in ozone concentrations along the path and the
resultant mid-summer inflection point in July, as demon-
strated here.

Figure 3d shows the mean summer diurnal cycle in
ozone concentrations observed at all stations over the per-
iod. Daily summer ozone across Houston area demonstrated
the typical mono-modal pattern indicative of tropospheric
ozone chemistry. Ozone concentrations were lowest
between 04:00 and 06:00 h local time, and increased
through the day to peak between 12:00 and 17:00 h. There
is substantial spatial variation in hour of daily max ozone,
with some stations peaking as much as 4 h later than others.
To investigate this spatial variability, we placed a 40 km
resolution grid (representing different “zones“) on the
domain, centered on Houston (Fig. 4a). We then plotted the
diurnal cycles of all monitors within each 40 km zone, color
coded according to the zone (Fig. 4b). The results indicate

Fig. 2 Temporal trends over the
period 1990–2016 for the 95th,
75th, 50th, 25th, and 5th
percentiles of summer MD8
ozone concentrations,
respectively. The solid line
associated with each percentile
gives the trend derived by linear
regression, and the legend shows
the trend rate and p value
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that ozone peaks in the southeast of the domain (near the
Houston Ship Channel) earlier in the cycle, and at lower
concentrations, then migrates across the domain in a SE to

NW direction, peaking further inland at locations increas-
ingly distant from the industrial area with each successive
hour. This observed spatio-temporal trend highlights the

Fig. 3 Temporal variation in max daily 8 h (MD8) ozone concentration
for summers (June–September) over the period 1990–2016 from all
reporting monitors. Each dot (line plots) represents the summary sta-
tistic calculated for each monitor for the representative year. The
weighted line represents the moving average across all monitors.
Subplot (a) displays the 95th percentile of MD8 ozone concentrations,

and subplot (b) gives the average of the MD8 ozone. The boxplot
(subplot c) gives the variation in monthly averaged ozone across
monitors in the domain and the red dots/lines show the average across
stations by month. Subplot (d) gives the average diurnal cycle of
ozone over the interval
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role of industrial emissions as the primary cause of the
highest ozone, and is consistent with studies done in the
Houston area [34, 51]. For example, TCEQ identified the
highest ozone (>125 ppbv) concentrations in the HGB area
as resulting from rapid and efficient ozone formation
plumes, originating from highly reactive volatile organic
compounds and nitrogen oxides co-emitted from petro-
chemical facilities, and identified the Houston Ship Channel
(HSC) as the origin of the plumes with the highest ozone
concentrations [32]. Dispersion of ozone plumes is aided by
a prominent sea breeze driven by land–sea contrasts along
the coasts of the Gulf of Mexico and Galveston Bay which
cause air to be drawn during the day from Galveston Bay
northward into Houston. The resultant effect is the transport
of ozone and ozone precursors away from the heavily
industrialized area of the HSC into more populated areas of
Houston, and the presence of transient high ozone events at
the observation sites [29, 55–59].

Comparison of interpolation methods

Figure 5 shows the spatial variability in MD8 ozone con-
centrations observed for the randomly sampled case day, 4
August 2010. Forty-one sites in the 20,000 km2 domain
reported observations for this day. MD8 ozone concentra-
tion varied from 23.0 to 77.1 ppbv across monitoring sta-
tions, with a mean of 45 ppbv and a median value of 41

ppbv. MD8 ozone observations were substantially higher in
the north-eastern part of the domain, a predominantly
industrial region of the Houston area; the highest con-
centrations occur northeast of the HSC.

After comparing several candidate variogram models, we
applied a Gaussian model, with a weighted least squares
estimation procedure, and Cressie inverse-variance weights.
We selected the Gaussian covariance function because it
outperformed the other methods when comparing weighted
sum-of-square error. There were no significant performance
gains when comparing between ordinary least squares and
weighted least squares estimation procedures, and the
nugget estimates were consistent across covariance func-
tions. Estimated parameters of the final semi-variogram
included a nugget of 25.5, a marginal variance of 262, and
leveled off to the sill at 64 km.

Table 1 compares the summary statistics of MD8 ozone
concentrations observed at each monitor location on 4
August 2010, with the values predicted by the interpolation
method assessed here. Unsurprisingly, IDW reproduced the
distribution of the data well due to its deterministic nature.
Simple kriging underestimated the MD8 ozone concentra-
tions at both the minimum and the maximum, but repro-
duced the median, 25th and 75th percentiles well. Ordinary
kriging overestimated the minimum and 25th percentile
MD8 ozone concentration but underestimated the max-
imum. Universal kriging performed similarly to ordinary

Fig. 4 a The 40 km resolution grid placed on the domain. The num-
bers/colors identify the grid each monitor occupies. The black dots
identify the monitors. b Diurnal cycles of hourly averaged ozone. Each

line identifies a monitor. The colors/shapes depict the grid each
monitor occupies
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Fig. 5 Spatial variability in MD8 ozone concentration for 4 August 2010 from all reporting monitors. Each dot represents the value of the summary
statistic calculated at each monitor

