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Abstract

Tens-of-thousands of chemicals are registered in the U.S. for use in countless processes and products. Recent evidence
suggests that many of these chemicals are measureable in environmental and/or biological systems, indicating the potential
for widespread exposures. Traditional public health research tools, including in vivo studies and targeted analytical
chemistry methods, have been unable to meet the needs of screening programs designed to evaluate chemical safety. As
such, new tools have been developed to enable rapid assessment of potentially harmful chemical exposures and their
attendant biological responses. One group of tools, known as “non-targeted analysis” (NTA) methods, allows the rapid
characterization of thousands of never-before-studied compounds in a wide variety of environmental, residential, and
biological media. This article discusses current applications of NTA methods, challenges to their effective use in chemical
screening studies, and ways in which shared resources (e.g., chemical standards, databases, model predictions, and media
measurements) can advance their use in risk-based chemical prioritization. A brief review is provided of resources and
projects within EPA’s Office of Research and Development (ORD) that provide benefit to, and receive benefits from, NTA
research endeavors. A summary of EPA’s Non-Targeted Analysis Collaborative Trial (ENTACT) is also given, which makes
direct use of ORD resources to benefit the global NTA research community. Finally, a research framework is described that
shows how NTA methods will bridge chemical prioritization efforts within ORD. This framework exists as a guide for
institutions seeking to understand the complexity of chemical exposures, and the impact of these exposures on living
systems.
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Introduction

The last decade has witnessed pronounced transformations
in approaches for linking chemical exposures to human and
ecological health. Toxicity testing methods that support
chemical safety evaluations have evolved rapidly, ushering
in an era defined by high-throughput screening (HTS) and
chemical prioritization [1, 2]. Two US-based testing pro-
grams—the Toxicity Testing in the 21st Century (Tox21)
Federal Consortium and the EPA Toxicity Forecaster
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(ToxCast) project—have together evaluated over 8000
chemical substances across hundreds of bioassays [3-5].
Efforts are underway to map the derived bioactivity data to
key events along adverse outcome pathways (AOPs) in
support of 21st century risk assessments and regulatory
decisions [6, 7]. Risk-based decisions, however, are wea-
kened without quantitative knowledge of exposure, pro-
cesses that link exposure and target dose, and the impact of
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target dose on AOPs [8-11]. Noting this challenge, the
exposure science community has mirrored recent advances
in toxicity testing, developing both predictive and empirical
methods for rapid acquisition of chemical exposure data [8,
9, 12, 13]. Many measurement-based methods are borne
out of successes in the metabolomics field. For example,
high-resolution mass spectrometry (HRMS), a common
metabolomics tool, now allows rapid characterization of
hundreds to thousands of compounds in a given environ-
mental (e.g., surface water), residential (e.g., house dust), or
biological (e.g., serum) sample. Whereas metabolomics has
mostly eyed endogenous compounds, the emerging field of
“exposomics” has broadened the analytical focus to include
xenobiotic compounds [14, 15]. Popular open metabo-
lomics databases, in fact, are expanding to include large lists
of man-made compounds, as well as known and predicted
metabolites of xenobiotics and naturally-occurring com-
pounds [16-19]. Furthermore, software developers are
adapting existing tools, and developing new tools, to better
meet the needs of the growing exposomics community
[20, 21]. In time, these adaptations will enable fully inte-
grated research workflows that seamlessly bridge empirical
knowledge of stressors and biological adaptations to those
stressors [10, 18].

The concept of the “exposome” was introduced in 2005
by Dr. Christopher Wild as a way to represent all life-course
environmental exposures from the prenatal period onwards
[22]. Since that time, exposomics, like any nascent field, has
evolved in concept, definition, and practice. While multiple
definitions now exist, it is generally agreed upon that the
exposome represents the totality of exposures experienced
by an individual (human or other), and that these exposures
reflect exogenous and endogenous stressors originating
from chemical and non-chemical sources [23, 24]. By
definition, chemical components of the exposome are
measureable in media with which a receptor comes into
contact. For humans, these media include—but are not
limited to—food, air, water, consumer products (e.g.,
lotions), articles (e.g., clothing), house dust, and building
materials. Biological media further offer a window into the
exposome, and have been a focus of many analytical efforts
[25-28].

In most instances, analytical chemistry-based exposome
research has moved away from “targeted” methods and
towards suspect screening analysis (SSA) and non-targeted
analysis (NTA) methods. Suspect screening studies are
those in which observed but unknown features (generally
defined in HRMS experiments by an accurate mass, reten-
tion time [RT], and mass spectrum) are compared against a
database of chemical suspects to identify plausible hits [21,
29]. True NTA (also called “untargeted”) studies are those in
which chemical structures of unknown compounds are
postulated without the aid of suspect lists [21, 29]. While
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clear differences exist in the methods used for SSA and
NTA, the term “non-targeted analysis” is commonly used to
describe both SSA and NTA experiments. As such, the
abbreviation “NTA” is used here in a general sense to
describe this entire genre of research. Within this NTA
realm, emphasis is generally placed on characterizing
compounds that are unknown or poorly studied, and, more
importantly, on examining compounds that are significantly
related to an exposure source (environmental forensics),
health status, or some other measure of interest. NTA stu-
dies are gaining in popularity [30], but the rapid and
accurate characterization of large suites of chemical
unknowns remains challenging. Appropriate resources and
efficient methods must therefore be identified to propel
NTA methods away from a niche field and into mainstream
public health laboratories.

EPA’s Office of Research and Development (ORD) has
pioneered many HTS strategies for toxicity testing, expo-
sure forecasting, and risk-based prioritization over the past
decade. In support of these efforts, EPA’s ToxCast project,
administered within the National Center for Computational
Toxicology (NCCT), has procured and manages a rich
library of individual chemicals [5]. NCCT further develops,
curates, and manages databases and dashboards that house
information on these and many other compounds of rele-
vance to environmental health. Whereas these collective
tools are the basis for EPA’s HTS activities (designed to
potentially inform regulatory decisions), they have seldom
been considered as resources for the exposomics research
community, and remain underutilized in NTA experiments.
In a recent article [31], we demonstrated the power of ORD
resources for guiding novel NTA workflows. Our pilot-
scale study showed that ORD tools can be effectively used
to identify, prioritize, and confirm novel compounds in
samples of house dust. It further indicated that certain novel
compounds (i.e., those never before measured in house
dust) are ubiquitous environmental contaminants and likely
to activate specific biological pathways. Additional studies
have reported similar findings based on analyses of house
dust and other media [32-34]. Together, these studies
underscore a limited understanding of the compounds pre-
sent in our environments. Yet, they also highlight a need
for, and clear advantage of, integrating NTA research
efforts with those already established to support risk-based
chemical prioritization.