Table 1 Comparison of summary statistics of the measured MD8 ozone concentrations for 4 August 2010 to the interpolated MD8 ozone
concentrations at each monitor in ppbv/year, utilizing inverse distance weighing (IDW), simple kriging (SK), ordinary kriging (OK), and universal
kriging with daily maximum relative humidity (maxRH), maximum temperature (maxT), and mean wind speed (meanWS) as covariates,
respectively

MD8 Ozone IDW SK OK UKmaxRH UKmaxT UKmeanWS

Min 23.00 23.00 22.36 24.11 23.65 23.59 24.04

25th% 34.38 34.61 34.83 36.13 36.34 36.41 36.31

Median 40.62 40.62 40.10 40.00 39.93 39.87 40.00

Mean 45.22 45.22 44.70 45.21 45.57 45.57 45.53

75th% 56.50 56.49 56.48 56.32 57.31 57.19 57.40

Max 77.12 77.01 74.25 73.55 74.96 74.33 74.68
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kriging, overestimating the lower extremes, reproducing the
median and 75th quartile, and underestimating the max-
imum. We also observe a slight but consistent increase in
the range of estimates for the universal kriging methods
(decrease in the minimum and increase in the maximum) as
compared to the ordinary kriging estimates.

Table 2 compares the summary statistics of the spatial
prediction standard errors across the predicted surface for
the kriging models for MD8 ozone concentrations. We
observe similar distributions of standard errors for surfaces
estimated with the simple and ordinary kriging methods.
Larger differences in the distribution of standard errors were

observed for the universal methods when compared with the
simple and ordinary kriging methods, with increases
observed in all categories of the summaries. This suggests
that while the quality of the fits provided by the two models
comparable, there is no significant value gained but the
inclusion of additional covariates, and thus the simple
model, ordinary kriging can be used interpolate the spatial
region with adequate results.

Figure 6 gives the predicted MD8 ozone concentration
surfaces for 4 August 2010 for each interpolation method on
a regular grid of 1 km by 1 km resolution across the domain.
Based on visual inspection, IDW appears to have the
poorest performance of the interpolation methods (which is
confirmed in the statistical validation presented below). It is
evident that the weight assigned to points was influenced by
neighboring points when they were more clustered. Addi-
tionally, isolated points were allowed to exert undue influ-
ence in all directions, thus resulting in the characteristic
bull's eye pattern seen in surfaces generated using this
method. Since IDW is an exact interpolator, it reproduced
the minimum and maximum values in the observations, but
high variability in the observations resulted in a rougher
surface produced.

The surfaces generated by kriging appear to provide a
more realistic representation of the spatial variation in ozone
concentrations in the domain, based on previous studies

Table 2 Comparison of summary statistics of spatial prediction
standard errors across the predicted surface for 4 August 2010,
utilizing simple kriging (SK), ordinary kriging(OK), and universal
kriging with daily maximum relative humidity (maxRH), maximum
temperature (maxT), and mean wind speed (meanWS), respectively

SK OK UKmaxRH UKmaxT UKmeanWS

Min 1.77 1.77 1.83 1.85 1.83

25th% 3.01 3.01 3.25 3.32 3.18

Median 4.63 4.64 4.87 4.92 4.81

Mean 5.30 5.34 5.88 5.86 5.75

75th% 7.06 7.10 8.03 8.06 7.84

Max 14.51 15.20 19.60 16.13 16.63

Fig. 6 Gridded predictions of MD8 ozone concentrations for 4 August
2010 using inverse distance weighing (IDW, a), simple kriging (SK,

b), ordinary kriging (OK, c), and universal kriging with max relative
humidity (d), max temperature (e), and mean wind speed (f)
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indicating “smooth“ ozone spatial variability [37, 41, 59].
We observe an ozone concentration plume in the north-
eastern quadrant of the domain that is reflective of the high
observation values recorded at monitors located there.
Compared to the surface generated by simple kriging, the
ordinary kriging exhibited lower prediction error overall.
The differences in prediction error were higher in areas of
the domain where the monitoring network was sparse, as
well as in domain areas with large variations between
nearby observations. Simple kriging did a poor job of
reproducing the values at the lower extreme of the observed
concentration range, while ordinary kriging was able to
generate values representative of both extremes. Universal
kriging with all covariates did not exhibit any substantial

improvements in the interpolated surfaces over those gained
by ordinary kriging, but performed better than simple kri-
ging, showing similar trends in the predicted surfaces, and
good reproduction of both the maximum and minimum
observations.