The purpose of this article is to provide a clear road map
for integrating NTA research with current chemical
screening initiatives. The article first discusses NTA meth-
ods as tools for discovering the exposome. It then provides
a brief history and synopsis of current activities within
ORD, with specific emphasis on activities that relate to
NTA research. A summary of an EPA-led collaborative trial
is then presented, which exploits ORD resources to advance
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NTA research efforts. A multi-step framework is finally
offered, which is being used by EPA scientists to maximize
data used in, and knowledge gained from, NTA experi-
ments. The information provided herein will enable NTA
practitioners to make greater use of valuable resources that
service 21Ist century chemical testing programs. It will
further allow scientists and decision makers to make direct
use of NTA data when performing risk-based chemical
prioritizations. Together these actions will enable more
efficient, comprehensive, and relevant evaluations of che-
mical safety.

Methods, results, and discussion
NTA as a tool for exposome research

The concept of the exposome has been in existence for more
than a decade. During this period, a number of modified
definitions have been proposed to place emphasis on: 1)
external vs. internal exposure sources (e.g., the “eco-expo-
some” [8] and the “endogenous exposome” [35]); 2) research
applications for specific media (e.g., the “blood exposome”
[24, 36] and the “tooth exposome” [37]); and 3) general
analytical strategies (e.g., “top-down exposomics” vs. “bot-
tom-up exposomics” [23, 38]). Regardless of the definition
and application, it is generally agreed that NTA methods are
a key to discovering the breadth of all exposures, and more
importantly, which exposures are associated with disease.
Different portions of the exposome have now been char-
acterized using suites of analytical tools, which range from
low resolution gas chromatography mass spectrometry (GC/
MS) platforms, to ultra-high resolution Fourier transform
ion cyclotron resonance mass spectrometry (FT-ICR/MS)
platforms. Many recent investigations have focused on
polar organic compounds, which are often readily detected
using liquid chromatography (LC) coupled with high
resolution Orbitrap or time-of-flight mass spectrometry
(TOF/MS) [28]. Hybrid systems, such as quadrupole-
Orbitrap and quadrupole-TOF mass spectrometers
(Q-TOF/MS), further enable compound identification using
both precursor ion detection in full-scan MS mode, and
product ion detection in MS/MS mode. These HRMS
hybrid systems are quickly becoming the most commonly
used tools in NTA laboratories [28].

High-resolution MS instruments generate data on thou-
sands of molecular features, which represent unknown
compounds generally described in terms of their mono-
isotopic masses, retention times, and isotope distributions.
In some cases, these data are accompanied by fragmentation
spectra (via MS/MS analysis) and predicted molecular for-
mulae. The job of the analyst is to proffer chemical struc-
tures that are consistent with these observed features.

Current guidance recommends binning structures based
upon the certainty of assignment [39]. “Tentative candi-
dates” are proposed structures that are consistent with
experimental data, but not necessarily unequivocal top hits.
“Probable structures” are those not confirmed with standards
but named as top candidates using library spectrum matches
and other diagnostic evidence (e.g., RTs associated with a
specific method). Finally, “confirmed structures” are those
that have been verified using a reference standard.

Multiple tentative candidates can exist for a given
molecular feature. As such, it is expected that, for a given
NTA experiment, the number of compounds within each
bin will be ordered as follows: tentative candidates >
probable structures > confirmed structures. Exact ratios
across bins vary from lab-to-lab and medium-to-medium
based on available resources (e.g., authentic standards),
tools (e.g., MS/MS-enabled platforms), and experience/
expertise. Yet, it is clear that the number of unknowns will
continue to outweigh the number of knowns for the fore-
seeable future. The goal, then, is to enable knowledge-based
ascension, for any feature of interest (e.g., those associated
with measures of biological perturbation), from labeling as a
tentative candidate, to probable structure, to confirmed
compound.

The rise from tentative candidate to probable structure is
conditional upon the availability of sufficient diagnostic
evidence. Probable structures are generally those that have
high-scoring library spectrum matches, relatively large
numbers of sources or references in public databases, and
predicted retention behavior that is consistent with observa-
tions about the unknowns [39]. A number of open access
tools exist for ranking tentative candidates and naming
probable structures (e.g., MetFrag [http://c-ruttkies.github.io/
MetFrag/] and STOFF-IDENT [https://www lfu.bayern.de/
stoffident/#!home]. These tools, as well as those available
from instrument vendors, often rely on large public databases
(e.g., ChemSpider [http://www.chemspider.com/] and Pub-
Chem [https://pubchem.ncbi.nlm.nih.gov/]) for the initial
identification of tentative candidates, and subsequent ranking
based on data sources/references. Some tools predict and
evaluate retention behavior using logP-based or logD-based
models that vary in sophistication [40]. Finally, to enable
spectral matching, most tools utilize existing reference
spectra, which are available via vendors and open databases
(e.g., mzCloud™ [https://www.mzcloud.org/], MassBank
[http://www.massbank.jp/index.html?lang=en], and MoNA
[http://mona.fiehnlab.ucdavis.edu/]), or theoretical spectra,
which are generated from fragmentation prediction tools such
as CFM-ID (http://cfmid.wishartlab.com/), MetFrag (http://c-
ruttkies.github.io/MetFrag/), and MAGMa [41].

The combination of these approaches has proven suc-
cessful in the characterization of unknowns in a variety of
media. Yet, opportunities exist to further enhance these
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tools for future investigations. For example, there is a
growing need extend screening libraries to include not just
known parent chemicals, but predicted metabolites and
environmental degradants—compounds which are believed
to comprise a substantial portion of the exposome [16].
Indeed, as stated in a recent review by Escher and collea-
gues “...a very small number of the thousands of com-
pounds detectable in a sample can actually be identified,
leaving the largest fraction of chemicals at the level of a
known accurate mass (or molecular formula) and retention
time. Any improvements here rely strongly on a better
assignment of likely structures... based on a prediction of
fragmentation, ionization, or chromatographic retention
times supported by more comprehensive mass spectra
databases” [10]. From these statements it is clear that
significant improvements to NTA workflows are needed,
as are appropriate resources (e.g., chemicals on which to
build reference databases and model training sets) that
can enable these improvements. The following section
details projects and resources within ORD that are
now being used, by EPA scientists and the broader
scientific community, to enhance NTA methods and
workflows.

Highlights from EPA’s Office of Research and
Development

High throughput bioactivity screening and the ToxCast
project

In 2007, the National Research Council (NRC) of the
National Academies of Science (NAS) published “Toxicity
Testing in the 21st Century”, a report calling for greater
focus on mechanistic (i.e., pathway-based) understanding of
toxicity [2]. At that time, the advent of HTS had enabled the
pharmaceutical industry to: 1) rapidly screen many hun-
dreds or thousands of chemicals; 2) screen against targets
having greater relevance to humans; and 3) make specific
inferences pertaining to the biological pathways involved
with toxicity [42]. In many cases, the potential for bioac-
tivity within human or specific ecological species could be
targeted using in vitro methods, along with proteins and
cells derived from tissues of the species in question. Noting
these advancements, and the recommendations of the NRC,
the National Institutes of Health (NIH) National Toxicology
Program (NTP), the NIH National Center for Advancing
Translational Sciences (NCATS), and EPA formed the
Federal Tox21 consortium, which was soon joined by the
US Food and Drug Administration (FDA). The goal of this
consortium was to use modern HTS approaches to better
assess chemical toxicity, especially for many thousands of
chemicals for which little or no toxicity data were available
[1]. To date, over 8000 chemical substances (including
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pharmaceuticals, plasticizers, pesticides, fragrances, and
food additives) have been tested, robotically and uniformly
at the NCATS intramural testing facility, across over 100
HTS assays (consisting of nuclear receptor target assays and
cell-based viability assays) [3].

The EPA-contributed portion of Tox21 includes more
than 3800 unique compounds. Many of these compounds
have undergone additional HTS across more than 800 assay
endpoints as part of a separate EPA testing program, known
as the ToxCast project [4]. This EPA testing program has
expanded in tandem with the Tox21 program, enlisting a
number of contract-administered, commercially available
assay systems, many of which were originally developed to
service the pharmaceutical industry’s drug discovery pro-
grams. ToxCast assay technologies span a broad suite of
high and medium-throughput screening targets and cell-
based systems, and provide for more extensive biological
screening of EPA’s ToxCast library, effectively com-
plementing the available Tox21 assays. ToxCast testing has
been conducted in phases. The Phase I library included 310
compounds, which were primarily pesticides that have been
well characterized by animal toxicity studies, along with
small sets of high-priority environmental chemicals (e.g.,
bisphenol A [BPA]) and toxicologically active metabolites
(e.g., mono(2-ethylhexyl)phthalate [MEHP]). Phase II test-
ing examined Phase I chemicals across new assays. It fur-
ther broadened the chemical library to include more than
700 industrial chemicals, known toxicants and carcinogens,
alternative “green” chemicals, food-additives, and failed
pharmaceuticals. Phase II testing also included ~800 addi-
tional chemicals that underwent limited testing in
endocrine-relevant assays only. A rolling “Phase II” is
ongoing with the goals of: 1) broadening assay endpoint
coverage across the nearly 1800 compounds in the Phase II
library, 2) expanding upon the Phase II library with newly
added priority chemicals, and 3) applying strategic testing
to the larger EPA Tox21 library [5].

ToxCast HTS is typically conducted in concentration-
response format, with statistical analysis used to estimate
the concentration of chemical needed to cause bioactivities
in any given assay [4]. Many chemical-assay combinations
are inactive at even the highest tested concentration [43,
44]. Those assays that show systematic response with
concentration are referred to as “hits”, with a portion of
assay hits occurring at concentrations below ranges
of cytotoxicity. A series of statistically-derived and
biologically-derived models for predicting in vivo effects
have been developed using ToxCast HTS hits as predictors,
and archival in vivo animal studies as evaluation data. To
date, some pathways are better covered than others due to
available technologies and EPA priorities (e.g., there are 18
assays that indicate activity related to estrogen receptor
alpha (ERa) activation [45]). ToxCast assay results have
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been made publically available by multiple means at
the conclusion of each testing phase, and at regular
intervals [4].

Most ToxCast and Tox21 assays have focused on parent
compound effects [46]. There are two primary reasons for a
lack of testing on metabolites, degradants, and transforma-
tion products. First, some of these compounds are highly
reactive and cannot be effectively assessed until metaboli-
cally competent systems are created. Second, sufficient
quantities of these compounds are needed to provide to
multiple testing facilities—-many metabolites, degradants,
and transformation products are not available on the market,
and have therefore not been tested [5]. An extensive library
of thousands of ToxCast chemicals does exist, however,
allowing independent laboratories to perform experiments
on matched chemical samples [5]. Nominations for new test
chemicals are welcomed, with the biggest limitation being
the ability to acquire sufficient quantities of the compounds
of interest. We note that while most of the in vitro assays do
not have metabolic competency, some assays using primary
human hepatocytes or pluripotent liver cells (e.g., HepaRG)
do allow the assessment of metabolic effects on the liver
[47]. Additional research is ongoing to apply structure-
based metabolism prediction methods and to augment other
important assays with metabolic competency.