Figures 7a–d further examines the contrast between
ordinary kriging and universal and simple kriging spatial
predictions. The figures were derived by subtracting the
universal and simple kriging estimate from the ordinary
kriging estimate at each predicted location. Contours
representing quantiles of the differences between predicted
model estimates were used to understand spatial agreement
between model estimates. The range of differences between
simple and ordinary kriging estimates are relatively large;

Fig. 7 Gridded predictions differences of MD8 ozone concentrations
for 4 August 2010 between ordinary kriging and simple kriging (SK,
a), universal kriging with max relative humidity (b), max temperature

(c), and mean wind speed (d). The contour lines give the quantiles of
differences of the kriging estimate from the ordinary kriging
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however, greater than 75% of the predicted surface display
good agreement. In comparison, the universal method
estimates demonstrated better agreement with the ordinary
kriging estimate as evidenced by the narrower range of
prediction differences and greater coverage (>85% across
all universal kriging methods). While the low and high
regions tend to be clustered, the midrange of the differences
was evenly distributed, suggesting that the universal kriging
estimates did not detect any important trend features missed
by the ordinary kriging model.

Finally, Fig. 8a–d give statistical metrics calculated from
the leave-out-one cross-validation of the interpolation

methods. Since kriging explicitly accounts for spatial var-
iance, in contrast to IDW, it tends to give lower RMSE and
ME values, as is evident in the results observed here. Simple
kriging was consistently the poorest interpolation method,
displaying high interpolation errors and greater bias. Overall,
ordinary kriging and universal kriging were the better per-
forming methods, displaying lower RMSE and MSE, indi-
cating that the methods were substantially unbiased. There
was little difference in the statistical metrics between ordin-
ary kriging and the universal kriging methods, indicating that
no obvious increases in performance are achieved by
including additional covariates via universal kriging.

Fig. 8 (a) Root mean squared error (RSME, ppbv), (b) mean absolute
error (MSE, ppbv), (c) mean prediction error (SE, ppbv), and (d) 95%
coverage interval (Cov95) calculated from leave-out-one cross-
validation of MD8 ozone concentration interpolation methods per-
formed on five years (2012 - 2016) of summer ozone observations in

the domain. Methods assessed here are inverse distance weighted
(IDW), simple kriging (SK), ordinary kriging(OK), and universal
kriging with daily maximum relative humidity ðdRHÞ, mean relative
humidity ðRHÞ, minimum relative humidity ð

:
RH Þ, mean wind speed

ðWSÞ, and maximum temperature ðT̂Þ as covariates, respectively

Application of geostatistical approaches to predict the spatio-temporal distribution of summer ozone in. . . 817



Previous model inter-comparison studies have assessed
the ability of spatial interpolation methods to estimate ozone
concentrations at subject exposure points in Houston, Texas,
with emphasis on IDW, kriging in space, and kriging in
space and time [60], and ordinary kriging [61, 62]. Gorai
et al. [63] explored the influence of local climatic factors on
the spatial distribution of ground level ozone concentrations,
investigating the role of temperature, wind speed, wind
direction, and NO2 level ozone concentrations over Eastern
Texas. Higher concentrations of NO2 were associated with
higher concentrations of ozone, and while the distribution
patterns of ozone were influenced by wind speed and
direction, no significant correlation was found with the
temperature profile of the domain. Studies have shown that
the scale of the domain may affect the contributions of cli-
mate variable to affect the spatial model [64].

Conclusion

We analyzed 27 years (1990–2016) of summer ozone
observations from the TCEQ monitoring network in the
HGB metropolitan area to understand spatial and temporal
trends. We also explored spatial interpolation methods for
generating representative concentration surfaces, and pro-
vided a systematic comparison between different inter-
polation methods to identify the optimal method for the
generation of ozone surfaces for metropolitan Houston,
Texas. This approach is generalizable and provides infor-
mation on methodological uncertainty by evaluating mul-
tiple methods utilizing networks with varied spatial
coverage and sampling frequencies. This approach can be
extended by incorporating advanced methods into the
comparison scheme, such as emission-based air quality
modeling, and regression methods, and the inclusion of
multiple pollutants.

The temporal trend in summer ozone concentrations in
the study area indicated greater concentrations in the first
decade of observation in both the extreme and the mean,
before decreasing over the remainder of the period. The
95th and 75th percentile distributions of MD8 ozone
demonstrated a statistically significant decreasing trend that
was significant over the period. Summer ozone also
exhibited a spatio-temporal trend of lower peaks earlier in
the diurnal cycle in the southeastern region of the domain,
and greater concentration peaks later in the cycle pre-
dominantly in the north-north western region. This pattern
is facilitated by the emissions of ozone precursors from the
heavily industrialized zone of the HSC, and the presence of
a prominent sea breeze pushing ozone plumes north.

Evaluation of the spatial interpolation methods indicated
that when compared with the deterministic IDW in this
study, kriging methods performed better, showing greater

consistency in the generated surfaces, and lower errors and
bias. Ordinary kriging was determined to be the optimal
kriging method, striking a good balance between accuracy
and simplicity. The inclusion of additional covariates did
not significantly improve the interpolation results. The
surfaces generated here contributed to better understanding
of spatial and temporal variability of ozone over a large
urban area. Estimated daily maximum 8 h ozone con-
centration fields from the ordinary kriging model will
inform our research on population health risks associated
with extreme ozone episodes, and will be applied to assess
exposures for empirical and predictive health risk models.
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