High throughput exposure screening and the ExpoCast
project

While thousands of chemicals have been profiled for
bioactivity using HTS, many of these chemicals are lacking
data on exposure [48], which hinders risk-based evaluation.
Many more chemicals exist without exposure or bioactivity
data, and are in need of “exposure-based prioritization” prior
to HTS and risk assessment [49]. The EPA’s exposure
forecaster (ExpoCast) project was therefore developed to
generate the data, tools, and evaluation methods required to
produce rapid and scientifically-defensible estimates of
exposure [11], and to confidently relate these estimates to
concentrations that exhibit bioactivity (identified via HTS)
[50-52]. Since the inception of ExpoCast, EPA has orga-
nized and analyzed extant data; collected new data on
chemical properties, uses, and occurrence [53, 54]; and
evaluated/developed mathematical models for predicting
exposures across thousands of compounds [55]. With
regards to mathematical modeling, a meet-in-the-middle
approach has proven valuable. Using this approach, forward
modeling predictions (e.g., those from mechanistic expo-
sure models) have been compared against exposure esti-
mates inferred from down-stream monitoring data (e.g.,
human biomarker measures, which cover only a small
fraction of the overall chemicals of interest). Statistical
comparisons of forward model predictions vs. biomarker-

based estimates allows global examination of model per-
formance and the impact of specific modeling assumptions
on final exposure predictions [56]. The concepts and stra-
tegies for this meet-in-the-middle approach have been
described elsewhere and implemented at EPA as part of
a Systematic Empirical Evaluation of Models (SEEM)
framework [57].

The SEEM framework allows for crude extrapolation
from chemicals with monitoring data to chemicals without
such data. To date, this approach has relied upon exposures
inferred from urinary biomarker data as reported in the
Centers for Disease Control and Prevention’s (CDC)
National Health and Nutrition Examination Survey
(NHANES). Notable findings of SEEM work include: 1)
fate and transport models—that can predict exposure for
thousands of chemicals following industrial releases (i.e.,
“far-field” sources) and migration through the environment
[58, 59]-are limited in their ability to describe urinary
biomarker data [57]; 2) chemicals present in urine often
reflect “near-field” sources in the home, such as consumer
products and articles of commerce (e.g., furniture and
flooring) [57]; and 3) five factors (production volume, use
in consumer products, use in industrial processes, use as a
pesticidal active, and use as a pesticidal inert) are able to
explain roughly half of the chemical-to-chemical variance
in median exposure rates inferred from NHANES urine
data [60].

Consistent with these findings, new mechanistic models
have been developed with a focus on near-field exposure
pathways [61, 62]; the incorporation of predictions from
these new models into the SEEM framework has the
potential to refine consensus exposure predictions for data-
poor chemicals. In order to parameterize these models,
however, information is needed on product formulation—
that is, the concentration of chemicals in a product. Gold-
smith and colleagues addressed this need by cataloging
thousands of Material Safety Data Sheets (MSDS) for
products sold by a major U.S. retailer, allowing searches for
chemical presence in reviewed products [53]. Dozens of
similar product ingredient databases now exist from other
sources and were recently aggregated into EPA’s Chemical
and Product Categories (CPCat) database [54]. Listings
within this aggregated database include chemicals declared
by the manufacturer or observed through laboratory analy-
sis. It is noteworthy that certain formulated products (e.g.,
personal care products) have specific labeling guidelines
that make ingredient information more prevalent, whereas
other products (e.g., household cleaning products, and
“durable goods” such as apparel or furniture) are governed
by narrow (or non-existent) chemical reporting require-
ments, and therefore have limited formulation data [49].

A challenge in using product ingredient databases for
mechanistic exposure modeling is the qualitative nature of
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the formulation data. Even when chemicals are listed as
being present in a product, concentration values are often
not provided. National production volume data are available
for many chemicals, but typically binned into category
ranges that can span an order of magnitude, and not directly
linked to specific releases or intended use. Further, many
chemicals determined to be present in urine by NHANES
(generally as metabolites) do not even appear on lists of
highly produced chemicals, indicating that they are pro-
duced at low levels (less than 25,000 Ib/year) or do not
emanate from monitored production processes. Finally,
while some data exist for chemicals deliberately added to
objects, many chemicals are introduced to products through
packaging, and are therefore present despite not being
explicitly labeled [54]. Noting these limitations, machine
learning models have been developed at EPA to fill
knowledge gaps related to product chemistries. These
models utilize physico-chemical properties [63] and/or
chemical structure information [64] to predict functional
uses for individual compounds. Functional use estimates are
then combined with consumer product ingredient databases
(described above) to develop screening-level concentration
estimates (“generic formulations”) for select products. These
screening-level estimates are appropriate for some applica-
tions (e.g., chemical prioritization), but may not be well-
suited for rigorous quantitative analyses. Additional product
composition data are therefore needed to expand coverage
across additional products and non-intentional ingredients,
and to support the development of exposure predictions fit
for higher-tier safety assessments.

Based on existing product/product-use information,
along with environmental and biological monitoring data,
it's clear that chemical exposures often co-occur, leading to
the potential for mixture effects on biological systems. To
date, limited bioactivity-based HTS has been performed on
chemical mixtures, owing, in part, to the vast number of
mixtures that could conceivably be tested. Exposure infor-
mation, however, is now being used to address this limita-
tion. In particular, knowledge of chemical co-occurrence in
media [65] and formulations [54] are being used to reduce
the number of permutations considered for HTS. As an
example, in a chemical library of 1000 unique compounds,
there are more than 10°”° combinations of compounds that
could be evaluated using HTS assays. The role of exposure-
based priority setting is to identify known or possible (i.e.,
those that are likely to occur) chemical mixtures that first
require screening, and to set aside mixtures that may never
occur. A recent ExpoCast analysis demonstrated the value
of this approach using existing measures from CDC's
NHANES. Specifically, Kapraun and colleagues considered
chemical co-occurrence using urine and blood measures,
and ultimately identified a tractable number of chemical
combinations that occurred in greater than 30% of the U.S.
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population [66]. The techniques utilized by Kapraun and
colleagues now make it possible to readily evaluate che-
micals for potentially hazardous synergies. Yet, analyses to
date are beholden to limited datasets of target analytes. As
such, broad measurement-based datasets are now required
to further examine the extent to which chemical exposures
co-occur in a consistent, predictable, and biologically-
relevant manner.

The Distributed Structure-Searchable Toxicity (DSSTox)
database

Data generated from EPA’s ToxCast and ExpoCast pro-
grams are now stored within EPA’s DSSTox database. The
original DSSTox web site was launched in 2004, providing
a common access point for several thousand environmental
chemicals associated with four publicly available toxicity
databases pertaining to carcinogenicity, aquatic toxicity,
water disinfection by-products, and estrogen-receptor
binding activity. This collection of DSSTox data files
offered a highly-curated, standardized set of chemical
structures that was well-suited for structure-activity mod-
eling [67, 68]. The quality of mappings between chemical
identifiers (names, registry numbers, etc.) and their corre-
sponding structures provided the community with a com-
prehensive set of mappings to a unified DSSTox structure
index. This structure index became the underpinning of the
current DSSTox chemical database.

DSSTox continued to expand over the next decade with
additional chemical structure files of interest to the tox-
icology and environmental science communities, including
lists of high-production volume (HPV) chemicals, indexed
lists of public microarray experiment databases, FDA drugs,
and risk assessment lists (e.g., EPA’s Integrated Risk
Information System [https://cfpub.epa.gov/ncea/iris2/atoz.
cfm]). From 2007 onward, the database was enlisted to
serve as the cheminformatics backbone of the ToxCast and
Tox21 programs, with DSSTox curators registering all
chemicals entering both screening libraries [S]. This enabled
the mapping of in vitro and in vivo data to chemical
structures, the latter through indexing of the NTP bioassay
database and EPA’s Toxicity Reference Database (Tox-
RefDB) [69]. By mid-2014, the manually curated DSSTox
database had grown to over 20,000 chemical substances
(spanning more than a dozen inventories) of high priority to
EPA research programs (archived DSSTox content avail-
able for download at ftp://ftp.epa.gov/dsstoxftp).

Despite the growth of DSSTox from 2007-2014, cov-
erage did not extend to larger EPA inventories (e.g., the
Toxic Substances Control Act [TSCA] inventory, https:/
www.epa.gov/tsca-inventory and the Endocrine Disruption
Screening  Program  universe,  https://www.epa.gov/
endocrine-disruption), which were beginning to define a
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putative “chemical exposure landscape” [48, 70]. The
focused nature of DSSTox stemmed from rate-limiting
manual curation efforts, which ensured high quality
structure-identifier mappings, but limited opportunities for
DSSTox to more broadly support EPA research and reg-
ulatory efforts. A number of large chemically-indexed
databases (such as PubChem, ChemSpider, ChEMBL,
ChemIDPlus, and ACToR) eventually provided access
points for additional chemical structures and identifiers.
Curation efforts, however, demonstrated high rates of
inaccuracies and mis-mapped chemical identifiers in these
public domain chemical databases (e.g., a name or registry
number incorrectly mapped to one or more structures), a
common situation that has previously been reported [71,
72]. As such, the decision was ultimately made to expand
DSSTox using publicly available resources, while also
recognizing the limitations of those resources, and preser-
ving the aspects of quality curation upon which DSSTox
was built.

The product of database expansion efforts, known as
DSSTox version 2 (V2), was developed using algorithmic
curation techniques, both alone and in support of focused,
ongoing manual curation efforts. A key constraint applied to
the construction of DSSTox_V?2 was the requirement for a
1:1:1 mapping among the preferred name for a chemical
(chosen to be unique), the active (or current) Chemical
Abstracts Services Registration Number (CAS-RN), and the
chemical structure, as could be uniquely rendered in mol file
format. Subject to these constraints (i.e., disallowing con-
flicts) chemical structures and uniquely mapped identifiers
were sequentially loaded into DSSTox_V2 from the fol-
lowing public databases: the EPA Substance Registry Ser-
vices (SRS) database (containing the public TSCA chemical
inventory, accessed at https://iaspub.epa.gov/sor_internet/
registry/substreg/); the National Library of Medicine’s
(NLM) ChemIDPlus (part of the TOXNET suite of data-
bases, accessed at https://chem.nlm.nih.gov/chemidplus/);
and the National Center for Biotechnology Information’s
(NCBI) PubChem database (the portion containing registry
number identifiers along with other chemical identifiers,
accessed at https://pubchem.ncbi.nlm.nih.gov/). Based on
the number of sources that agreed on mappings of identi-
fiers to structures, these public data were loaded with a
quality control annotation (qc_level) ranging from low to
high. Publicly indexed substances containing structures and
identifiers that conflicted with existing DSSTox information
were not registered; they were either queued for manual
curation if considered important to EPA research programs,
or were set aside to be loaded at a later date with appropriate
documentation of the conflict.

In addition to the programmatic incorporation of non-
conflicting portions of SRS, ChemIDPlus and PubChem
into DSSTox_V2, both manual and programmatically

assisted curation has continued to address critical gaps in
coverage of high-interest environmental lists, including
pesticides, food additives, chemicals of potential concern
for endocrine disruption [73], chemicals with known func-
tional use in products [54], and substances on the public
EPA hydraulic fracturing chemicals list (https://cfpub.epa.
gov/ncea/hfstudy/recordisplay.cfm?deid=332990). = With
these latest additions, the DSSTox database now has over
750,000 records, with more than 60,000 manually curated
or having consistent identifier assignments in three or more
public databases constituting the highest qc_level content.
The clean mapping of structural identifiers (names, CAS-
RN) to chemical structures provides an essential under-
pinning to robust and accurate cheminformatics workflows.
Elements of such workflows, designed to support quanti-
tative structure-activity relationship (QSAR) modeling as
part of EPA’s ToxCast and ExpoCast programs, are now
being surfaced through EPA’s CompTox Chemistry
Dashboard.

The CompTox Chemistry Dashboard

The CompTox Chemistry Dashboard (hereafter, referred to
as the “Dashboard”), developed at NCCT, is a freely
accessible web-based application and data hub. Chemical
substances surfaced via the Dashboard are hosted in the
DSSTox database with associated identifiers (e.g., CAS-
RN, systematic and trivial names). The Dashboard is used
to search DSSTox using a simple alphanumeric text entry
box (Fig. 1a). A successful search will result in a chemical
page header (Fig. 1b) that provides:

1. a chemical structure image (with ability to download
in mol file format);

2. intrinsic properties (e.g., molecular formula and
monoisotopic mass);

3. chemical identifiers (e.g., systematic name, SMILES
string, InChl string, and InChIKey);

4. related compounds (based on molecular skeleton
search, molecular similarity search, and chemical
presence in various mixtures and salt forms);

5. alisting of databases in which the chemical is present
(e.g., ToxCast and Tox21); and

6. a record citation including a unique DSSTox
substance identifier (DTXSID).

Below the header is a series of individual data tabs
(Fig. 1b). The “Chemical Properties” and “Environmental
Fate and Transport” tabs contain experimental properties
assembled from various sources; presented values reflect
recent efforts of NCCT to curate specific datasets in support
of prediction algorithms [74, 75]. The “Synonyms” tab lists
all associated systematic and trivial names, and various
types of CAS-RN (i.e., active, deleted, and alternate, with
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Fig. 1 The CompTox Chemistry Dashboard home page (a) and an example chemical page header (b)

the associated flags). The “External Links” tab lists a series
of external resources associated with the chemical in
question. The “Exposure” tab includes information regard-
ing chemical weight fractions in consumer products, pro-
duct use and functional use categories, NHANES
monitoring data, and predicted exposure using the Expo-
Cast models. The “Bioassays” tab provides access to details
of the ToxCast data and bioassay data available in Pub-
Chem. The “Toxicity” values tab includes data gathered
from multiple EPA databases and documents, and various
online open data sources. The “Literature” tab allows a user
to choose from a series of queries, and perform searches
against Google Scholar and Pubmed. It further integrates
PubChem widgets for articles and patents. In general, all
tabular data surfaced on the Dashboard can be downloaded
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as either tab-separated value files or Excel files, or included
into an SDF file with the chemical structure.

An advanced search on the Dashboard (Fig. 2a) allows
for mass searching, molecular formula searching, and
molecular formula generation (based on a mass input). A
batch search (Fig. 2b) further allows users to input lists of
chemical names, CAS numbers, InChl Keys and other
identifiers, and to retrieve formulae, masses, DTXSIDs, and
other data related to chemical bioactivity and exposure.
Various slices of data associated with the Dashboard are
available as open data and can be obtained via the down-
loads page (https://comptox.epa.gov/dashboard/downloa
ds). A detailed help file regarding how to use the Dash-
board is also available online (https://comptox.epa.gov/da
shboard/help).
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Fig. 2 The CompTox Chemistry
Dashboard advanced search
menu (a) and batch search
menu (b)
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Summary of EPA’s NTA workshop and collaborative
trial

In August 2015, ORD’s National Exposure Research
Laboratory (NERL) and Chemical Safety for Sustainability
(CSS) research program jointly hosted an NTA-focused
workshop in Research Triangle Park, North Carolina. The
purpose of the workshop was to bring together world
experts in exposure science, toxicology, cheminformatics,
and analytical chemistry to discuss opportunities for colla-
boration and research integration. Invited presentations
focused on research and regulatory drivers; existing data,
tools, and resources that are being used to support HTS
programs (as described in the previous sections); and NTA
methods that are being developed and applied to char-
acterize the exposome. Presentations from EPA science
leaders called for engagement among research communities
and highlighted how individual groups stand to benefit from
shared knowledge and resources. Needs of the exposure
scientists (representing the ExpoCast project), toxicologists
(representing the ToxCast project), and analytical chemists
(representing NTA projects) were articulated during the
workshop as follows:

Needs of exposure scientists (ExpoCast) to support HT
exposure screening:

— Measurements of chemicals in consumer products and
articles of commerce

— Measurements of chemicals in environmental/residential
media

— Measurements of chemicals in biological media

Needs of toxicologists (ToxCast) to support HT bioactivity
screening:

— Prioritized lists of candidate parent (registered) chemicals
— Prioritized lists of candidate degradants/metabolites
— Prioritized lists of candidate chemical mixtures

Needs of analytical chemists (NTA) to support exposome
research:

— Large, relevant, curated, and open chemical databases
for compound identification

— Informatics tools for candidate selection and prioritiza-
tion

— Large inventories of chemical standards and reference
spectra for candidate confirmation

— Laboratory networks to support comprehensive analyses
and standardized methods

The needs of the exposure scientists reflect the general
lack of measurement data that are required to parameterize
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and ultimately evaluate exposure models. The needs of the
toxicology community reflect the challenge of utilizing HTS
methods to characterize bioactivity across tens-of-thousands
of known compounds, and many more possible degradants,
metabolites, and mixtures. Finally, the needs of the analy-
tical chemistry community reflect the resources that are
required for a holistic examination of the exposome.

Two days of discussion on these needs led to the plan-
ning and development of a research collaboration that will
benefit all invested parties. A primary goal of the research
collaboration is to answer the following questions:

1. How can resources procured for HTS research in
support of chemical safety evaluations be used to
advance NTA methods?

2. How can measurement data generated from NTA
methods be used to direct HTS research and
strengthen chemical safety evaluations?

EPA’s Non-Targeted Analysis Collaborative Trial
(ENTACT) was developed in direct response to these
questions. ENTACT makes full use of EPA’s ToxCast
library of approximately 4000 compounds, is designed to
be conducted in three parts, and involves international
participants spanning more than 25 government, academic,
and private/vendor laboratories. For part I of ENTACT,
approximately 1200 compounds from the ToxCast library
were combined into a series of synthetic mixtures, with
~100 to ~400 compounds included in each mixture.
Laboratories participating in ENTACT will perform blinded
analyses of these mixtures using their state-of-the art
NTA methods. Individual methods will span a variety of
separation and detection techniques, instruments, software,
databases, and workflows. Results will be compiled by EPA
and used to determine which NTA tools are best suited for
the detection of specific compounds or groups of com-
pounds. They will further indicate the extent to which
sample complexity affects NTA method performance.
Finally, they will serve as the basis for future QSAR models
that predict the likelihood of a given compound being
detected by a selected analytical method.

Part I of ENTACT evaluates NTA method performance
using samples of fully synthetic mixtures. Part II, on the
other hand, evaluates NTA method performance using
extracts of true environmental and biological samples. Here,
extracts of reference material house dust (National Institute
of Standards and Technology [NIST] Standard Reference
Material [SRM] 2585), human serum (NIST SRM 1957),
and silicone passive air samplers were shared across
laboratories to determine the region of chemical space that
can be characterized using specific NTA methods, by
sample type. To explore the extent to which the matrices
affect extraction and other method performance parameters,
each sample has also been fortified with a mixture of
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Fig. 3 A framework for Sample Analysis via NTA Methods
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ToxCast chemicals prior to extraction. As such, laboratories
participating in ENTACT have received two extracts of
each medium—one based on a fortified reference sample
and one based on an unaltered reference sample. Results of
part II analyses will identify the most suitable methods for
characterizing specific chemicals within a given medium.
Perhaps more importantly, they will indicate how compre-
hensively a concerted effort of top laboratories can char-
acterize compounds within house dust, human serum, and
passive air samplers.

Parts I and II of ENTACT have been open to all inter-
ested laboratories, resources permitting. Part III, however,
has been open only to instrument vendors, and select
institutions that manage large open databases/software in
support of NTA workflows. For part III, the full ToxCast
chemical library, totaling ~4000 unique substances, is being
shared for the purpose of generating reference mass spectra
across a variety of instruments and analytical conditions
(e.g., ionization source, ionization mode, collision energy,
MS level). Institutions receiving these compounds will
generate individual spectral records and make them avail-
able to EPA for further public use. Institutions may also
make spectral records available to the public, or their cus-
tomers, via addition to existing databases or development of
compound libraries. Collectively, these efforts will enable
users of many MS and HRMS platforms to rapidly screen
for the presence of ToxCast chemicals in samples of their
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choosing. Results from these screening-level analyses will
then provide provisional measurement data (e.g., presence/
absence in a given medium) across thousands of compounds
for which exposure data are currently lacking. These data
will ultimately allow an improved understanding of aggre-
gate exposures (i.e., one compound, multiple exposure
pathways), cumulative exposures (i.e., multiple compounds,
multiple exposure pathways, one biological target), and the
contribution of ToxCast chemicals to the exposome.

Framework for research integration

A formalized framework is needed to ensure maximum
benefit of ENTACT to both exposome and chemical
screening research programs. The primary function of the
framework, as shown in Fig. 3, is to highlight how and
where existing chemical screening tools (i.e., ToxCast,
ExpoCast, DSSTox, and the CompTox Chemistry Dash-
board) can be leveraged to enhance NTA efforts, and ways
in which NTA data can allow for more informed chemical
screening.

Sample analysis
The first step within the framework is the physical
analysis of products/articles, environmental samples,

and/or biological samples using NTA methods (Fig. 3).
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Irrespective of the medium in question, no single analysis
method, no matter how refined, is able to characterize the
full chemical contents of a given sample. The use of mul-
tiple methods and analytical platforms, however, can greatly
extend surveillance capabilities. A goal of ENTACT is to
determine the chemical space applicability domain for a
given method. Trial results will inform the breadth of
approaches required to adequately characterize a given
medium, or to address a given research, public health, or
regulatory need. For example, trial results will indicate the
number and types of methods required to screen for all
ToxCast chemicals in a suite of consumer products. Trial
results will also identify compounds that have yet to be
considered as part of ToxCast/Tox21 but are present in
select environmental and biological media. As described in
detail below, latter steps of the framework determine which
of these compounds, if any, should be prioritized for
bioactivity screening.

Candidate identification and evaluation

Within ORD, the CompTox Chemistry Dashboard, and the
underlying DSSTox database, are primary NTA tools for
candidate identification and evaluation (Fig. 3). Initial work
has determined that the Dashboard can effectively identify
“known unknowns” in samples using data source ranking
techniques as developed by Little et al [76]. Here, the
Dashboard is used to search unidentified features from
HRMS experiments within a mass range, or by an exact
formula, and the most likely candidate chemicals are those
with the highest data source counts [77]. Data source
ranking alone, however, does not provide sufficient evi-
dence for a “probable” compound classification [39]. The
Dashboard is therefore incorporating additional data
streams, models, and functionality to increase certainty
when assigning structures to unknown compounds. For
example, chemical functional use data from EPA’s CPCat
database are now available through the Dashboard and can
be incorporated into workflows to filter lists of tentative
structures. A new and enhanced version of CPCat, the
Consumer Products Database (CPDat), has been developed,
made available as a beta release in the March, 2017 update
to the Dashboard, and further provides predicted functional
uses for chemicals with no known use data. This informa-
tion can help determine the likelihood that a given com-
pound would be present in a given sample (e.g., a textile
dye is more likely than a drug to be found in house dust)
[77]. In addition, physicochemical properties of candidate
chemicals are available within the Dashboard, and can be
used to predict the likelihood of environmental media
occurrence, and the suitability of a selected laboratory
method (e.g., extraction solvent, separation technique,
ionization mode) for detection.
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The utilization of relevant data streams within the
Dashboard can improve the confidence in structural
assignments, but a true one-pass analysis requires the ability
to search large lists of unidentified features exported from
an HRMS instrument. Batch search capability within the
Dashboard (Fig. 2b) now enables users to search thousands
of instrument generated molecular formulae at once and
receive back the top ten most likely candidate chemicals
with associated chemical data (e.g., identifiers, properties,
structures, etc.). A further enhancement to this search cap-
ability is the inclusion of “MS-ready” structures, whereby all
chemicals within the database have been desalted, des-
olvated, and had stereochemistry removed to represent the
forms of chemicals observed via HRMS. In addition to this
feature, and the aforementioned features for data source
ranking and functional use filtering, spectral matching
capabilities will eventually provide supporting evidence for
compound identification. Specifically, linking Dashboard
records to those from open spectral libraries (e.g., Mass-
Bank and MoNa) and fragmentation prediction resources
(e.g., MetFrag and CFM-ID) will allow for further con-
fidence in probable identifications. Finally, incorporation of
empirical reference spectra from vendors participating in
ENTACT will allow rapid screening for a large suite of
ToxCast compounds.

Candidate prioritization

Once probable structures have been proposed, chemical
standards are used for feature confirmation, and in some
cases, quantitation. As additional standards become avail-
able, incremental advances are to be expected in the per-
centages of probable and confirmed structures relative to
tentative candidates. By definition, however, the ability to
confirm compounds will always be limited by the avail-
ability of chemical standards. This limitation is likely to
persist given the cost and time associated with standard
synthesis. As such, focus must be given to tools for prior-
itizing tentative candidates that require further study. In
other words, methods should be employed that help deter-
mine which tentative compounds require further study, and
which are potentially of little health consequence.

In a previous pilot study [31], we identified molecular
features in house dust samples using LC-TOF HRMS,
proposed tentative candidates by screening observed
molecular features against the DSSTox database (which
included, at the time, ~33 K compounds), and prioritized
tentative candidates for further analysis using data from
ToxCast and ExpoCast [31]. Priority candidates - those
predicted to have high bioactivity, exposure potential, or
both - were examined to identify which candidates could be
further classified as probable structures. ToxCast standards
were ultimately used to confirm a manageable list of
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compounds. About half of the confirmed chemicals,
according to a review of the published literature, had never
before been measured in house dust. This pilot study paved
the way for a number of NTA studies now being conducted
by EPA/ORD, and serves as the basis for the framework
proposed here. It was further featured in the recent NRC
report “Using 21st Century Science to Improve Risk-
Related Evaluations” as an example of an “...innovative
approach for identifying and setting priorities among che-
micals for additional exposure assessment, hazard testing,
and risk assessment that complements the current hazard-
oriented paradigm” [9]

ToxCast and ExpoCast data exist for thousands of
DSSTox chemicals, and are freely available to the public
via the Dashboard. The Dashboard can therefore be used to
identify tentative candidates (via formula or mass-based
searching), and then sort these candidates based on potential
for human (or ecological) contact and biological response.
Figure 3 depicts how ToxCast and ExpoCast data were used
in our previous dust analysis, and are now integrated into
the research framework. As shown in Fig. 3, exposure and
bioactivity estimates for tentative candidates are combined
into a prioritization algorithm, along with estimates of
feature abundance (i.e., average peak intensity across sam-
ples) and detection frequency. EPA’s Toxicological Prior-
itization Index (ToxPi) software is then used to generate
graphical displays for each tentative candidate [78]. Here,
each pie wedge represents a weighted and normalized value
for the selected variable. The scoring algorithm and ToxPi
graphical representation are completely customizable—new
variables and different weighting schemes can be easily
applied. To date, our internal analyses have given more
weight to candidates with elevated detection frequency and
evidence of bioactivity.

Exposure and bioactivity evaluation

While exposure and bioactivity data are available for
thousands of chemicals, the majority of DSSTox com-
pounds (~99%) are without these data. With regards to
priority scoring, compounds with data are considered
separately from those without data. A bifurcation of the
research workflow is shown in Fig. 3 to depict this differ-
entiation. Here, compounds with data are shown to undergo
a series of steps to enable exposure evaluation, whereas
compounds without data are further considered as part of a
bioactivity evaluation.

EPA’s HT exposure models and ExpoCast framework
make use of and predict environmental and biological
concentrations of known compounds. Often, limited
data are available as model inputs and for model para-
meterization, which can lead to large uncertainties in media
concentration or final exposure estimates. Chemical

measurements are therefore needed to help parameterize,
evaluate, and refine existing models. A major goal of the
proposed research framework is to enable NTA data to meet
these needs. Here, the initial focus is on compounds clas-
sified as probable structures, and ranked as high-priority
using the ToxPi approach. As a first step, to the extent that
resources allow, these compounds are confirmed using
existing standards - provisional concentrations may then be
estimated using a variety of techniques [79]. These con-
centration estimates are then compared to predictions from
HT exposure models. Agreement between predicted and
estimated concentrations provide confidence in model per-
formance. Sizable disparities between model predicted and
laboratory estimated values, however, may prompt re-
evaluation of model structures and parameters, and/or
follow-up laboratory analyses. Specifically, targeted meth-
ods may be developed and applied in instances where NTA-
estimated concentrations significantly exceed model pre-
dicted values and encroach on exposure thresholds that are
consistent with predicted biological activity. The final pro-
duct of these steps is strengthened assessments of potential
risk for confirmed high-priority compounds.

As DSSTox increases in size, so does the number of
probable structures for which exposure and bioactivity data
are unavailable. For a given experiment, it is not uncommon
to have ten times as many probable structures without
exposure and bioactivity data than probable structures with
this data. It is critical that these compounds are not dis-
regarded from further analysis based on existing data lim-
itations. Rather, these compounds must pass a cursory
evaluation for bioactivity before being exempted from further
consideration. QSAR modeling has been applied to deter-
mine which compounds are most likely to be bioactive, and
therefore higher priority. For example, the Collaborative
Estrogen Receptor Activity Prediction Project recently pre-
dicted ER activity across a set over 32,000 chemical struc-
tures [73]. Using these predictions, candidate compounds can
be prioritized, and attempts made at confirmation using
standards and/or additional targeted analysis procedures.
Confirmed high-priority compounds are eventually nomi-
nated for in vitro screening through the ToxCast program.
Results of the ToxCast assays, as well as any new ExpoCast
predictions, are ultimately collated within the DSSTox
database and Chemistry Dashboard, and used to support
Agency prioritization efforts and eventual decisions.

Conclusions and outlook

Studies at EPA are now being planned and executed with
this integrated research framework in mind. Analyses as
part of ENTACT are underway (as of January 2017) and

will be a source of measurement data for thousands of
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ToxCast compounds, and chemicals, degradants, metabo-
lites, and mixtures not currently considered by ToxCast/
Tox21. The content of DSSTox and the functionality of the
Dashboard are constantly expanding, including the addition
of chemical datasets provided by other parties interested in
NTA, thereby allowing better access to chemistry data and
tools for supporting cheminformatics applications and NTA
workflows. Also expanding are the exposure and bioactivity
data being generated by the ExpoCast and ToxCast projects,
respectively. Semi-quantitative NTA measures across a
variety of media will soon enable evaluation and refinement
of ExpoCast predictions. When examined using bioactivity
prediction models, these NTA measures will further yield
prioritized lists of compounds that can be considered for
ToxCast screening.

It is worth noting that measurement data from NTA
studies will not parallel those from targeted studies in terms
of accuracy and precision. The NTA community will surely
face challenges when comparing semi-quantitative data
over time, and across analytical platforms and labs. Stan-
dardized approaches will therefore be needed to ensure the
appropriate generation, communication, and use of NTA
measurement data. Numeric results from ENTACT are
expected to shed light on the severity of this issue (i.e., the
amount of variability in semi-quantitative measures from
one experiment to the next) and act as a large training set for
future concentration prediction models. Ultimately, NTA
data are intended to be fit-for-purpose—that is, to support
screening-level activities. Targeted measures will always be
the benchmark for risk-based decisions and actions, and
therefore must be generated in tandem, as needed, with
NTA measures (Fig. 3). Such a combined measurement
scheme will provide a solid foundation for 21st century
chemical safety evaluations, and an improved under-
standing of the chemical composition of the exposome.
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